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Quantum convolutional neural networks (QCNNs) represent a promising
approach in quantummachine learning, paving newdirections for both quantum
and classical data analysis. This approach is particularly attractive due to the
absence of the barren plateau problem, a fundamental challenge in training
quantum neural networks (QNNs), and its feasibility. However, a limitation arises
when applyingQCNNs to classical data. The network architecture ismost natural
when the number of input qubits is a power of two, as this number is reduced
by a factor of two in each pooling layer. The number of input qubits determines
the dimensions (i.e., the number of features) of the input data that can be
processed, restricting the applicability of QCNN algorithms to real-world data.
To address this issue, we propose a QCNN architecture capable of handling
arbitrary input data dimensions while optimizing the allocation of quantum
resources such as ancillary qubits and quantum gates. This optimization is not
only important for minimizing computational resources, but also essential in
noisy intermediate-scale quantum (NISQ) computing, as the size of the quantum
circuits that can be executed reliably is limited. Through numerical simulations,
we benchmarked the classification performance of various QCNN architectures
across multiple datasets with arbitrary input data dimensions, including MNIST,
Landsat satellite, Fashion-MNIST, and Ionosphere. The results validate that the
proposed QCNN architecture achieves excellent classification performance
while utilizing a minimal resource overhead, providing an optimal solution when
reliable quantum computation is constrained by noise and imperfections.

KEYWORDS

quantum computing, quantum machine learning, machine learning, quantum circuit,
quantum algorithm

1 Introduction

The advent of deep neural networks (DNNs) has transformed machine learning,
drawing considerable research attention owing to the efficacy and broad applicability of
DNNs [1, 2]. Among the DNNs, convolutional neural networks (CNNs) have emerged to
pivotally contribute toward image processing and vision tasks [3, 4]. By leveraging filtering
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techniques, the CNN architecture effectively detects and
extracts spatial features from input data. CNNs exhibit
exceptional performance in diverse domains—including image
classification, object detection, face recognition, and medical image
processing—and have attracted interest from both researchers and
industry [5–9].

AlthoughDNNs have proven successful in various data analytics
tasks, the increasing volume and complexity of datasets present a
challenge to the current classical computing paradigm, prompting
the exploration of alternative solutions. Quantum machine learning
(QML) has emerged as a promising approach to address the
fundamental limitations of classical machine learning. By leveraging
the advantages of quantum computing techniques and algorithms,
QML aims to overcome the inherent constraints of its classical
counterparts [10–13]. However, a challenge in contemporary
quantum computing lies in the difficulty of constructing quantum
hardware. This challenge is characterized by noisy intermediate-
scale quantum (NISQ) computing [14, 15], as the number of
quantum processors that can be controlled reliably is limited
owing to noise. Quantum-classical hybrid approaches based on
parameterized quantum circuits (PQCs) have been developed to
enhance the utility of NISQ devices [16–18]. These strategies have
contributed to advancements in quantum computing and machine
learning, facilitating improved performance and applicability in
various domains. In particular, PQC-based QML models have
demonstrated a potential to outperform classical models in terms
of sample complexity, generalization, and trainability [19–25].
However, PQCs encounter a critical challenge in addressing real-
world problems, particularly in relation to scalability, which is
attributed to a phenomenon known as barren plateaus (BP) [26, 27].
This phenomenon is characterized by an intrinsic tradeoff between
the expressibility and trainability of PQCs [28], causing the gradient
of the cost function to vanish exponentially with the number of
qubits under certain conditions. An effective strategy for avoiding
BPs is to adopt a hierarchical quantum circuit structure, wherein
the number of qubits decreases exponentially with the depth
of the quantum circuit [29, 30]. Quantum convolutional neural
networks (QCNNs) notably employ this strategy, as highlighted
in recent studies [31–37]. Inspired by the CNN architecture, the
QCNN is composed of a sequence of quantum convolutional
and pooling layers. Each pooling layer typically reduces the
number of qubits by a factor of two, thereby increasing the
quantum circuit depth to O(log (n)) for n input qubits. This
logarithmic depth enables the implementation of extremely compact
quantum machine learning models, with the number of parameters
growing logarithmically with n [32, 33, 35]. Furthermore, QCNNs
exhibit strong generalization capabilities [38] and are closely
connected to tensor networks [29], making them an important
architecture in QML.

The logarithmic circuit depth is one of the features that renders
theQCNNan attractive architecture forNISQdevices, implying that
themost natural design approach is to set the number of input qubits
to a power of two. However, the number of input qubits required is
determined by the input data dimension, i.e., the number of features
in the data. If the input data require a number of qubits that is not
a power of two, some layers will inevitably have odd numbers of
qubits. This can occur either in the initial number of input qubits
or during the pooling operation, representing a deviation from the

optimal design and requiring appropriate adjustments. In particular,
having an odd number of qubits in a quantum convolutional
layer results in an increase in the circuit depth if all nearest-
neighbor qubits interact with each other. Consequently, the run time
increases and noise can negatively impact the overall performance
and reliability of the QCNN. Moreover, it is unclear how breaking
translational invariance in the pooling layer, a key property of the
QCNN, affects overall performance. Because these considerations
constrain the applicability of the QCNN algorithm, our goal is
to optimize the QCNN architecture, developing an effective QML
algorithm capable of handling arbitrary data dimensions.

In this study, we propose an efficientQCNNarchitecture capable
of handling arbitrary data dimensions. Two naive approaches served
as baselines to benchmark the proposed architectures: the classical
data padding method, which increases the input data dimension
through zero padding or periodic padding to encode it as a power
of two, and the skip pooling method, which directly passes one
qubit from each layer containing an odd number of qubits to the
next layer without pooling. The first method requires additional
ancillary qubits without increasing the circuit depth, whereas the
second method does not require ancillary qubits but results in
an increased circuit depth to preserve the translational invariance
in the convolutional layers. By contrast, our proposed method
effectively optimizes the QCNN architecture by applying a qubit
padding technique that leverages ancillary qubits. By introducing
an ancillary qubit into layers with an odd number of qubits, we
can effectively construct convolutional layers without an additional
increase in circuit depth. This enables a reduction in the total
number of qubits by up to log (n) compared with the classical
data padding method. Moreover, the reuse of a single ancillary
qubit across multiple layers further reduces the required number
of ancillary qubits. This strategy of qubit reuse efficiently optimizes
the number of ancillary qubits along with the circuit depth. In
addition, recycling the ancilla qubit facilitates uniform operations
across layers, systematically enhancing the stability and efficiency of
the QCNN architecture. To validate our approach, we benchmarked
our proposed method against naive methods on various datasets:
MNIST, Landsat satellite, Fashion-MNIST and Ionosphere datasets.
Numerical simulation results show that our proposed method
achieves a high classification accuracy comparable to that of naive
methods. Notably, our method significantly reduces the number
of qubits used compared with classical data padding methods,
providing substantial advantages in terms of resource efficiency. We
also conducted noise simulations using information from an IBM
quantum device that mimics the operations and characteristics of
real quantum hardware. The noise simulation results demonstrate
that the proposed method exhibits less performance degradation
and lower variability under realistic noise conditions than the skip
pooling method. This is a consequence of the skip pooling method
requiring a larger circuit depth. Because the proposed method not
only improves the runtime but also enhances robustness against
noise, it serves as a fundamental building block for the effective
applicability of QCNNs to real-world data with an arbitrary number
of features.

The remainder of this paper is organized as follows. We
introduce the foundational concepts of QML in Section 2, focusing
on principles underlying quantum neural networks (QNNs) and
QCNNs. Section 3 presents the detailed design of a QCNN
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architecture capable of handling arbitrary data dimensions,
including a comparative analysis between naive methods and
our proposed methods. Simulation results are presented in
Section 4 along with a comparative performance analysis of the
naive and proposed methods under both noiseless and noisy
conditions. Section 5 explores possible extensions of multi-qubit
quantum convolutional operations. Finally, concluding remarks are
presented in Section 6.

2 Background

2.1 Quantum neural network

A DNN is a machine learning model constructed by deeply
stacking layers of neurons [39]. Using nonlinear activation
functions—such as the sigmoid, ReLU, and hyperbolic tangent
functions—the DNN can learn patterns in complex data to
solve various problems with high performance. Although the
mathematical foundation for the success of DNNs remains an
active area of research [40], several studies, as well as the universal
approximation theorem, have demonstrated that neural networks
can approximate complex functions with arbitrary accuracy [41].
On the other hand, a QNN is a quantum machine learning model,
where the data is propagated through a PQC in the form of a
quantum state. The data can be either intrinsically quantum, if
the data source is a quantum system, or classical. In the latter case,
which is the primary focus of this work, the classical data first has to
be mapped to a quantum state. Note that nonlinear transformation
of the input data can occur during this data mapping step. Since the
parameters of the PQC are real-valued and its output is differentiable
with respect to the parameters, they are typically trained through
classical optimizers, similar to how DNNs are trained. In this sense,
the QNN-based ML is also known to be a quantum-classical hybrid
approach. Quantum-classical hybrid approaches using PQCs are
effective at shallow circuit depths [18], which significantly enhances
their applicability to NISQ devices with limited numbers of qubits.
In addition, the PQC can approximate a broad family of functions
with arbitrary accuracy, making it a good machine learning model
[16, 21].

A QNN consists of three primary components: (1) Data
Embedding, (2) Data Processing, and (3)Measurements. These
models transform classical data into quantum states, to be processed
using a sequence of parameterized quantum gates. The training
process connects the measurement results to the loss function,
which is used to tune and train the parameters. Figure 1 depicts
the overall training process of a QNN. Consider a dataset D =
{(xi,yi)}

M
i=1 with xi ∈ ℝ

N and yi ∈ ℝ, and PQC Ui(θi), where θi =
(θ1,…,θm) represents a set of tunable parameters. Typically, the
dataset is embedded into a quantum Hilbert space by a unitary
transformation applied to n qubits initially prepared in |0〉⊗n.
Denoting the data embedded state as |ψin〉, the final state of theQNN
can be expressed as follows:

|ψout〉 = Ul (θl)Ul−1 (θl−1)…U1 (θ1) |ψin〉.

The output function of the QNN is f(θ,xi) = ⟨ψout|O|ψout⟩,
where O is an observable of the quantum circuit. The parameters

are optimized using classical methods such as the gradient descent
algorithm [42], which minimizes the following loss function:

L (θ) = 1
M

M

∑
i=1
|yi − f (θ,xi) |

2.

Furthermore, gradients in quantum computing can be
computed directly using methods such as parameter-shift rules,
wherein derivatives are approximated by shifting the parameters at
fixed intervals and then measuring the difference in the output of
the quantum circuit as a result of that change [43, 44]. However,
as the number of qubits in the training PQC increases, the
parameter space of the quantum circuit also increases, leading to
the BP phenomenon [26]. Although this phenomenon represents a
significant performance limitation of QML, it can be mitigated by
applying hierarchical structures in the quantum circuits [29], such
as the QCNN [30].

2.2 Quantum convolutional neural network

The QCNN is a type of PQC inspired by the concept of
CNNs. QCNNs exhibit the property of translational invariance,
with quantum circuits sharing the same parameters within the
convolutional layer, and reduce dimensionality by tracing out
some qubits during the pooling operation. A primary distinction
between a QCNN and a CNN is that data in a QCNN are defined
in a Hilbert space that grows exponentially with the number
of qubits. Consequently, whereas classical convolution operations
typically transform vectors into scalars, quantum convolution
operations perform more complex linear mapping, transforming
vectors into vectors through a unitary transformation of the
state vector. Thus, quantum convolutional operations are distinct
from classical convolutional operations. Problems defined in the
exponentially largeHilbert space are intractable in a classical setting;
however,QCNNsoffer the possibility of effectively overcoming these
challenges by utilizing qubits in a quantum setting. QCNNs have
also demonstrated the capability to classify images in a manner
similar to their classical counterparts [32]. In the convolutional layer,
local features are extracted through unitary single-qubit rotations
and entanglements between adjacent qubits, and the features
dimensions are reduced in a pooling layer. Typically, the pooling
layer includes parameterized two-qubit controlled unitary gates, and
the control qubit is traced out after the gate operation to halve it.
In binary classification tasks (i.e., yi ∈ {+1,−1}), a QCNN repeats
the convolutional and pooling layers until only one qubit remains,
and performs classification by measuring the last qubit. These
architecturesmaintain a shallow circuit depth by effectively reducing
the number of qubits through a hierarchical structure, which is
crucial for improving model performance and avoiding BP. In
addition, by turning off the translational invariance property, which
involves sharing the same parameters within the convolutional or
pooling layer,more parameters can be introduced to theQMLmodel
while preserving the absence of BP. The structure between layers
ensures a circuit depth ofO(log (n)) for n input qubits. In particular,
the shallow depth of the QCNN contributes to its high performance
in NISQ devices. In addition, the simple structure of repetitive
circuits allows for the applicability ofQCNNs to awide range of tasks
including classical and quantumdata classification [31, 32, 45], error
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FIGURE 1
A schematic of the training process of a QNN. This figure outlines the sequential steps involved in training a QNN, starting with data preparation and
qubit initialization, followed by the application of quantum gates to embed the data, and using a PQC for training. The output is obtained from
measurements of the quantum state. Parameters are updated by minimizing the loss function.

correction [31], and classical to quantum transfer learning [33, 46].
Moreover, theQCNNarchitecture can be easily integrated into other
QNN models and tasks, such as quantum recurrent neural networks
[47], quantum generative adversarial networks [48, 49], quantum
graph convolutional neural networks [50, 51], quantum one-class
classifiers [52], and quantum self-supervised learning [53], bringing
the aforementioned advantages to these areas as well.

It is also worth noting that mid-circuit measurements
are not strictly required for QCNNs to achieve their key
features—translational invariance and dimensionality reduction.
These characteristics can be effectively realized through specific
arrangements of two-qubit gates, along with local measurements
that commute with partial trace operations.

3 QCNN architectures for arbitrary
data dimensions

Data encoding is a crucial process in quantum computing that
transforms classical data into quantum-state. During this process,
the input data dimensions determine the number of qubits required
to represent the quantum state. For example, amplitude encoding
allows the input data x = (x1,…,xN)T ∈ ℝN with dimensions N = 2n

to be represented as amplitudes of an n-qubit quantum state. Since a
pooling layer in QCNN discards half of the qubits, n also has to be
a power of two. The condition requiring the number of input qubits
to be a power of two plays a critical role in the efficient applicability
of QCNN algorithms. However, the dimensions of classical data do
not always conform to this condition. In this section, we describe
our proposed method that enables QCNN architectures to handle
arbitrary data dimensions, along with naive baseline methods. To
demonstrate the efficiency of the proposed method, we analyzed
the number of ancillary qubits, parameters, and circuit depths when
implementing the QCNN algorithm.

3.1 Naive methods

3.1.1 Classical data padding
In a CNN, the direct application of kernels to input feature

maps during convolution operations can reduce the output feature
map size compared to that of the input, leading to the potential

loss of important information. Padding techniques that artificially
enlarge the input feature map by adding specific values (typically
zeros) around the input data are employed to prevent information
loss and enhance model training. Inspired by CNN, similar
padding strategies can be applied in QCNNs by increasing the
data dimensions until the data can be encoded into a number of
input qubits with a power of two, by either adding a constant
value (zero) or periodically repeating the input data. These methods
are referred to as ‘zero-data padding’ and ‘periodic-data padding’,
respectively. Figure 2 illustrates an example of the classical data
padding method, with a handwritten digit image reduced to 30
dimensions. This 30-dimensional input can be encoded into five
input qubits using amplitude encoding. Classical data padding
methods can be applied to expand the data dimension, aligning the
number of input qubits to a power of two. By using either zero- or
periodic-data padding, the data dimensions can be expanded to 28.
Through these padding procedures, three additional ancillary qubits
are introduced to the original system of five input qubits, resulting in
an eight-qubit QCNN structure. Classical data padding approaches
not only increase the number of qubits but may also result in poor
classification performance because the number of dummy features
that are added can often be significantly larger than the number of
data features.

We denote the initial number of input qubits as K, and let
⌈log2(K)⌉ =m. Classical data padding typically employs 2m −K
ancillary qubits. Without loss of generality, we assume that both the
convolutional and pooling gates of the QCNN have one parameter
and a depth of 1. The quantum circuit depth is ∑mi=1(2li + 1) − lm,
where li denotes the number of complete sets of two-qubit gates
connecting the nearest-neighboring qubits as well as the top and
bottom qubits in the ith convolutional layer as depicted in Figure 2.
If the parameters are shared, then the total number of parameters is
∑mi=1(li + 1). However, if the parameters are not shared, then the total
number of parameters is ∑m−1i=1 (⌈

2m

2i−1
⌉(li +

1
2
)) + lm + 1.

3.1.2 Skip pooling
An alternate method enables implementation of the QCNN

algorithm without the use of additional ancillary qubits. This
method adopts a strategy where, within the QCNN structure, a
qubit from each layer containing an odd number of qubits is passed
directly to the next layer without performing a pooling operation.
Although this approach minimizes the use of qubits, it inherently
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FIGURE 2
Schematic of the QCNN algorithm with eight input qubits using the classical data padding method. The quantum circuit consists of three components:
data embedding (green squares), convolutional gate (blue squares), and pooling gate (red circles). The data embedding component is further divided
into two methods: top embedding, which pads the zero-data, and bottom embedding, which pads the input data repeatedly. The convolutional and
pooling gate use a PQC. Throughout the hierarchy, the convolutional gate consistently applies the same two-qubit ansatz to the nearest-neighboring
qubit in each layer. In the ith convolutional layer, the set of gates that completes a loop connecting all nearest-neighboring qubits and the qubits at the
boundaries can be repeated li times. The pooling gate uses the same approach, and can be represented as a controlled unitary transformation that is
activated when the control qubit is 1.

FIGURE 3
Schematic of a QCNN algorithm with five initial input qubits in a circuit with and without ancillary qubits. (A) Uses a method called skip pooling to
perform convolution and pooling operations between each qubit without ancillary qubits. (B) Uses two ancillary qubits to construct the QCNN in a
method called layer-wise qubit padding. The first layer has five qubits. Because this is an odd number of layers, one ancillary qubit is used to perform
convolution and pooling operations. The second layer has three qubits, and another ancillary qubit is used. (C) Uses only one ancillary qubit to
construct the QCNN using a method called single-ancilla qubit padding. Unlike (B), the single ancillary qubit performs the convolution and pooling
operations sequentially.

increases the circuit depth during convolutional operations in
layers with odd numbers of qubits. This can affect the overall
efficiency and execution speed of the quantum circuits. We refer
to this method as ‘skip pooling’. Figure 3A depicts an example
of skip pooling, with a 30-dimensional input encoded into five
input qubits using amplitude encoding. In the first layer of the
QCNN, the convolutional operation between neighboring qubits
introduces one more gate over classical data padding. Then, the
5th qubit passes directly to the next layer without any pooling
operations. This procedure is repeated for the second layer. When
applied to layers that contain an odd number of qubits, skip
pooling increases circuit depth during the convolutional operation.
The increased circuit depth can be affected by noise, which may
potentially propagate through each layer, reducing the accuracy and
reliability of the information. This directly affects the efficiency and
performance of the QCNN, necessitating an effective optimization
strategy.

Unlike classical data padding, no ancillary qubits are used;
however, an additional circuit depth of ∑m−1i=1 Yili is incurred, where
Yi ≔ ⌈

K
2i−1
⌉mod2 is an odd number of qubits in the ith layer

divided by the power of two. If the parameters are shared, then
the total number of parameters is ∑mi=1(li + 1). In contrast, if the
parameters are not shared, then the total number of parameters is
∑m−1i=1 (⌈

K
2i−1
⌉(li +

1
2
) − 1

2
Yi) + lm + 1.

3.2 Proposed methods

3.2.1 Layer-wise qubit padding
As an alternative to the aforementioned naive methods, we

introduce a qubit padding method that leverages ancillary qubits
in the QCNN algorithm. Whereas classical data padding requires
additional ancillary qubits by increasing the size of the input data,
qubit padding directly leverages ancillary qubits in the convolutional
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and pooling operations of the QCNN. Using ancillary qubits
for layers containing odd numbers of qubits, we optimized the
QCNN algorithm and designed an architecture capable of handling
arbitrary data dimensions. We refer to this method as ‘layer-wise
qubit padding’. Figure 3B depicts an example of layer-wise qubit
padding. As in the skip pooling example, a 30-dimensional input
was encoded into five input qubits using amplitude encoding. In the
first layer of the QCNN, one ancillary qubit is added to perform
convolutional and pooling operations with neighboring qubits.
This ensures pairwise matching between all qubits in two steps,
avoiding additional circuit depth that may arise in skip pooling.
This procedure is repeated for the second layer. Consequently, in
a five-qubit QCNN with layer-wise qubit padding and two layers
containing an odd number of qubits, two ancillary qubits are used
to optimize the architecture.

Layer-wise qubit padding generally requires ∑m−1i=1 Yi ancillary
qubits. The quantum circuit depth of∑mi=1(2li + 1) − lm is identical to
that used in classical data padding. If the parameters are shared, then
the total number of parameters is ∑mi=1(li + 1). On the other hand, if
the parameters are not shared, then the total number of parameters
is ∑m−1i=1 ((⌈

K
2i−1
⌉ +Yi)(li +

1
2
)) + lm + 1, which is ∑m−1i=1 (Yi)(li + 1) more

than that for skip pooling.

3.2.2 Single-ancilla qubit padding
Finally, we propose ‘single-ancilla qubit padding,’ a QCNN

architecture designed to handle arbitrary input data dimensions
using only one ancillary qubit. By reusing the ancillary qubit
throughout the QCNN architecture, we significantly reduced
the number of total qubits required for optimization. Figure 3C
illustrates an example of single-ancilla qubit padding. Unlike layer-
wise qubit padding, this method reuses the same ancillary qubit
for every layer with an odd number of qubits. Preserving the
information of the ancillary qubit without resetting it when it is
passed to the next layer plays a crucial role in enhancing the stability
and performance of model training.

Although single-ancilla qubit padding uses only one ancillary
qubit, the quantum circuit depth and number of parameters remain
the same as those in layer-wise qubit padding. Figure 4A illustrates
the circuit depths of the skip pooling and qubit padding methods.
As the number of input qubits increases, the circuit depth of the
qubit padding method is logarithmically less than that of the skip
pooling method. Figure 4B illustrates the number of parameters in
the case of parameter-sharing off for the classical data padding, skip
pooling, and layer-wise and single-ancilla qubit padding methods. In
the case of parameter-sharing on, the number of parameters is the
same across all methods, hence we do not track how the number of
parameters changes. We only compared the number of parameters
in the case of parameter-sharing off. Without loss of generality, we
assumedtheconvolutional layer li tobeequal to1.Whenthenumberof
inputqubits isnotapowerof two,classicaldatapaddinguses the largest
number of the parameters, whereas skip pooling and qubit padding
use relatively fewer parameters. By introducing additional qubits into
certain layers, thequbitpaddingmethoduses slightlymoreparameters
than skip pooling. Therefore, single-ancilla qubit padding enables the
design of efficient QCNN architectures with optimal allocation of
quantum resources such as ancillary qubits and quantum gates.

4 Results

The previous section provided an overview of various QCNN
padding methods. In this section, we benchmark and evaluate our
proposed padding methods in comparison with naive methods using
a variety of classical datasets. To address the characteristics of NISQ
devices, we added noise to the quantum circuits for benchmarking.

4.1 Methods and setup

4.1.1 Datasets
Our experiments were conducted using a variety of datasets.

The MNIST dataset consists of handwritten digits, each represented
as a 28× 28 pixel image in grayscale [54]. The dataset consists of a
total of 60,000 training and 10,000 test images, each labeled with
a numerical value ranging from 0 to 9. In our benchmarking, we
focused on binary classification tasks by selecting two distinct pairs
of labels: 0 & 1 and 5 & 6. In the noiseless scenario, we split
the dataset into 10,000 training, 1,000 validation, and 1,000 test
sets. In the noisy scenario, we split the dataset into 2,000 training,
200 validation, and 200 test sets. Furthermore, 28× 28 features
were relatively high-dimensional for current quantum hardware;
therefore, we used principal component analysis as a dimensionality
reduction technique to reduce the dataset to 30 features.

In addition, we conducted experiments with the Landsat Satellite,
Fashion-MNIST and Ionosphere datasets in the noisy scenario. The
Landsat Satellite dataset classifies multi-spectral values of pixels from
satellite images [55].Thedataset containsa totalof6,435 instanceswith
36 features, where each instance is labeled into one of six land cover
classes. Inourbenchmarking,we focusedonbinary classification tasks
by selecting two distinct pairs of labels: 1 (Red Soil) and 2 (Cotton
Crop). We split the dataset into 1,000 training, 124 validation, and
200 test instances, then reduced the 36 features to 30 features using
principal component analysis.

The Fashion-MNIST dataset consists of 28× 28 grayscale images
of clothing [56]. The dataset consists of a total of 60,000 training
and 10,000 test images, each labeled with one of 10 clothing classes.
In our benchmarking, we focused on binary classification tasks by
selecting two distinct pairs of labels: 0 & 1 and 0 & 2. We split
the dataset into 2,000 training, 200 validation, and 200 test sets,
then reduced the 28× 28 features to 30 features using principal
component analysis.

The Ionosphere dataset classifies radar returns from the
ionosphere [57]. The dataset contains a total of 351 instances with
34 features labeled as ‘good’ or ‘bad’, where ‘good’ indicates radar
returns that show evidence of structure in the ionosphere, and ‘bad’
indicates signals that pass through without detecting any structure.
We divided the data between 251 training and 51 test sets.

4.1.2 Ansatz
We tested two different structures of the parameterized quantum

circuit, also referred to as the ansatz, for the convolutional operations.
The first one consists of two parameterized single-qubit rotations
and a CNOT gate, as shown in Figure 5A [29]. This represents the
simplest two-qubit ansatz. The second one is designed to express
an arbitrary two-qubit unitary transformation. In general, any two-
qubit unitary gate in the SU(4) group can be decomposed using
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FIGURE 4
(A) Semi-log plot illustrating the difference in circuit depth between the skip pooling method and layer-wise and single-ancilla qubit padding method.
The dashed line represents circuit depth in the skip pooling method, the dash-dot line denotes circuit depth in the layer-wise and single-ancilla qubit
padding method, the solid line represents the difference between the two methods, and the dotted line corresponds to log2x, provided as a guide to
the eye. (B) Semi-log plot illustrating the number of parameters in the case of parameter sharing off for the classical data padding, skip pooling, and
layer-wise and single-ancilla qubit padding methods. The solid line denotes the number of parameters for classical data padding, the dashed line
represents the number of parameters for the skip pooling method, and the dash-dot line corresponds to the number of parameters for the layer-wise
and single-ancilla qubit padding.

at most three CNOT gates and 15 elementary single-qubit gates
[45, 58]. The quantum circuits shown in Figure 5C represent the
parameterization of an arbitrary SU(4) gate. Figure 5B shows the
pooling circuit, where two controlled rotations, Ry(θ1) and Ry(θ2), are
applied, with each activated when the control qubit is 1 (filled circle)
or 0 (open circle). Supplementary Appendix SA presents definitions
of the quantum gates used in this study. We constructed two ansatz
sets using a different combination of the convolutional and pooling
circuits. Ansatz set 1 uses convolutional circuit 1 and a pooling circuit
as shown in the figure, whereas ansatz set 2 uses convolution circuit
2 and pooling without a parameterized circuit. In the latter case, the
pooling performs the partial trace operations without parameterized
gates because the convolution circuit one is expressive enough to
implement any two-qubit unitary operation.

4.2 Simulation without noise

In this section, we present numerical experimental results that
evaluate the performance of QCNNs with various padding methods
for binary classification tasks in a noiseless environment. Tables 1, 2
summarize the number of ancillary qubits, circuit depth, and number
of parameters required for the naive and proposedmethods. Classical
data padding and skippoolingmethods exhibit a significant difference
in terms of the utilization of ancillary qubits. Specifically, classical data
padding maximally uses ancillary qubits to apply a natural QCNN
algorithm, whereas skip pooling does not use any ancillary qubits.
However, skip pooling poses a potential drawback in the form of a
potential increase in circuit depth, which affects computational power
and runtime. Additionally, the use of fewer qubits results in the use of
fewer parameterswhen they are not sharedby each layer.However, the
qubit padding method can apply an efficient QCNN algorithm with

fewer qubits. Because the single-ancilla qubit padding method uses
only one ancillary qubit, it does not incur additional circuit depth and
offers the advantage of utilizing a slightly larger number of parameters
than the skip-pooling method.

The simulation results were based on experiments using two
different ansatz sets, denoted as ansatz set 1 and ansatz set 2.
Table 3 lists the number of ancillary qubits, circuit depth, and
parameters when applying different ansatz sets to the QCNN.
All convolutional layers were used only once, and without loss
of generality, the circuit depth was obtained by setting the
convolution and pooling gate depths to 1. We obtained results
from 10 repeated experiments with randomly initialized parameters
for each ansatz set. The performance of the QCNN model was
evaluated using the mean squared error (MSE) loss function.
Model parameters were updated using the Adam optimizer [59].
The learning rate and batch size were set to 0.01 and 25,
respectively. Training was performed with 10 epochs on the MNIST
datasets.

The average accuracies and standard deviations of the binary
classification task on the MNIST (labels 0 & 1 and 5 & 6)
datasets obtained using ansatz set 1 are shown in Figure 6. Both
single-ancilla qubit padding and skip pooling achieved superior
accuracy across the two datasets. For example, for labels 0 & 1
in the MNIST dataset, single-ancilla qubit padding with shared
parameters achieved an average accuracy of 91.75 (±2.57), whereas
skip pooling showed an accuracy of 91.76 (±2.98). Such a trend
was consistently observed in all other test cases, indicating the
effectiveness of these methods in handling classification tasks with
greater precision. However, the other padding methods, although
still effective, did not attain the same levels of accuracy as single-
ancilla qubit padding and skip pooling. The result obtained using
ansatz set 2 is shown in Figure 7. Single-ancilla qubit padding
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FIGURE 5
PQC for convolution and pooling operations. (A) and (B) are the convolutional and pooling circuits, respectively, that compose ansatz set 1. (C) Is the
convolutional circuit that composes ansatz set 2. Ri(θ) is the rotation by θ around the i-axis of the Bloch sphere, and U3(θ,ϕ,λ) is an arbitrary
single-qubit gate, which can be expressed as U3(θ,ϕ,λ) = Rz(ϕ)Rx(−π/2)Rz(θ)Rx(π/2)Rz(λ).

TABLE 1 Comparison of ancillary qubits, circuit depth, and the total number of parameters for classical data padding and skip pooling. Yi ≔ ⌈
K
2i−1
⌉mod2 is

an odd number of qubits in the ith layer when divided by a power of two.

Padding methods Classical data padding Skip pooling

Ancillary qubits 2m −K 0

Circuit depth ∑mi=1(2li + 1) − lm ∑mi=1(2li + 1) − lm + ∑m−1i=1 Yili

Parameters
p-s on ∑mi=1(li + 1) ∑mi=1(li + 1)

p-s off ∑m−1i=1 (⌈
2m

2i−1
⌉(li +

1
2
)) + lm + 1 ∑m−1i=1 (⌈

K
2i−1
⌉(li +

1
2
) − 1

2
Yi) + lm + 1

The notation “p-s on” and “p-s off” indicates whether parameter-sharing is enabled or disabled, respectively.

TABLE 2 Comparison of ancillary qubits, circuit depth, and the total number of parameters for layer-wise and single-ancilla qubit padding.
Yi ≔ ⌈

K
2i−1
⌉mod2 is an odd number of qubits in the ith layer when divided by a power of two.

Padding methods Layer-wise qubit padding Single-ancilla qubit padding

Ancillary qubits ∑m−1i=1 Yi 1

Circuit depth ∑mi=1(2li + 1) − lm ∑mi=1(2li + 1) − lm

Parameters
p-s on ∑mi=1(li + 1) ∑mi=1(li + 1)

p-s off ∑m−1i=1 ((⌈
K

2i−1
⌉ +Yi)(li +

1
2
)) + lm + 1 ∑m−1i=1 ((⌈

K
2i−1
⌉ +Yi)(li +

1
2
)) + lm + 1

The notation “p-s on” and “p-s off” indicates whether parameter-sharing is enabled or disabled, respectively.

and skip pooling consistently achieved higher performance. For
example, for labels 5 & 6 in the MNIST dataset, single-ancilla
qubit padding achieved an average accuracy of 93.07 (±1.14) and
skip pooling achieved 94.59 (±0.62), showing better results with
fewer qubits. Although skip pooling is efficient in terms of qubit
usage and performance, it results in a deeper circuit that may be
more susceptible to noise, particularly in existing noisy quantum
devices. In contrast, single-ancilla qubit padding is more robust
to noise, potentially making it more suitable for implementation
on quantum devices. This will be demonstrated in the following
section.

4.3 Simulation with noise

We conducted an additional experiment to evaluate the impact
of noise in a quantum computing environment on the performance
of QCNN algorithms. In particular, we considered the influence of
circuit depth on error accumulation in quantum computation by
comparing performance between the single-ancilla qubit padding
and skip pooling methods. The noise simulations focused on types
of noise that closely relate to circuit depth, and state preparation and
measurement errors (SPAM) were excluded, as they were beyond
the scope of our interest in this study. We considered various types
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TABLE 3 Comparison of the number of ancillary qubits, circuit depth, and total number of parameters for each padding method with different ansatz
sets based on five initial input qubits. The notation ‘p-s on’ and ‘p-s off’ indicates whether parameter-sharing is enabled or disabled, respectively.

Padding methods Ancillary qubits Circuit depth Parameters (p-s on) Parameters (p-s off)

ansatz set 1 ansatz set 2 ansatz set 1 ansatz set 2

Classical data padding 3 8 12 45 40 195

Skip pooling 0 10 12 45 26 135

Layer-wise qubit padding 2 8 12 45 34 165

Single-ancilla qubit padding 1 8 12 45 34 165

FIGURE 6
QCNN model performance with various padding methods constructed using ansatz set 1. The bar chart shows the average accuracy and standard
deviation for (A) the MNIST 0 & 1 dataset, (B) and the MNIST 5 & 6 dataset. The x-axis differentiates between the case of parameter-sharing on and
parameter-sharing off. Unfilled bars represent zero-data padding, forward slash bars represents periodic-data padding, backslash bars represents skip
Pooling, horizontal dash bars represents layer-wise ancilla, and dots bars represent single-ancilla.

FIGURE 7
QCNN model performance with various padding methods constructed using ansatz set 2. The bar chart shows the average accuracy and standard
deviation for (A) the MNIST 0 & 1 dataset, and (B) the MNIST 5 & 6 dataset. The x-axis differentiates between the case of parameter-sharing on and
parameter-sharing off. Unfilled bars represent zero-data padding, forward slash bars represents periodic-data padding, backslash bars represents skip
pooling, horizontal dash bars represents layer-wise ancilla, and dots bars represent single-ancilla.
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TABLE 4 Average error rates for the IBM quantum device, ibmq_jakarta, utilized in the noisy simulation.

1-Qubit depolarizing 2-Qubit depolarizing 1-Qubit gate length 2-Qubit gate length T1 T2

0.0004 0.0126 35.56 (ns) 327.11 (ns) 128.43 (us) 33.85 (us)

FIGURE 8
Test results of QCNN model with skip pooling and single-ancilla qubit padding constructed with ansatz set 2. The depolarizing errors and gate lengths
were increased from their original values (x1) up to a maximum of (x5). The solid blue line represents skip pooling, whereas the dashed red line denotes
single-ancilla qubit padding. The mean and standard error were obtained from 100 repeated experiments with parameters initialized randomly. (A)
Shows the average accuracy and standard error of classification for 0 & 1 in the MNIST dataset, (B) shows the average accuracy and standard error of
classification for 5 & 6 in the MNIST dataset, and (C) shows the average accuracy and standard error of classification for 1 & 2 in the Landsat satellite
dataset. (D) Shows the average accuracy and standard error of classification for 0 & 1 in the Fashion-MNIST dataset, (E) shows the average accuracy
and standard error of classification for 0 & 2 in the Fashion-MNIST dataset. (F) Shows the average accuracy and standard error of classification for the
Ionosphere dataset.

of noise in quantum devices, such as depolarization errors, gate
lengths, and thermal relaxation, but not the physical connectivity
of qubits. Supplementary Appendix SC provides details of the noise
circuits used in this experiment.

We used the noise parameters observed from IBMQ Jakarta, a
real quantum device, to simulate a realistic noise model. Table 4 lists
the average error rates observed on IBMQ Jakarta. To evaluate the
influence of a range of noise levels, we performed experiments with
depolarizing errors and gate lengths ranging from one to five times
the original values.This multiplication was applied consistently over
100 repeated experiments with randomly initialized parameters, and
the results are shown in Figure 8. For the MNIST, Landsat satellite,
and Fashion-MNIST dataset, as noise levels increased, the single-
ancilla qubit padding method showed less accuracy degradation
compared to skip pooling. In the case of the Ionosphere dataset,
the single-ancilla method consistently outperformed skip pooling
across all tested noise levels. These results demonstrate that the
proposed method provides an optimal solution for constructing

an efficient QCNN architecture with minimal resource overhead,
maintaining robust performance despite noise and imperfections.

5 Extension to multi-qubit quantum
convolutional operations

An arbitrary unitary operation acting on n qubits, which is
an element in the SU(2n) group, can be specified using 4n −
1 real parameters. This implies that the number of elementary
gates required to implement an arbitrary n-qubit unitary operation
increases exponentiallywithn.Therefore,minimizing the number of
qubits involved in a quantum convolutional operation is beneficial
in practice. This is a primary motivation for designing quantum
convolutional operations that act on only two qubits, as considered
in this study. However, quantum convolutional operations can
theoretically act on any n number of qubits. In general, the quantum
circuit depth of any given convolutional layer, denoted by l, is greater
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than or equal to n (i.e., l ≥ n), and equality is satisfied only when the
quantum convolutional layer consists of an qubits where a ∈ ℤ+ is a
positive integer (i.e.,m is a positive-integermultiple of n).Therefore,
if the number of qubits in a quantum convolutional layer, denoted
by m, is not an integer multiple of n, the circuit depth of the given
convolutional layer can be minimized at the cost of introducing n′ <
n ancilla qubits such that m+ n′ = an.

For example, consider a quantum convolutional layer consisting
of m = 7 qubits where each quantum convolutional operation acts
on n = 3 qubits. By utilizing n′ = 2 ancilla qubits, the circuit depth
of the quantum convolutional layer can be minimized to three.

6 Conclusion

In this study, we designed a QCNN architecture that can handle
arbitrary data dimensions. Using qubit padding, we optimized the
allocation of quantum resources through the efficient use of ancillary
qubits. Our method not only reduces the number of ancillary
qubits, but also optimizes the circuit depth to construct an efficient
QCNN architecture. This results in an optimal solution that is
computationally efficient and robust against noise.We benchmarked
the performance of our QCNN using both naive methods and the
proposed methods on various datasets for binary classification. In
simulations without noise, both skip pooling and our proposed
single-ancilla qubit padding method achieved high accuracy in
most cases. We also compared performance between single-ancilla
qubit padding and skip pooling in a noisy simulation, using the
noise model and parameters of an IBM quantum device. Our
results demonstrate that as the noise level increases, single-ancilla
qubit padding exhibits less performance degradation and lower
sensitivity to variation. Therefore, the proposed method serves as a
fundamental building block for the effective application of QCNN
to real-world data of arbitrary input dimension.

The main focus of our study is on the analysis of classical data
using QML, reflecting the prevalence of classical datasets in modern
society. Nevertheless, data can also be intrinsically quantum [60].
In such cases, classical dimensionality reduction or data padding to
adjust the number of input qubits to a power of two is not feasible.
However, the single-ancilla qubit padding method can be easily
adapted and remain valuable.

As a final remark, our work aims to guide users in selecting
the optimal QCNN circuit design with respect to their specific
requirements and system environment. We do not intend to rule
out the skip-pooling method; it remains a viable option if increasing
the number of qubits is more challenging than increasing the circuit
depth. Conversely, if minimizing circuit depth is critical and adding
an extra qubit is relatively easy, then the single-ancilla method
would be preferable. Additionally, if the task at hand requires a
highermodel complexity, the single-ancillamethodwith parameter-
sharing off can be used.
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