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Network-based contagion models are widely used to describe the spread
of epidemics, computer viruses and opinions, yet estimating their states,
parameters and hyperparameters remains challenging, especially when
only macro-level data are available. We therefore aimed to develop
a data-assimilation framework capable of performing this estimation
without requiring node-level observations. An ensemble Kalman filter-based
approach was designed to assimilate macroscopic data into network-based
Susceptible—Infected—Recovered models with heterogeneous parameters. The
method was evaluated under three scenarios: (i) homogeneous parameters
with known network topology; (ii) heterogeneous parameters with known
topology; and (iii) homogeneous parameters with unknown topology. Across
all tested scenarios, the proposed algorithms accurately estimated both
the system states and the underlying parameter/hyperparameter when the
network size are sufficiently large, demonstrating scalability and robustness
even when only aggregate statistics were available. The results indicate that
the proposed assimilation framework can reliably estimate network-based
contagion dynamics from macro-level observations, obviating the need for
costly node-level monitoring and offering a practical tool for real-time epidemic
analysis and forecasting.

contagion dynamics, ensemble Kalman filter, complex network, data assimilation,
parameter estimation

1 Introduction

In contagion dynamics [4], nodes on a network are in one of several states at any
given moment, and the transition of a node’s state depends on its own state or the states
of its neighboring nodes. The spread of epidemics, computer viruses, and public opinion
over networks can all be characterized and studied using the principles of contagion
dynamics. This has led to the emergence of fields such as epidemic dynamics [14],
cybersecurity dynamics [20], and opinion dynamics [18]. Owing to the similarities in
the underlying mechanisms of these fields, models from one domain are often used to
study others and can be enhanced in the process. A prime example is the “compartmental
models” in epidemic dynamics, such as the susceptible-infected-susceptible (SIS) and
susceptible-infected-recovered (SIR) models [3], which have been adapted to study
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cybersecurity dynamics with the incorporation of considerations for
network topology [22, 25].

Although a variety of models and corresponding theories, such
as the epidemic threshold theory associated with the SIS model
[1], have been proposed, contagion dynamics and its derived fields
still face many pressing issues. The most important of these is
the uncertainty of model parameters, a problem that has been
raised in both epidemic dynamics [14] and cybersecurity dynamics
[21]. Nearly all studies are based on the core assumption that
model parameters, such as infection rates of viruses, recovery
rates of disease, and the intensity of cyber-attacks and network
structures, are known. For example, the epidemic threshold is
entirely determined by model parameters [1], and the dynamical
evolution of some models is also completely determined by these
parameters [22, 25]. Without knowing the model parameters, all
these works will remain at the theoretical level and cannot be verified
for correctness or used to solve practical problems, contradicting the
original intention of establishing these fields.

However, the reality is that these parameters are difficult to
obtain. For example, the infection and recovery rates of viruses
and computer viruses cannot be directly measured, and network
structures often contain substantial erroneous information [12].
Therefore, how to extract model parameters from available data has
become an emerging direction [14, 21].

Current work on parameter estimation in contagion dynamics
is largely based on traditional contagion models, which assume
that (i) connections between nodes are well mixed, and thus, the
models do not account for the effects of network topology; and
(ii) parameters between nodes are homogeneous [17, 23]. However,
Newman pointed out that these two assumptions are not realistic:
the number of people each node can come into contact with varies
greatly, and the ability of different infectors to infect others is also
different [11]. Therefore, it is necessary to incorporate network
topology into consideration. In the current work on parameter
estimation in network-based contagion dynamics, the data are at
the node level—that is, the information of each node over time
is required [15]. However, such data are often difficult to obtain in
reality. To the best of our knowledge, there are currently no works
on estimating parameters of network-based contagion dynamics
models with heterogeneous parameters from macroscopic data like
the average infection rate.

Data assimilation (DA) is a technique that integrates
observational data with numerical models to optimize the state and
parameters of the model, thereby bringing it closer to the behavior
of the real system. In practical applications, data assimilation
methods are used not only to improve the initial state of the
model but also to estimate key parameters within the model. For
example, in meteorology, by assimilating observational data from
ground stations and satellites, parameters such as temperature,
humidity, and wind fields in atmospheric models can be estimated,
thereby enhancing the accuracy of weather forecasts [8]. By
dynamically adjusting model parameters to fit observational data,
data assimilation significantly enhances the predictive capabilities
of models and the understanding of complex systems.

To address the problem of extracting parameters from available
data for contagion dynamics models, we propose a method
based on the integration of contagion dynamics models and data
assimilation. This method not only estimates model parameters but
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TABLE 1 Abbreviations and their full names.

Abbreviation Full name

SIS Susceptible-infected-susceptible

SIR Susceptible-infected-recovered

SIRS Susceptible-infected-recovered-susceptible
SEIR Susceptible-exposed-infected-recovered
EnKF Ensemble Kalman filter

EAKF Ensemble adjustment Kalman filter

PF Basic particle filter

pMCMC Particle Markov chain Monte Carlo

BASS Ensemble adjustment using resampling
MIF Maximum likelihood estimation via iterated filtering
RHF Rank histogram filter

BOLD Blood oxygen level-dependent

COVID-19 Coronavirus disease 2019

ER Erd8s-Rényi random graph

WS§ Watts—Strogatz small-world random graph
BA Barabdsi-Albert scale-free random graph
CDFs Cumulative distribution functions

also aids in predicting the state of dynamics. Our contributions are
highlighted as follows:

« We proposed a new algorithm that can assimilate macro-data
and estimate the parameters of the underlying network-based
dynamical model with heterogeneous parameters, which not
only fills the gap in the literature but also strengthens the
connection between contagion dynamics theoretical models
and practical applications.

« In the absence of real-world data, we validated the effectiveness
of the proposed algorithm using toy models and investigated
its performance under node-heterogeneous parameters and
unknown network topology; these results suggest that even
when the information on the network topology is uncertain,
relatively accurate parameter estimation is still achievable if
certain statistical properties of the network are known.

The remainder of this article is organized as follows:
Section 2 lists the
models and our method. Section4 conducts the numerical

related work. Section 3 interprets the
analysis. Finally, Section 5 concludes the paper. There are many
abbreviations of proper nouns in the text. For the reader’s
convenience, the abbreviations and their corresponding full names
are listed in Table 1.
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2 Related works

There are some studies that utilize data assimilation algorithms
to predict the model’s states and estimate parameters.

[17] proposed a framework based on the ensemble adjustment
Kalman filter (EAKF) and the susceptible-infected-recovered-
susceptible (SIRS) model for real-time prediction of seasonal
influenza outbreaks. The study leveraged real-time estimates
of influenza infection rates provided by Google Flu Trends,
assimilating these data into the SIRS model via the EAKF to
optimize the model’s state variables and parameter estimates. The
technical strength of the EAKF lies in its ability to dynamically
adjust model parameters and state variables, aligning them with
actual observational data and enabling the estimation of key
epidemiological parameters, such as the average infectious period
(D) and the basic reproductive number Ry .., through the data
assimilation process. These parameter estimations not only enhance
the model’s capacity to fit the dynamics of influenza transmission
but also strengthen its ability to predict future influenza activity.

[23] compared the performances of six advanced filtering
methods in influenza epidemic modeling and forecasting. The six
filtering methods include three types of particle filters, namely,
basic particle filter (PF), maximum likelihood estimation via iterated
filtering (MIF), and particle Markov chain Monte Carlo (pMCMC),
and three types of ensemble filters, namely, ensemble Kalman filter
(EnKF), EAKE and rank histogram filter (RHF). The study used a
humidity-driven SIRS model and utilized influenza incidence data
from 115 U.S. cities for simulation and retrospective forecasting.
The results indicate that the basic particle filter and EnKF methods
perform better in fitting historical influenza data and estimating
parameters.

[9] proposed an improved state filter algorithm for SIR epidemic
forecasting, known as ensemble adjustment using resampling
(BASS), which aims to enhance the performance of epidemic
predictions based on the SIR model by integrating the linear
correction of the EnKF with the resampling technique of the
PE BASS corrects the state variables using maximum likelihood
estimation and updates the ensemble by sampling from the best-
performing particles, thereby optimizing the state variables and
parameter estimates of the model. Empirical results demonstrate
that BASS achieves the lowest root-mean-square error and the
highest correlation coefficient in 11 of 14 real-world scenarios.

[5] presented an extended susceptible-exposed-infected—
recovered (SEIR) model with a vaccination compartment to
simulate and forecast the COVID-19 pandemic in Saudi Arabia.
The model included seven stages of infection: susceptible, exposed,
infectious, quarantined, recovered, dead, and vaccinated. To address
uncertainties in the model and improve forecasting skills, the
authors used a data assimilation method using the ensemble Kalman
filter to estimate model states and parameters by assimilating daily
COVID-19 data.

[24] proposed a method based on the hierarchical data
assimilation framework to estimate the hyperparameters of spiking
neuronal network models for simulating and predicting brain
activity. The study considered the role of network topology in
the model while also allowing the models parameters to be
heterogeneous across nodes. It combined hierarchical Bayesian
estimation with data assimilation techniques to estimate the
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distribution of parameters in the mesoscopic neuronal network
model using macroscopic blood oxygen level-dependent (BOLD)
signal data, rather than directly estimating the exact values of each
parameter. Through simulation experiments, the hierarchical data
assimilation framework demonstrated high efficiency and accuracy
in estimating hyperparameters and simulating BOLD signals while
avoiding overfitting.

The aforementioned studies can be summarized as follows: in
the field of classical epidemic dynamics, most studies that utilize
data assimilation techniques to predict state estimation parameters
use models based on the assumptions of homogeneous mixing and
homogeneous nodes, without considering the impact of network
topology and node heterogeneity on the model. In the field of
neuroscience, Zhang et al. challenged these two assumptions and
proposed a framework, hierarchical data assimilation, for estimating
distribution hyperparameters. However, in their estimation process,
the network structure is assumed to be known.

Table 2 presents comparisons between previous studies and our
work. In the “Network topology” column, “Fully mixed” indicates
that the model does not account for network topology; this will be
elaborated upon in the model selection section.

3 Models and methods
3.1 Contagion dynamics

Some classical contagion dynamics models are repeatedly
used and investigated across various fields, such as SIS and
SEIR [7]. Because the SIR model is the most renowned and
extensively studied model in classical epidemiology and is highly
representative—with other models such as SIRS and SEIR,
mentioned in the Related work section, being its variants [10]—we
choose a network security dynamics model based on the SIR model
as our model. It is noteworthy that our algorithm can be adapted to
other models. Section 4.7 presents a case where we use our algorithm
in the SIS model.

Assume that there are n nodes in the network, each of which can
be in one of the following three states:

- susceptible (S): nodes that are not yet infected but can
contract the virus;

- infected (I): nodes that are currently infected and can transmit
the virus to others; or

- recovered (R): nodes that have recovered from the attack of the
virus and are now immune.

The network topology can be represented using a directed graph
G = (V,E), where V={1,2,...,n} isthe node setand E ¢ V x Vis the
arc set. Node u € V is an incoming neighbor of node v € V, and v is
an outgoing neighbor of node u if (1,v) € E. The adjacency matrix
of G is an n-dimensional matrix A = (@), Where a, , € {0,1} for
u,v € V,and a,,=1 if and only if (4,v) € E.

As emphasized earlier, the original SIR model does not account
for network topology and assumes homogeneous parameters across
allnodes [9]. We assume that the rate of an infected node successfully
infecting a susceptible node is 3, and the rate of an infected node
recovering and gaining immunity is y. Additionally, at time f, the
fractions of nodes in the susceptible, infected, and recovered states
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TABLE 2 Comparison of data assimilation models, network structure assumptions, and node homogeneity assumptions across different studies.

Study DA model Network topology Homogeneity | Base dynamics
Shaman and Karspeck [17] EAKF Fully mixed Homogeneous SIRS

Yang et al. [23] PE MIE, pMCMC, EnKE, EAKE and RHF Fully mixed Homogeneous SIRS

Huang et al. [9] BASS(EnKF-based) Fully mixed Homogeneous SIR

Hoteit et al. [5] EnKF Fully mixed Homogeneous SEIR

Zhang et al. [24] EnKF Known network Heterogeneous The dynamics of neuroscience

are s(t), i(t), and r(t), respectively. The evolution of the three states is
governed by the discrete master equation (Equation 1):

ds(t) .

T Bi(t)s(t),

di(t) . )

i = Bi(t)s(t) —yi(t), 1)
ar(y

o =yi(t).

As mentioned in the Related work section, the original model
is far from realistic; therefore, we take the network topology into
account and assume that the nodes” parameters are different.

Let &(1) = [£,(1),&,(8), ..., &,(t)] denote the states of all nodes at
time #: for each node v € V, & () € {0,1,2}, where &,(¢) =0, 1, and
2 indicate that node v is in the susceptible, infected, and recovered
states, respectively, at time t. If node v is in the infected state,
ie, £,(t)=1, then f
outgoing neighbors, while y, denotes the rate of node v recovering.
Let s,(1), i,(), and r,(f) denote the probabilities that node v is in
the susceptible, infected, and recovered states, respectively, at time
t. Then, the evolution of s,(f), i,(t), and r,(f) follows the master
equations taking place on G: forve V,

, represents the rate that node v infects its

ds,, (t) ;

ir _<1 _uelx:Lv(l Pt (t))>sv(t)’
di, (t) i j

1dt B <1 B uel\:g#v(l —ﬁuau,vlv (t))> s, (8) - Yoly ®, @
dr,(t) .

a -

3.2 Algorithm for estimating the
parameters of contagion dynamics based
on EnKF

The main objective of our algorithm is to assimilate macroscopic
observational states and estimate the parameters of the underlying
dynamical model, with adjustments made according to different
scenarios.

3.2.1 Selection of the data assimilation method

From the Related work section [23], two types of data
assimilation algorithms are often used in the inference and
forecasting of infectious disease models: PF and ensemble filters
(including the EnKF and its derivations).

Frontiers in Physics

PF and EnKF are both advanced methods for state estimation
in nonlinear dynamic systems. The particle filter is a non-
parametric filtering technique based on Monte Carlo methods,
which approximates the posterior probability distribution of
the system using a set of weighted particles. In contrast, the
ensemble Kalman filter is a linear filtering method based on
ensemble members to estimate the error covariance, making
it suitable for efficient state estimation in high-dimensional
systems.

Both of these filtering methods can be applied to our approach,
and the procedures are similar. Compared to the PF, the EnKF avoids
the issue of particle depletion caused by resampling and offers more
flexible computation, making it suitable for data assimilation tasks in
epidemic models. We compare the performances of the two filtering
methods in Section 4.4.3. We adopt the ensemble Kalman filter as
our basic method.

3.2.2 Three application scenarios
Below are three scenarios that need to be considered:

1) Scenario 1: The network G is known, and the model is
homogeneous, that is, for v € V, B, = fand y, = y, and we need
to estimate 3 and .

2) Scenario 2: The network G is known, and the model is
heterogeneous. We assume that the compromise probabilities
and the recovery probabilities of each node, 8, and y, for v € V,
are sampled from distributions D, (8') and D, (y"), respectively,
and we need to estimate 8’ and y'.

3) Scenario 3: The network G is sampled from a known
distribution, and the model is homogeneous. Then, we need
to estimate the constants  and y.

Scenario 1 is the most basic scenario, which takes into account
the network topology but still assumes that the parameters are
homogeneous. Scenario 2 considers heterogeneous parameters and
demonstrates that when there are a sufficient number of nodes in
the network, it is the distribution of these parameters—not the
individual node values—that influences the contagion dynamics
[11]. Scenario 3 takes into account the possibility that the network
information in reality may be erroneous or incomplete [13], and it
shows that if one grasps the statistical patterns of the network, it
is possible to estimate the parameters without strictly knowing the
specific structure of the network topology.

The detailed procedure of the algorithm is introduced in the
following section.
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3.2.3 Evolution system and state vector

Data assimilation methods require an evolution equation, which
is corrected at each time step by observations to bring the variables
and parameters of the equation closer to the true situation. The set of
variables and parameters that need to be updated is referred to as the
state vector of the evolution equation. Assume that the state vector is
g-dimensional and the observations are r-dimensional. Let the state
vector at time #; be x(f;) € RY. The evolution system generates the
state vector x(f,, ;) and the predicted observation y(f;,,) vector for
the next moment #; ,,:

% (ter1) = F (e (t) o o tiars Wi)»
Y (teer) = Hx (tes1)) + 1130

where F(-) € C'(IR9,RY) is the evolution function, H(-) € C}(R%,R")
is the observation function, which extracts the predicted
observations y(f,,) from the state vector x(f,,), and the g-
dimensional Gaussian noise w;, ~ N(0,Q;) and the r-dimensional
Gaussian noise #, ~ N '(0,R;) represent the system noise and the
observation noise, where Q; and R, are covariance matrices of
dimensions g and r, respectively.

We define the system state at time ¢, as x(f)=
{i(t.), 7(5.), 0, (), 0,(t)}, and 6,(t,) and 6,(f;) correspond to the
system parameters at time f;, the meaning of which varies depending
on the scenario.

It is worth noting that the evolution system does not
directly act on the state variable x(t;). To reflect the evolution
process of Equation 2, we introduce an auxiliary state variable
) =1{&, (1), ..., &, ()} for x(t), which represents the state of
each node in the network at time ¢, At time #, &(t)=
(€1(t),..,&,(t,)) is randomly generated such that +¥ .\ 1¢ -, =
i(t,) and %Zvevlfv(tl)ZZ =7(t,). 1. is the indicator function. The
evolution system is actually the evolution from &(t;) to &(fi,,),
as shown in Equation 3:

§(terr) = FE(1), 01 (1), 0 (1) o ot G) »

where G is the network, and let i(#;, ;) = izve‘/ L (1)=1 and 7(ty,,) =

©)

ineV L (1= Then, an evolution from x(t;) to x(f;, ) is completed.
In system f(:), 0,(t;) and 0,(¢;) determine the parameters for
each node. In scenarios 1 and 3, for v € V, the infection rate and
recovery rate at time i, are f,(t,,;) =g '(6,(t) and y, (t,) =
n(~—%)n

g"l(ez(tk)), respectively, where g(-) = @ . This is done because
in the subsequent update process, the values of 6, and 6, cannot be
controlled. By using g™ (), numbers on the real line can be mapped
to the interval (0,1), which is the typical range for § and y. In
addition, the value of ¢ controls the slope of the mapping. After
experimentation, it is set to 300.

In Scenario 2, we use the method of “Sampling parameters
from the hyperparameter” [24] to update each node’s infection
rate and recovery rate. Suppose that Jjg() and F, () are
cumulative density functions of the distributions D; (') and D,(y"),
respectively. Then, for v € V,

ﬁv(thrl) = ‘Fl_);l(gl(tk)) (}—l,g-l(el(tk,l)) (IBV (tk))) >
yv(tk+1) = f;;l(gz(tk)) (fl,gl(ﬂz(tk,l)) (yv (tk))) >

where ¢! is used for the same reason and .7:1"1 and .7:2"1 are the
inverse functions of /| . and F, , respectively.
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The states and parameters we aim to assimilate are those of the
System defined in Equation 2. However, the variables of the System
in Equation 2 are the probabilities of each node being in one of
the three states, which are the continuous values. Moreover, & (t) €
{0,1,2} is the discrete variable. Therefore, we cannot directly apply
the System (Equation 2) as the evolution process f. To bridge this
gap, we explored various implementations of f.

3.2.4 Instantiation of the evolution system
3.2.4.1 Discrete simulation

First, the System (Equation 2) can be discretized, and then the
infection process within each time interval can be simulated. Under
this condition, ;. is an integer, and then, the evolution of &(t,) follows
the discrete-time stochastic dynamics system (Equation 4) taking
placeon G: forve Vand k € N,

P(Ev(tk + 1) =1] Ev(tk) = 0) =1- l_[ (1 _ﬂuau,vl{fu(tk)ﬂ})’

uev (4)
PE,(+1)=21¢,(4)=1) =y,

Specifically, in the simulation, we select a random number b
from the uniform distribution U([0,1]), i.e., over the interval [0,1].
If &, (t) =0, then

1 ifb<P((+1)=11&,(t)=0),
0

Ev(tk+ 1) =

otherwise.
Similarly, if €, () = 1, then

2 ifb<P(E,(4+1)=2],(4) = 1),

1 otherwise.

Ev(tk+ 1) =

Moreover, the Evolve System (Equation 3) represents the process
of continuing the above simulation until the time reaches t;,.

3.2.4.2 Gillespie-based simulation
Second, without considering discretization, the System

(Equation 2) can be simulated using the Gillespie algorithm [6,
16]. The Evolve System (Equation 3) for simulating the System
(Equation 2) using the Gillespie algorithm over the time interval
from t to t;, is shown in Algorithm 1.

3.2.4.3 Random sampling-based simulation
Third, the Evolve System (Equation 3) can directly evolve

the System (Equation 2) and subsequently sample &(f;,,) based on
the probabilities of nodes being in each state. That is,

1,0,0  ifE, () =0,
Sv(tk)’iv(tk)’rv (tk) =10,1,0 if‘fv(tk) =1
0,0,1  ifE, () =2.

Then, all the triplets (s,(t),i,(t),7,(t)) are put into
the System (Equation 2) to evolve for t, 1, time, and the result is
denoted as (s, (1)1, (tey 1), 7, (tei1))- For ve V, & (£,,) is sampled
from {0, 1,2} with probabilities s, () 7, (t;,1), and 7, (¢, ).

It should be pointed out that our algorithm is independent of
the choice of the System (Equation 3), as long as Equation 3 is a
mapping that reflects the discrete-state-to-discrete-state transition
of the System (Equation 2). Therefore, our algorithm is applicable to
both discrete-time and continuous-time dynamics.
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1: Input: Network G=(V,E), initial states
&,

rate 8,

infection
recovery rate y,, and total simulation

time t,,, -ty

2: Output: End states &

3: Initialize t« @

4: while t<t,,,-t, do

5: infected_nodes «{veV|¢&, (t,)=1}

6: susceptible_nodes «{veV|¢& (t,) =0}
7: Initialize reactions @, a,—0
8: for vesusceptible_nodes do

9: av€7(1"££(1"yuauN1EJtQ:”)

10: reactions.append(/Ir,v,a,)

11: ag«ap+a,

12: end for

13: for veinfected_nodes do

14: b,«vy

15: reactions.append(/R1,v,b,)

16: ag<—ag+b,

17: end for

18: if a,=0 then

19: break

20: end if

21: Generatet~Exp(1/ay), te—t+T

22: Generate random number r~Uniform(0,a,)
23: cumulative_a« @

24: for (reaction_type,v,rate)e reactions do
25: cumulative_a« cumulative_a+rate
26: if cumulative_ax>r then

27 if reaction_type='I" then

28: E(t) <1

29: else

30 &(t) 2

31: end if

32: break

33: end if

34: end for

35: end while

361 &, (Tyyr) < & (ty)

37: return & (t,,q)

Algorithm 1. Gillespie algorithm for network-based SIR model.

3.2.5 Algorithmic procedure
3.2.5.1 Observation and its generation

The observations are the obtained macroscopic time-series data:
assume that during the time interval [0,T], we have sampled K
data points {ytk}le, where 0<t, <t, < ... <tg <T. In particular,
J,, represents the average number of infected individuals and the

average number of recovered individuals in the system at time f;, i.e.,

7y, = ()7 (1))
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where i(t,) = %Zvev L; (-1 and 7(f) = ,%Zvev L (1)

Due to the lack of real data, we use the Evolve System
described in Section 3.2.3 to generate observation data at given time
points {tk}le.

3.2.5.2 Initialization
We generate N ensemble members, where each ensemble

member is a copy of the Evolve System (Equation3). For
simplicity, we denote {N} by {1,2,...,N}. For the ¢th ensemble
member, we add the subscript ¢ to each variable to distinguish
it, thereby indicating that the variable belongs to the ensemble
member ¢.

At the initial time ¢, for ensemble members ¢, sample
i,(t)), 7 (), B;(t), and y;(t;) (or ;’+(t1) and y2’+(t1)) from
the initial distribution, and x; (f)) = (f;(tl),f;(tl),Bf,g(tl)ﬂ;)e(tl)),
where (Hig(tl),é);e(tl)) is (g(B; (11)),g(y; (t,))) in scenarios 1 and 3
and (g([j’é’+(t1)),g(y;’+(t1))) in Scenario 2.

To distinguish from the components of &(t,), denoted as &,(t;),
we use & ,(t;) to represent the state variables of all nodes belonging
to the fth set member at time step f. At time t;, §,(t))=
(f;e(ﬁ)’ s ;,e(ﬁ)) is randomly generated such thati zvlfiz(h):l =

Ve :

= 1 _
fp(tpand - ¥ 1g ) =7 (t).
veV. 7

3.2.5.3 Forecast process

For the ¢th ensemble member, {(t), x;(t), t, and
are input into the Evolve System (Equation 3). Let the evolution
result be denoted as f}(tkﬂ). zT;(tkH) and 7,(t,,) are defined
as follows:

l_; (tk+l)

1
== Lo -1

veV

and

_ 1
7o (fen) = ;Vls;,m -2

Then, X, (t1) = (7 (e 1)s 75 (), 61 450, 83,(80), and. y; (1) =
(i (1), Ty (ti))-

3.2.5.4 Update process

We recall that wpy,, ~N(0,Ry,,) and 7, ~N(0,Qy,,)
are the noises, and we apply the adaptive system noise.
We assume that Q,, and R, are

Qpyy = diag{Q; 1 (k+1),Q,,(k+1),Q53,Qy4}
diag{R, ;,R,,} and set

\Qy; (k+1) = max(min (5e - 6,3¢ =2 x i(#,,)),3e - 3),
\ Q5 (k+1) = max (min (5e - 6,3e — 2 x 7(t,)), 3¢ - 3),

where i(t,,,) and #(t;,,) are the observations at time step k+ 1.

diagonal matrices:

and Riy =

Additionally, Qs 3 = Q4 and R} = R,, are constants given at the
beginning.

The Kalman gain K, is calculated based on the observational
data y, , and the states of the ensemble members x,(t;,,)
are updated (Equation 5):
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()= 3 272 ()
() = 5 27 ()
Pl = 77 2 0% (50 =3 000)) 02 () = 1)+ Re

Pl = 3 20 ) = 50 0% (1) =56 ))T

y -1
Ky = Peck+1(Pyk+l)
Xy (trer) = % (1) + Ky ()’thl Hore ~ Ve (tk+1)) ,
)
where 1, ~N(0,Qg,,) is  the  observation  noise
for the ensemble member £¢€{N}. Then, x}(tk ) =

(Bt )7 (), 6 1), B (8 )):

To update the information of #; (f;,,) and 7} (#;,,) into the state
of nodes &'(t,,), we applied a method similar to “randomized
redistribution” in [2].

If at time f,,, ,%Zvevlf;g(tkﬂ):l # iy (tg,,) or inevlf;[(tm):z #
7, (ti1), to integrate the information of 7,(t,) and 7; () into &, (#,,),
four forms of state correction processes are defined as follows:

o s — i (security to infection): we traverse the currently infected
nodes, ie., & ,(t.)=1, and a set node2infect is formed
consisting of their neighbors in state S, ie., § ,(fx,) =0. We
randomly select a node v, in s2i and transform its state to I.

« i — r (infection to recovery): we collect the nodes with state I,
ie., ; e(tk +1) = 1to form the set i2r, and we randomly select one
node to transition its state to R.

o r— i (recovery to infection): we collect the nodes with state R,
ie., &, ,(tx,1) = 2 to form the set r2i, and we randomly select one
node to transition its state to R.

o i— s (infection to security): we collect the nodes with state I,
ie, & ,(tx,1) = 1to form the set i2s, and we randomly select one
node to transition its state to S.

Let the ceiling function be denoted as [-]. The correction of
& o(try) follows Algorithm 2.

Let the result of & ,(;,,) after correction using Algorithm 2 be
denoted as &, (t,).

The result of a single step in the System (Equation 2) has
significant randomness. Here, we introduce a new parameter: the
window length L, and assimilate the states x*(t;) every L steps.

The entire process of our algorithm is presented in Algorithm 3.

3.2.5.5 Estimated result

We use the average of the states of the ensemble
members as the estimation result of the algorithm: i,,(f) =
1 = 1 i . .

K,ZZE{N}Z;(tk) and rest(tk):ﬁzlew}rﬂtk); in scenarios 1 and

3, Beo(ty) = %Zee{mgfl(efe(tk)) and yest(tk):%] %N}gfl(eie(tk))»
143

and in Scenario 2, ﬁést(tk):,%;Zee{mgfl(ﬁe(tk)) and 7. (1) =
%ZZE{N}gil(ezg(tk))-
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Input: &,(t), Ty(tyer), and F(te,y)
Output: & (ty.q)

11 r=[Fj(te)*nl and 1=[I)(t,,q)=*n].
20 r =[F,(te) =Nl and 17 =[I,(ty,)*n].
3: if r>r" then

4: for j=1:r-r" do

5 i->r

6: end for

7. else

8: for j=1:r-r do

9: r—1

10: end for

11: end if

12: if i>1" then

13: for j=1:1-1i" do

14: s—1

15: end for

16: else

17: for j=1:i"-1i do

18: i—s

19: end for

20: end if

Algorithm 2. Modify £(t,,,) based onij(ty,;) and ry(t,,q).

Input: The ensemble size N, the network G (or
the distri-

bution of the network), window length L,
covariance Q,

R, and the observation bqk:i(tg,ﬂtkniﬂ.
Output: Estimated parameter values.
1: Ensemble generation. Generate the state xj(t;)
and f}(fﬂ-

2. for k=0:K do

3: for ¢=1:N do

4. Forecast Process. Get x,(t,.1) and &,(tx,4).
5: end for

6: if 1|L then

7: for £=1:N do

8 Update Process. Get xj(ty,q).

9: Use Algorithm 2 to modify E}(tkﬂ)‘ Get E}(tkﬂ)
10: end for

11: end if

12: end for

Algorithm 3. Estimate parameters in network-based contagion dynamics
model with the EnKF.
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Performance of the algorithm when using the Gillespie-based simulation method. i and 7 are the observations, while B, , and y,,,, are the true
parameter values. error(obs) = 8.8034e - 2, and error(para) = 4.4327e - 3. (a) States’ proportion vs. time. (b) Parameters’ value vs. time.
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4 Numerical simulation
4.1 Experiment setting

The proposed algorithm has been implemented using the
Python programming language with the NDLib library for
simulating the toy model. We conducted experiments on a machine
equipped with an Intel(R) Core(TM) i7-10750H CPU running at
2.60 GHz, 32.0 GB of RAM, and a 1 TB SSD.

4.2 Experiment dataset
In scenarios 1 and 2, we use real network data to validate our

algorithm. Specifically, we utilize the Internet Gnutella05 peer-to-
peer network dataset, which contains 8,846 nodes and 31,839 arcs.
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The average node in- and out-degree is 3.5993, with a maximal node
in-degree of 79 and a maximal node out-degree of 65. This dataset
can be accessed from the following link: https://snap.stanford.
edu/data/p2p-Gnutella05.html.

In Scenario 3, network G is sampled from the following three
types of synthetic networks:

 Erd6és-Rényi random graph (ER): The graph G(n,p,) chooses
each of the possible edges with probability p, among n nodes.

o Watts-Strogatz small-world random graph (WS): The graph
G(n,d,p,) is a small-world graph with n nodes, where each
node has d adjacent neighbors. Then, edges are rewired with
probability p,,.

Barabdasi—-Albert (BA): 'The
graph  G(n,m) scale-free graph with »n nodes,
starting from an initial set of m, nodes. For each

scale-free

random  graph

is a
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new node added, there are m edges connecting it to

existing nodes.

In Scenario 2, where each node has different parameters, we
use the exponential distribution to sample 8, and y,. This approach
is similar to that described in [24]. In particular, the cumulative
distribution functions (CDFs) of D;(f') and D,(y') are given by
Tp (x)=1-¢ " and Ty (x)=1-¢ v, respectively. Here, 3, and
y, are sampled from these distributions with parameters 8’ and y/,
respectively.

4.3 Evaluation metrics

We define {zT(tk)}f:1 and {f(z‘k)}f:1
infection and recovery rates, respectively. The true parameter values
are represented by ﬁtrue’ Ytrue’ ﬁ;me and y;rue' MeanWhﬂe’ the
estimated values at time #; are denoted as 7. (), Toq(tr)s Bese(ti)s

as the observed average

Ve (ln)» Blg(tp), and yl (). To verify the effectiveness of the
algorithm, we assessed the assimilated data from two aspects:

(i) Measurement of the assimilation effect of observations:

iy o (iest (1) = 1())?

| (at) =70
k=1 ’(tk)2 .

A(ty)?

error (obs) =

(ii) Measurement of the parameter estimation performance:

error (Para) _ io i est (tk ﬁtme) (Yest (tk) Ytrue)z i
k=K—4

tme Ytrue

or in Scenario 2,

K )2 ! )2
1’ ﬂ t
error 6!1‘6!) 10 2 est( k tme) (stt( k) ytrue) )

;2
k=K-4 ﬂ true Ytrue

4.4 Homogeneous model and known
network

In this subsection, the network topology is explicitly known,
and the model parameters are homogeneous across nodes, i.e., /SV =
B and y, = y. This constitutes the simplest scenario, under which
we consider four questions: (1) the performance of the algorithm
in continuous-time dynamics; (2) the necessity of introducing
network topology into the model; (3) the comparison between the
ensemble Kalman filter and the particle filter algorithms; and (4) the
optimal parameters for our algorithm. In this subsection, we use the
Gnutella05 Internet peer-to-peer network as our network topology.

4.4.1 Performance of the algorithm in
continuous-time dynamics

As shown in Section 3.2.3, the algorithm can be applied on
the two continuous-time evolution simulation methods. We take
G as the Gnutella05 network, with f=0.03 and y = 0.05. We used
both the simulation method based on the Gillespie algorithm and
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proportion of states

FIGURE 3

Comparison of the three simulation methods. “Gillespie,”
“Discrete” refer to the Gillespie-based simulation,
random-sampling-based simulation, and discrete simulation,
respectively.

“RS,” and

the random sampling-based simulation to generate observations
and assimilate data. Since we cannot control the time intervals at
which events are generated in the Gillespie-based simulation, we
can only set a maximum simulation time. We set the maximum
running time to 100. We conducted a total of 10 experiments, with
an average of 1,984 time points generated in each experiment. For
each experiment, we selected one time point for every 19 time points
as an observation, resulting in a total of 101 selected nodes. For the
random sampling-based simulation, we set the time interval to 1, i.e.,
t, = kand K = 100.

Figures 1, 2, respectively, demonstrate the effectiveness of
our algorithm based on the two continuous-time simulation
methods mentioned above (Gillespie-based and random-sampling-
based). For the Gillespie-based simulation in Figure 1,error(obs) =
8.8034¢—2 and error(para) =4.4327e—3; for the
sampling-based simulation in Figure 2, error(obs) = 6.1656e — 2 and
4.3138e - 3.

It can be observed that our algorithm’s estimates are close to the

random-
error(para) =

true values using both simulation methods. The assimilation effect
using the Gillespie-based simulation method is slightly worse, which
may be because the time intervals generated using the Gillespie-
based method are not uniform, and thus, the magnitude of each
correction cannot be controlled. The average of the results from
10 experiments shows that, for the Gillespie-based simulation,
9.4176e—2 and error(para) =4.2962e—-3; for the
random-sampling-based simulation, error(obs) =3.6788¢—2 and
error(para) = 4.3795e — 3. This demonstrates that our algorithm is
also effective when applied to continuous-time simulation methods.

error(obs) =

We compare the differences among the three simulation

methods in the following paragraph. Figure3 illustrates
the performance of the three different simulation methods
described in Section 3.2.3 when 8 = 0.03, y = 0.05, and the evolution
time is 100. The simulation results of these three methods are
quite close.

However, there is a significant difference in the running time.
The Gillespie-based simulation method generates nearly 2,000 time

points each time, with an average running time of 675.2 s for the
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TABLE 3 Algorithm performance under different filters with sizes of 50
and 100. In each cell, the upper part shows error(obs), and the lower part
shows error(para).

50 8.1340e-1 4.9415e-3
2.9149e-2 7.4779¢-4
100 4.5452e-3 1.3175e-3
1.1522e-2 5.5691e-4

entire simulation process; the random-sampling-based simulation
method, when the number of nodes is very large, consumes a
considerable amount of time on each sampling, with an average
running time of 136.7 s; the discrete simulation method is the fastest,
with an average running time of 10.3 s.
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Given that the simulation results are quite similar and
that continuous-time dynamics can also be simulated using the
discrete simulation method by adjusting the time intervals during
discretization (since computations are always discrete in practice),
for the sake of efficiency, the discrete simulation method is
consistently used in the subsequent experiments.

4.4.2 Necessity of incorporating network
topology

When network topology is incorporated, the model’s complexity
increases compared to the baseline. Nevertheless, if the standard SIR
model remains capable of producing accurate parameter estimates
even when observational dynamics encompass network effects, the
enhanced model would prove redundant and entail unnecessary
computational overhead.

In this subsection, we generate observational data using the
dynamics (Equation 2) that incorporate network effects and then
estimate parameters through the standard SIR model coupled with
the EnKE replicating the methodology in [9]. With y fixed at 0.002
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andp varying from 0.005 to 0.01 in 0.001 increments, we set the
initial infection rate to 0.002 and perform 3,000 iterations. Figure 4
displays single-experiment results for = 0.006, where i ,; and r,,;
- and Yori
represent parameter estimates, i and 7 are observed values, while 8, .

denote estimated average infection/recovery rates, 3.
and y,,,, indicate true parameter values.

The algorithm exhibits clear convergence. For each parameter
set, we conducted 10 independent trials, with the final 50 time-
step averages serving as steady-state estimates. Figure 5 displays the
experimental outcomes, where the x-axis denotes the six f values
(0.005-0.01 in 0.001 increments) and error bars show the range
(minimum to maximum) with mean values across trials.

It can be clearly observed that the original SIR model
systematically underestimates the transmission rate . This is
because, when considering the network topology, each node can
only interact with its adjacent nodes. In contrast, the original SIR
model assumes that each node can interact with any other node. This
assumption corresponds to a complete graph in terms of network
topology, which amplifies the virus’s transmission capability and
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leads to an underestimation of the virus’s infection capability.
Therefore, it is methodologically imperative to use a model based
on network topology.

4.4.3 Comparison with algorithms based on
particle filter

Our algorithm can also be deployed on particle filtering. We
compared the performance between the EnKF- and the PF-based
algorithms, with the same number of particles, for ensemble sizes of
50 and 100. The observational data are derived from the following
parameters: 5 =0.005, y = 0.002, the initial infection rate is 0.002,
and iteration count K = 3,000.

Table 3 shows the performance of the two algorithms.
Figures 6, 7 visualize the assimilation effects of the two algorithms
when the ensemble sizes are 50 and 100, respectively. ig,xp "poxp
Bguxp and yg,p are the estimates of the average infection rate,
average recovery rate, 5, and y, respectively, obtained using the
EnKF-based algorithm. Similarly, ipp, 7pp, Bpp and ypp are the
estimates obtained using the PF-based algorithm. i and 7 are the
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TABLE 4 Algorithm performance under different parameter settings.
Each cell has only one value that differs from the optimal parameters.

Setting N Qz3 Riy L
Config 10 le-5 le-6 1
Error (obs) 4.2963e-1 1.4696e-2 6.7384e-4 5.6735e-4
Error (para) 9.6108 3.3702e-3 8.5785e-1 4.9526e-1
Config 50 le-4 le-5 5
Error (obs) 4.2337e-3 — 1.4953e-3 7.5633e-3
Error (para) 6.5073e-4 — 8.9945¢-2 3.0551e-3
Config 100 le-3 le-4 10
Error (obs) 1.9964e-3 2.3766e-2 3.8971e-3 —
Error (para) 4.1751e-4 7.3517e-3 3.1908 e-3 —
Config 150 le-2 5e-4 20
Error (obs) 1.7930e-3 1.4885e-1 — 4.6956e-2
Error (para) 2.4969¢e-4 8.5613e-2 — 2.9538e-2

The bold values in the table represent the optimal parameter settings determined by the
experiments.

observed values, while 3, and y, are the true values of the parameters
B and y, respectively.

It can be observed that both algorithms perform well in
assimilating observational data, with the EnKF-based algorithm
showing a slight advantage. However, in terms of parameter
estimation, EnKF significantly outperforms PF, with results differing
by two orders of magnitude. The EnKF also converges faster and
exhibits greater stability, yielding satisfactory results even with an
ensemble size of 50. In contrast, PF only shows slightly better
performance when the number of particles reaches 100, and its
efficiency is far lower than that of the EnKE.

444 Optimal parameters for this algorithm

We then explore the impact of different hyperparameters: the
number of ensemble members N, the covariance of the system noises
Qs3, the covariance of the observation noise R, ), and the window
length L on the estimation effect.

We set the observation’s parameters as 3, = 0.005, y, = 0.002,
the initial infection rate i, = 0.002, and the number of iterations
K =3,000. We seek the optimal parameters through empirical trials
and determine the best values to be Q =1e—4, R=5e—4, N=50,
and L = 10. Table 4 lists the performance under different parameter
settings. In Table 4, each cell indicates the value of the changed
parameter and its performance, with all other parameters remaining
the same as the best parameter setting. The results are obtained by
taking the average of 10 independent experiments.

Figure 8 illustrates the algorithm’s fitting of observations and
estimation of parameters under the optimal parameters. It can be
observed that the algorithm exhibits excellent fitting performance
for the observations, and the estimated parameters converge to the
actual values, which validates our algorithm. For easy comparison,
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in the example shown in the figure, error(obs) = 4.5731e—3 and
error(para) = 6.3527e — 4. The optimal parameters were used in the
following scenarios.

As shown in Table 4, the larger the ensemble size N, the better
the performance of the algorithm. However, since the algorithm is
serial, doubling the ensemble size will double the computation time.

Therefore, we set the ensemble size to 50 as its performance
is not significantly different from that of ensemble sizes of 100
or 150. When the observational covariance R;; is smaller or
the window length L is shorter, the algorithm’s assimilation of
observational data is better. However, this leads to worse parameter
estimation. Thus, intermediate values of R, ; = 5¢e—4 and L = 10 are
chosen. Additionally, when the window length is too long, both
the assimilation and observation effects of the algorithm deteriorate
significantly. With these parameter settings, our algorithm can
complete the optimization process of 3,000 time steps within 40 min.

4.5 Heterogeneous model and known
network

We assume that the node parameters are different but sampled
from the same exponential distribution: the cumulative distribution
functions of D;(B’) and D,(y') are Fp(x)=1- eF" and Fp(x) =
1—-e™, respectively. We still used the Internet Gnutella05 peer-
to-peer network and set Q;3=1e-4, R;; =5e—4, N =50, and
L=10. First, we set f’ =0.006 and y’ =0.003, and the results
are shown in Figure 9. In the experiment shown in Figure 9,
error(obs) = 5.7584e — 2 and error(para) = 2.4573e - 2. It indicates
that our algorithm converges to the true values and can estimate the
states well; however, the estimations for the parameters are not as
accurate as those of the homogeneous model. The accuracies of the
experiments in Figure 9 are error(para) = 0.27567 and error(obs) =
0.02743.

We then investigated the impact of different parameters on the
accuracy. Table 5 lists the accuracy of the algorithm when p’ =
0.005,0.01,0.015,0.02,0.1 and y" = 0.003,0.006,0.009,0.012,0.2. We
can observe that when the parameter is small, the algorithm
performs well (not inferior to Figure9); however, when the
parameter is large, the algorithm performs poorly. We believe that
this may be due to the rapid convergence rate of the SIR model
caused by the large parameter values, which does not allow the
algorithm sufficient time to update the information.

Moreover, the success of our algorithm suggests that when
there are sufficient nodes in the network, the infection situation
of computer viruses may not be related to the specific defense
capabilities of the nodes or the infection capabilities of the viruses
but rather to the probability distribution of defense and infection
capabilities. This is consistent with the ideas of some studies that
used statistical physics to study contagion dynamics [11].

4.6 Different networks
In this subsection, we assume that the model is homogeneous

and that the network is unknown, but we know that it has a specific
structure, and the structural parameters are known. We used this
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TABLE 5 Algorithm's performance under different g’ and y'. In each cell, the top value is error(obs), and the bottom value is error(para). Each value is

obtained by taking the average of 10 independent repeated experiments.

0.005 6.095e-2 6.550e-3 2.257e-2 7.820e-3 2217
2.650e-2 4.556e-2 6.879%-2 4.825e-2 6.731e-2
0.010 2.001e-2 1.840e-2 1.563e-2 1.512e-2 1.438
1.308e-2 3.254e-2 5.570e-2 4.438e-2 2.437e-1
0.015 1.563e-2 1.478e-2 8.740e-3 1.55%-2 1.233
6.921e-2 9.881e-2 4.638e-2 1.635e-1 1.917
0.020 1.210e-2 2.029¢-2 1.461e-2 1.264e-2 1.038
2.228e-1 1.946e-1 1.707e-1 2.063e-1 5.360e-1
0.1 1.952e-2 2.194e-2 1.965e-2 2.280e-2 2.585e-2
7.562e-1 4.773e-1 5.822e-1 7.628e-1 3.909e-1
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FIGURE 10

Algorithm’s performance on three random graphs with 5,000 nodes and an average degree of 10 when = 0.002 and y = 0.001. (a) States’ proportion
vs. time. (b) Parameters’ value vs. time. Performance on the Erdds—Rényi random graph, with error(obs) = 2.1672e - 3 and error(para) = 4.2538e - 2. (c)
States’ proportion vs. time. (d) Parameters’ value vs. time. Performance on the Watts—Strogatz random graph, with error(obs) = 3.7961e - 3 and
error(para) = 6.6674e — 2. (e) States’ proportion vs. time. (f) Parameters’ value vs. time. Performance on the Barabasi—Albert random graph, with

error(obs) = 1.0513e - 3 and error(para) = 5.7914e - 3.
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TABLE 6 Performance of the algorithm when =0.002 and y = 0.001. In
each cell, the top value is error(obs), and the bottom value is error(para).

10 2.0438e-3 3.9309%¢-3 9.4501e-4
3.3252e-2 6.0472e-2 5.8083e-3
100 2.623%¢-4 3.1287e-4 4.4666e-4
5.1049¢-2 3.7950e-2 4.0946e-2
200 1.7285e-4 1.6852¢-4 3.0684e-4
6.2668e-2 8.8090e-2 5.8843e-1
300 2.2682e-4 2.2102e-4 1.5919¢-4
7.7801e-2 7.1678e-2 6.1646e-1

hyperparameter to generate new random graphs for each ensemble
member to estimate the model.

We consider three types of synthetic random networks:
Erdés-Rényi graph G(n,p,), Watts—Strogatz graph G(n,d,p,,), and
Barabdsi-Albert scale-free graph G(n,m). To make a horizontal
comparison among different types of networks, we considered
the variation in the average degree of the networks. We generate
networks with 5,000 nodes and average degrees of 10, 100, 200, and
300, then form observational data with 5 = 0.002 and y = 0.001, and
set the parameters Q;; =1x107% R, ; =5x107*, N=50, and L =
10.

Figure 10 illustrates the algorithm’s performance in separate
experiments conducted on three distinct networks with 5,000 nodes,
an average degree of 10, and parameters 3 =0.002 and y = 0.001.
The experimental results are as follows: on the Erdés-Rényi graph,
error(obs) =2.1672e—3 and error(para) = 4.2538¢ - 2;
Watts—Strogatz graph, error(obs) = 3.7961e—3 and error(para) =
6.6674¢—2; and on the Barabasi-Albert graph, error(obs)=
1.0513e-3 and error(para) =5.7914e—3. Table 6 lists all the
accuracy metrics: error(obs) and error(para) for reference, where

on the

each value was obtained by averaging over 10 repeated independent
experiments.

It can be observed that even without knowing the specific
network structure, our algorithm performs well across all three types
of networks, demonstrating its robustness. Meanwhile, as shown
in the table, when the average degree increases (e.g., to 200 and
300), the performance of our algorithm in estimating parameters
on BA networks decreases significantly. We speculate that this
is because BA networks are heterogeneous, with highly uneven
degree distributions and a significant number of nodes with very
high degrees. These high-degree nodes have a substantial impact
on the spread of the virus. As the average degree increases, the
heterogeneity of the network also increases, rendering the method
of averaging less suitable for estimating network parameters. This,
in turn, leads to a decrease in the performance of our algorithm.

4.7 SIS model

In the previous section, we focused on the SIR model; however,
it should be noted that our algorithm is not only applicable to the SIR
model but can also be used for other classic epidemic models. In this
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subsection, we use our algorithm to estimate a network-based SIS
model [19]. We assume that any node v in the network G can only
be in one of the following two states at the same time: 0 (susceptible
state) or 1 (infective state), and the evolution of the probabilities of
node states obeys the following dynamical system: for node v € V,

ds,, (1) i
dt B _< uelv_giv(l uauv ! t))>sv (t)+A"lV (t)
di, (t) ( l—[ (1-B iy t))).sv(t) = A, (6)
ueV,uv

where 3, and A, for v € V are the infection rate and recovery rate for
node v, respectively. Using a method similar to that in Section 3.2,
we can estimate this dynamical model using the EnKE

In the estimation experiment, we used a 5,000-node ER network,
with an average degree of 10. The average infection rate i(f;), the
number of new infections at each time step Ai(t;), the infection
rate 5, and the recovery rate A were used as the states. We set =
0.002 and A = 0.001, and the iteration time K = 3,000 to generate the
observations. In the estimation process, we set Q33 =1e~4, R | =
5e—4, N =50, and L = 10. As mentioned previously, the algorithm
updates the true input of the dynamics &(f;) based on the average
infection rate i(t;) for every L time steps.

The two subfigures in Figure 11, respectively, show the
algorithm’s data assimilation of observational states and its

parameter estimation effectiveness. f,,, and A,,, are the true

true
parameter values; and Ai are the observations; ,y, Aiyg, B, and y,,
are the estimated values. In subfigure (a), due to the large magnitude
difference between Ai and i, the y-axis for 7 is placed on the right
side of subfigure (a), while the y-axis for Ai is placed on the left.
It can be observed that our algorithm also performs well on the

network-based SIS model.

5 Conclusion and discussion

This study proposes a data assimilation algorithm to estimate
network-based contagion dynamical models, including the states,
parameters, and hyperparameters. We validate the performance
of the algorithm in three scenarios, demonstrating its powerful
capabilities and suggesting that when the network size is sufficiently
large, the dynamical behavior may be independent of the specific
network and parameters, instead depending on their distributions.

Although our algorithm performed well in experiments, it still
has obvious limitations when applied in practice.

(1) Due to the lack of relevant real-world data, we cannot validate
the effectiveness of our algorithm on public datasets as other
algorithm papers do. Experiments can only be conducted using
synthetic data, suggesting that we are not certain about how our
algorithm will perform in practical applications.

The method of data assimilation is highly dependent on the
choice of the model. For existing data, we must precisely
know the underlying model to make accurate predictions
and estimates. However, due to the lack of real-world data,
we are unable to determine how the algorithm performs on
real data. The algorithm also requires information about the
specific network structure. In the three scenarios, we know
either the exact network structure or that the network structure
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Algorithm performance on the network-based SIS model. (a) States’ proportion vs. time. (b) Parameters’ value vs. time.
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comes from a specific distribution, which is relatively difficult
in reality.

(3) When the underlying dynamics converge too rapidly, our
algorithm does not have sufficient time to update the states and
acquire information, thus resulting in mediocre performance.
We need to understand at what convergence rate of the
dynamics our algorithm can ensure accuracy.

(4) Thereisalack of theoretical guarantees regarding the reliability
of the algorithm and the choice of hyperparameters, and
there is also a general lack of publicly available and reliable
network-topology-based time series datasets in the field of
contagion dynamics. This makes it difficult to validate our
algorithm, along with other theoretical results, on public
datasets. Ensuring the theoretical reliability of our algorithm
and developing methods for collecting data to construct
useful datasets will both be important directions for our
future research.
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