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The study of stochastic non-Newtonian fluid flows in porous media has
significant applications in engineering and scientific fields, particularly in
geophysical transport, biomedical flows, and industrial filtration systems. This
research develops a high-order numerical scheme to solve deterministic and
stochastic partial differential equations governing the Darcy–Forchheimer flow
of Williamson fluid over a stationary sheet. This study aims to formulate
and validate a computationally efficient two-stage method that accurately
captures the effects of non-Newtonian behavior, porous media resistance,
and stochastic perturbations. The proposed two-stage numerical method
integrates a modified time integrator with a second-stage Runge-Kutta
scheme, ensuring second-order accuracy in time for deterministic problems.
The Euler-Maruyama approach handles Wiener processes for stochastic
models, providing robust performance under random fluctuations. A compact
sixth-order spatial discretization scheme enhances solution accuracy while
maintaining computational efficiency. Numerical experiments, including Stokes’
first problem, demonstrate the superior accuracy and reliability of the proposed
method compared to existing second-order Runge-Kutta schemes. The results
confirm that the technique effectively captures complex interactions between
deterministic and stochastic effects while significantly improving computational
efficiency. This study advances numerical techniques for stochastic fluid
dynamics, providing a practical framework for modeling and analyzing non-
Newtonian fluid flows in porous media with real-world applications in
engineering, geophysics, and industrial systems.

KEYWORDS

stochastic scheme, stability, consistency, Williamson fluid, Darcy Forchheimer flow,
porous media, Stokes first problem

1 Introduction

In recent years, the investigation of non-Newtonian fluids has gained considerable
interest owing to its complex behaviour, which is crucial in numerous engineering
and commercial applications, including petroleum extraction, polymer processing,
and biological systems. The Williamson fluid is a non-Newtonian fluid distinguished
by its shear-thinning characteristics. The flow characteristics of Williamson fluids,
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particularly when affected by stochastic factors, pose distinct
challenges in modelling and computation because of the nonlinear
structure of their governing equations. Numerical strategies are
essential for achieving approximate solutions when analytical
methods are impractical.

We formulate a resilient two-stage predictor-corrector
methodology to tackle the flow’s stochastic characteristics. The
predictor phase calculates the solution at an intermediate temporal
level, yielding a preliminary estimate, while the corrector phase
enhances this solution at the following temporal level. This method
facilitates precise time-stepping for the stochastic differential
equations that dictate the flow of Williamson fluid, rendering it
appropriate for managing the system’s intrinsic uncertainties and
unpredictable variations.

Here are the main points of this work:

1. We developed a two-stage numerical scheme for solving
deterministic and stochastic partial differential equations with
second-order temporal and sixth-order spatial accuracy.

2. We Integrated a compact sixth-order scheme for spatial
discretization, enabling efficient handling of spatial gradients
in the Darcy–Forchheimer model.

3. In the context of Williamson fluid flow, a thorough
examination of the interplay between concentration and
temperature gradients, magnetic fields, and the effects of
porous media.

4. Comparative analysis of the proposed scheme with the
existing second-order Runge-Kutta method, demonstrating
superior accuracy in solving the Stokes first problem for the
Williamson fluid.

Non-Newtonian fluids exhibit distinct rheological
characteristics, defined by their shear-thinning or shear-thickening
behaviour. The characteristics mentioned above confer benefits in
domains such as fluid transport, mixing, and heat transfer, thereby
enhancing the efficiency and performance of various processes.
Consequently, these fluids play an essential role in shaping and
advancing the domain of modern engineering and industrial
methodologies. Recently, a growing body of research has focused on
a range of non-Newtonian models, encompassing the viscoelastic
system [1], Maxwell system [2], Casson system [3], power-law
system [4], Carreau system [5], and Eyring-Powell system [6].

The Williamson model, a significant element in emulsion sheet
manufacture, exemplifies one category of such models. This notion
is applied in various contexts, including plasma flow, photographic
film production, and the understanding of hemodynamics. The
shear-thinning properties of the Williamson [7] model in non-
Newtonian fluids are well-known. He stressed how this model
is crucial for differentiating plastic flow from viscous flow. In
addition, he found that this model is just as important in
bioengineering, especially for evaluating hemodialysis applications
andmass and heat transport in blood arteries. Due to its significance,
numerous scholars have dedicated their time and resources to
investigating the dynamics of Williamson fluid flow across various
conditions, demonstrating the research community’s deep interest
and commitment to comprehensively understanding this fluid type.
Owing to their importance, these fluids are essential in numerous
vital technical and industrial domains. The homotopy analysis
method can be used for quantitative analysis [8], in stagnation point

flow [9], chemical reactions on a stretching cylinder [10], in porous
media [11], with the effects of viscous dissipation and slip velocity
[12], with thermal radiation and chemical reaction influences [13],
under multiple slip boundary conditions [14], and in nanofluid
scenarios with magnetic field effects [15].

According to Williamson, the Williamson fluid model is one of
the simplest non-Newtonian models that attempts to capture the
behaviour of viscoelastic shear-thinning [16]. A chemical process
was used by Krishnamurthy et al. [17] to demonstrate the flow of
thermally radiative Williamson fluid on a stretched sheet. Their
findings demonstrated a decrease in fluid temperature attributable
to the existence of the Williamson parameter. Khan et al. [18]
illustrated the effects of slip flow of Williamson nanofluid within a
porous media. The surface drag force diminishes as the Williamson
fluid parameter increases. Hayat et al. [19] examined a Williamson
fluid’s 2D unsteady radiative flow on a porous stretched surface. As
the Williamson parameter increases, the fluid velocity decreases.
In their investigation of Williamson fluid flow across a stretching
sheet, Nadeem et al. [20] discovered that the skin friction coefficient
decreases as the Williamson parameter increases. Apply the Keller
box method to investigate the MHD flow ofWilliamson fluid across
a stretching sheet, as demonstrated by Salahuddin et al. [21]. Their
results suggest that the Williamson fluid parameter decreases fluid
velocity. Refs. [22, 23] contain only a few substantial analyses of this
subject matter.

Many industrial processes include fluids passing through porous
media. Its few uses include drying wood, storing nuclear waste,
processing food, refining oil, facilitating drainage, and watering
crops. Darcy’s principle analyses flow behaviour under low porosity
and small velocity conditions.TheDarcy principle didn't work when
the Reynolds number amount was more than 1. Forchheimer [24]
included the square velocity element in the momentum equation
to get around this restriction. Then, for operations involving higher
Reynolds numbers, this is referred to as the Forchheimer number.
The Darcy–Forchheimer flow of a viscous fluid across a plate was
examined by Mukhopadhyay et al. [25] using numerical analysis.
The researchers found that lowering the permeability parameter
made the fluid colder. The 3D Williamson nanomaterial flow
over a Darcy–Forchheimer porous media is shown by Hayat et al.
[26]. As the Forchheimer number increases, the surface shear
stress decreases. Khan et al. [27] visualized the Darcy–Forchheimer
flow of a viscous fluid undergoing heterogeneous-homogeneous
chemical processes. The availability of the Darcy number causes a
noticeable reduction in the fluid speed, as their data demonstrate.
An analysis of the hybrid nanofluid’s Darcy–Forchheimer and slip
flow on a revolving disc is carried out by Haider et al. [28]. They
demonstrated that a greater estimate of Forchheimer enhances
the fluid temperature. Sadiq et al. [29] identified a steady 3D
Darcy–Forchheimer flow of carbon nanotubes on a spinning disc in
Refs. [30–33], you can find a compilation of significant research on
these topics.

A viscous fluid that cannot be compressed and is incompressible
is described by the Navier-Stokes equation. Despite the notion
that the Navier-Stokes equation is intrinsically deterministic, the
fact that certain solutions behave randomly may lead to fresh
insights regarding the beginning of turbulence. However, from
a purely mathematical point of view, whether solutions to the
equation presented above exist and whether they are smooth is
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still largely unsolved. In the following paragraphs, we will discuss
several approaches to analyzing the solutions to the above equation,
including a random component.

One famous example of a deterministic equation that conceals
unpredictability is the famous Schrödinger equation. Any quantum
physics experiment will show some degree of blatant randomness,
even though it is not based on mathematical probability theory.
Notwithstanding this inexplicable dilemma, Quantum Theory has
yielded an impressive suite of control tools, notably the inversion
of solutions to classical equations of motion that are (in principle)
differentiable and instead display uncertainty. Simulating “dry
water” (Von Neumann) only adds another layer of complexity to the
already complicated Euler equation.

There seems to be no proof currently that it does not produce
singularities [34]. There are other ways to generate randomness,
although errors in the initial conditions could also be a source of
uncertainty. This calls for applying statistical approaches, such as
tracking the evolution of a probability measure in conjunction with
the pertinent physical beginning data. See, for instance [35, 36], for
examples of how this fits into the statistical approach to turbulence
that began in the 19th century. A variety of stochastic diffusion-
based Langevin dynamics may account for both equilibrium
and non-equilibrium dynamics, as well as Kraichnan’s model in
turbulent advection [37]. Nevertheless, the chosen numerical model
may include uncertainty (see [38, 39] for further information on this
subject in climate modelling).

A popular method for dealing with stochasticity is introducing
stochastic partial differential equations by applying random
forces to the Navier-Stokes equation. After the revolutionary
mathematical work, a deluge of material covers the subject
[40]. Even though turbulence usually introduces stochasticity
at the Eulerian level, models of the Langevin type that include
smooth Lagrangian trajectories and stochastic velocities have been
evaluated [41]. D.D. Holm more recently used Lie transfer to
introduce stochastic advection [42]. Stochastic partial differential
equations describe the resultant motion, and the approach
is also Eulerian.

This space cannot accommodate any stochastic methods
related to fluid dynamics. A limited number of subjects and
their corresponding references have been chosen. It is important
to note that several fascinating formulas exist for probabilistic
representations. This is a recognized practice in stochastic analysis.
A potential application lies in fluid dynamics, where it may be
utilized to depict the anticipated values of functionals of stochastic
processes as solutions to partial differential equations. Three
distinct methodologies are presented: one employs a probabilistic
model of the vorticity field, another utilizes branching processes
alongside the Fourier transform, and the third implements
Lagrangian diffusion processes. For additional information, go to
[43–45] accordingly.

This study offers two numerical schemes that can be used to
discretize partial differential equations. The scheme is constructed
using Taylor series expansion and then implemented to solve the
flow problem. The non-Newtonian, incompressible, laminar fluid
flow is considered over the flat plate. The governing equations
are reduced to dimensionless partial ones rather than ordinary
ones. Then, these dimensionless equations are solved using the
proposed scheme.

2 Proposed numerical scheme

The proposed scheme is applicable for solving stochastic
differential equations; however, a scheme for the deterministic
model must be constructed before its construction. The scheme is
a bifurcated predictor-corrector framework. The predictor scheme
determines the answer at a specified time level, whereas the corrector
scheme identifies the solution at the subsequent time level. To
propose a scheme, consider the following differential equations.

∂v
∂t
= γ∂

2v
∂y2
+ f(v) (1)

where f(v) represents the nonlinear term in the system, this
framework ensures that nonlinear and stochastic effects are
managed systematically, avoiding excessive numerical diffusion and
providing better stability.

2.1 Step-by-step construction of the
scheme

Step 1: Predictor Stage:

Using an explicit exponential integration approach,
the predictor stage approximates the solution at an
intermediate time step.

vn+1i = v
n
i e

0.05Δt +
(e0.05Δt − 1)

0.05
[ ∂v
∂t
|
n

i
− 0.05 fni ] (2)

The symbol Δt represents the step size in time. Equation 2 can
be called as predictor stage. It uses exponential time integration to
enhance stability. Approximates the solution at the next time step
before applying corrections. Handles nonlinearity implicitly via the
f(v) term.

Step 2: Corrector Stage:

The corrector stage refines the predicted solution by
incorporating further corrections derived using the Taylor series
expansion. The corrector stage can be expressed as:

vn+1i = av
n
i + bv

n+1
i + c(e

Δt − 1){ ∂v
∂t
|
n+1

i
} (3)

The Taylor series method will determine the
parameter in Equation 3.

It is obtained using predictor stage (Equation 2) in Equation 3.

vn+1i = av
n
i + b[

[
vni e

1.5Δt +
(e0.05Δt − 1)

0.05
{ ∂v
∂t
|
n

i
− 0.05vni }]

]

+ c(eΔt − 1)[

[

∂v
∂t
|
n

i
e0.05Δt +

(e0.05Δt − 1)
0.05

{ ∂
2v
∂t2
|
n

i
− 0.05 ∂v

∂t
|
n

i
}]

]
(4)

The Taylor series expansion for vn+1i is given as

vn+1i = v
n
i +Δt

∂v
∂t
|
n

i
+
(Δt)2

2
∂2v
∂t2
|
n

i
+O((Δt)3) (5)

By inserting the Taylor series expansion (Equation 5) into
Equation 4 as
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vni +Δt
∂v
∂t
|
n

i
+
(Δt)2

2
∂2v
∂t2
|
n

i

= avni + b[

[
vni e

0.05Δt +
(e1.5Δt − 1)

1.5
{ ∂v
∂t
|
n

i
− 0.05vni }]

]

+ c(eΔt − 1)[

[

∂v
∂t
|
n

i
e0.05Δt +

(e0.05Δt − 1)
0.05

{ ∂
2v
∂t2
|
n

i
− 0.05 ∂v

∂t
|
n

i
}]

]
(6)

By equating the terms vni ,
∂v
∂t
|n
i

and ∂2v
∂t2
|
n

i
on

both sides of Equation 6 it yields

1 = a+ be0.05Δt − b(e0.05Δt − 1)

Δt = b
(e0.05Δt − 1)

1.5
+ ce0.05Δt(eΔt − 1) − c(e0.05Δt − 1)(eΔt − 1)

(Δt)2

2
= c(eΔt − 1)

(e0.05Δt − 1)
0.05

}}}}}}}}
}}}}}}}}
}
(7)

Upon solving Equation 7, the solution can be written as

a =
1+ 0.05Δt+ 0.00125(Δt)2 − 2e0.05Δt − 0.05Δte0.05Δt + e0.1Δt

(−1+ e0.05Δt)2

b =
0.05(−Δt− 0.025(Δt)2 +Δte0.05Δt)

(−1+ e0.05Δt)2

c =
0.025(Δt)2

(−1+ e0.05Δt)(−1+ eΔt)

}}}}}}}}}}}}
}}}}}}}}}}}}
}
(8)

These coefficients fromEquation 8 are then used in the corrector
equation to improve the accuracy of the final solution.

2.1 Space discretization using a compact
scheme

The semi-discretized scheme for Equation 1 is written as

vn+1i = v
n
i e

0.05Δt +
(e0.05Δt − 1)

0.05
{γ ∂

2v
∂t2
|
n

i
+ f(vni ) − 0.05v

n
i } (9)

vn+1i = av
n
i + bv

n+1
i + c(e

Δt − 1){γ ∂
2v
∂t2
|
n+1

i
+ f(vn+1i )} (10)

Equations 9, 10 are used for time discretization for Equation 1.
To discretize space, the variable compact scheme is employed. The
compact scheme for Equation 1 can be written as Equations 11, 12

vn+1i = v
n
i e

0.05Δt +
(e0.05Δt − 1)

0.05
{C−1Dvni + f(v

n
i ) − 0.05v

n
i } (11)

vn+1i = av
n
i + bv

n+1
i + c(e

Δt − 1){C−1Dvn+1i + f(v
n+1
i )} (12)

Where C and D are matrices that are constructed from the
coefficients of the following equation

β1 v
″|ni−1 + v

″|ni + β1 v
″|ni+1 = b∘

(vni+1 − 2v
n
i + v

n
i−1)

(Δy)2
+ b1
(vni+2 − 2v

n
i + v

n
i−2)

4(Δy)2
(13)

Where b∘ =
4
3
(1− β1),b1 =

1
3
(10β1 − 1).

This compact discretization method ensures higher-order
spatial accuracy while maintaining computational efficiency. Better
resolution of gradients and boundary layer effects.

2.3 Extending the scheme to the stochastic
case

The primary objective of this project is to develop a framework
for stochastic partial differential equations. To accomplish this,
consider the subsequent stochastic partial differential equation.

∂v = (γ∂
2v
∂y2
+ f(v))dt+ σvdW (14)

WhereW stands for Wiener process.
The first stage or predictor stage of the proposed scheme for

Equation 14 is the same as the first stage of the deterministic model
(1). The second stage for stochastic differential Equation 14 can
be written as

vn+1i = av
n
i + bv

n+1
i + c(e

Δt − 1){C−1Dvn+1i + f(v
n+1
i )} + σv

n
i ΔW

(15)

Where ΔW ∼ N(0,Δt) represents a Gaussian random variable
modelling stochastic fluctuations, the stochastic term adds random
perturbations to the velocity evolution.

2.4 Summary of the role of
predictor-corrector stages

2.4.1 Handling Nonlinearity
The predictor stage provides a first estimate of the solution,

incorporating explicit nonlinear effects. The corrector stage refines
the solution using a higher-order correction term, ensuring
improved accuracy.

2.4.2 Handling Randomness
The stochastic term σvni ΔW is incorporated in the corrector

stage, ensuring that random perturbations influence the solution
dynamically. The scheme maintains numerical stability by properly
integrating stochastic terms into the time evolution. This ensures
high-order accuracy, stability, and the ability to handle complex
stochastic dynamics in Darcy–Forchheimer non-Newtonian flows.

3 Stability analysis

The Von Neumann stability analysis, or Fourier series analysis,
is used to assess the stability of finite difference schemes. Using
this stability analysis, the difference equation is transformed into
trigonometric equations. Further stability conditions are imposed
into the trigonometric equations. The analysis provides the exact
condition for linear partial differential equations and estimates the
actual stability condition for nonlinear partial differential equations.
To apply this analysis, consider the following transformations

CeiIψ = β1e
(i+1)Iψ + eiIψ + β1e

(i−1)Iψ (16)
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DeiIψ = b∘
(e(i+1)Iψ − 2eiIψ + e(i−1)Iψ)

(Δy)2
+ b1
(e(i+2)Iψ − 2eiIψ + e(i−2)Iψ)

4(Δy)2
(17)

Where I = √−1 is an imaginary number.
Applying transformations (Equation 16) and (Equation 17) into

the predictor stage of the proposed scheme (Equation 11) yields

vn+1i = v
n
i e

0.05Δt +
(e0.05Δt − 1)

0.05
{γ

4b∘(cosψ− 1) + 2b1(cosψ− 1)
2(Δy)2(2β1 cos ψ+ 1)

− 0.05}vni

(18)

Re-write Equation 18 as

vn+1i = δv
n
i (19)

Where δ = e0.05Δt +
(e0.05Δt−1)

0.05
{γ 4b∘(cosψ−1)+2b1(cosψ−1)

2(Δy)2(2β1 cos ψ+1)
− 0.05}

Incorporating transformation (Equations 16, 17) into the second
corrector stage of the scheme (Equation 15) gives using f = 0.

vn+1i = av
n
i + bv

n+1
i + c(e

Δt − 1){γ(
4b∘(cosψ− 1) + 2b1(cosψ− 1)

2(Δy)2(2β1 cos ψ+ 1)
)}vn+1i + σv

n
i ΔW

(20)

By using the first stage (Equation 19) in the
second stage (Equation 20) it yields

vn+1i = av
n
i + bδv

n
i + c(e

Δt − 1){γ(
4b∘(cosψ− 1) + 2b1(cosψ− 1)

2(Δy)2(2β1 cos ψ+ 1)
)δvni }+ σv

n
i ΔW

(21)

Re-write Equation 21 as

vn+1i = δ1v
n
i + σv

n
i ΔW (22)

Where δ1 = a+ bδ+ c(eΔt − 1){γ(
4b∘(cosψ−1)+2b1(cosψ−1)

2(Δy)2(2β1 cos ψ+1)
)}δ in

Equation 22

The amplification factor can be expressed as

vn+1i

vni
= δ1 + σΔW (23)

By using the expected value of the square of the
amplification factor, Equation 23 is written as

E|
vn+1i

vni
|
2

≤ 2E|δ1|2 + 2σ2E|ΔW|2 (24)

If |δ1|2 < 1 and let, 2σ2 = λ then inequality (Equation 24)
is stated as

E|
vn+1i

vni
|
2

≤ 1+ λΔt (25)

The scheme will remain stable in the mean square sense if
it meets conditions (Equation 25); otherwise, the solution will
be unstable.

Theorem 1: The proposed time and compact scheme in space are
consistent in the mean square sense.

Proof: Let P be the smooth function

L(P)ni = P((n+ 1)Δt, iΔx) − P(nΔt, iΔx)

− γ∫
(n+1)Δt

nΔt
Pyy(s, iΔx)dS− σ∫

(n+1)Δt

nΔt
P(s, iΔx)dW(s) (26)

Lni P = P((n+ 1)Δt, iΔx) − P(nΔt, iΔx) − b
(e0.05Δt − 1)

0.05
C−1DP(nΔt, iΔx)

+ c(eΔt − 1)C−1DP((n+ 1)Δt, iΔx) − σP(nΔt, iΔx)(W((n+ 1)Δt) −W(nΔt))
(27)

Where P((n+ 1)Δt, iΔx) = P(nΔt, iΔx)e0.05Δt +
(e0.05Δt−1)

0.05
{C−1DP(nΔt, iΔx) − 0.05P(nΔt, iΔx)}

By subtracting Equation 27 from Equation 26 and then applying
the absolute value of the square of difference it yields

E|L(Pni ) − L
n
i P|

2 = E | − γ∫
(n+1)Δt

nΔt
Pyy(s, iΔx)dS− σ∫

(n+1)Δt

nΔt
P(s, iΔx)dW(s)

+ b
(e0.05Δt − 1)

0.05
C−1DP(nΔt, iΔx) + c(eΔt − 1)C−1DP((n+ 1)Δt, iΔx)

+ σP(nΔt, iΔx)(W((n+ 1)Δt)) |
2

(28)

Re-write Equation 28 as

E|L(Pni ) − L
n
i P|

2 ≤ 2γE | ∫
(n+1)Δt

nΔt
Pyy(s, iΔx)dS− b

(e0.05Δt − 1)
0.05

C−1DP(nΔt, iΔx)

+ c(eΔt − 1)C−1DP((n+ 1)Δt, iΔx) |
2
+ 2σ2E | ∫

(n+1)Δt

nΔt
P(s, iΔx)dW(s)

− P(nΔt, iΔx)(W((n+ 1)Δt) −W(nΔt)) |
2

(29)

Now consider the inequality

E|∫
t

t∘
f(s,W)dW(s)|

2m
≤ (t− t∘)m−1[m(2m− 1)]m∫

t

t∘
E[| f(s,W)|2m]ds

(30)

The use of inequality (Equation 30) in inequality
(Equation 29) yields

E|L(Pni ) − L
n
i P|

2 ≤ 2γE | ∫
(n+1)Δt

nΔt
Pyy(s, iΔx)dS− b

(e0.05Δt − 1)
0.05

C−1DP(nΔt, iΔx)

+ c(eΔt − 1)C−1DP((n+ 1)Δt, iΔx) |
2

+ 2σ2Δt∫
(n+1)Δt

nΔt
E[|P(s, iΔx) − P(nΔt, iΔx)|2]dS

(31)

Upon applying the limit in Equation 31 as Δx→ 0,Δt→ 0, t =
(n+ 1)Δt, (nΔt, iΔx) → (t,x), then the mean square error tends
to zero.i.e.

E|L(Pni ) − L
n
i P|

2→ 0 (32)

Thus, the proposed scheme in time and compact
spatial discretization is consistent in the mean square
sense proved by Equation 32.

Here, we provide a comparative summary highlighting the
stability criteria of our proposed scheme versus alternative
methods. Below, we outline a summary of Table 1 comparing the
stability characteristics of the proposed method against existing
numerical schemes.
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TABLE 1 Comparison of stability criteria with alternative methods.

Numerical
method

Stability criterion Handling
stochastic
effects

Accuracy in time Spatial
discretization

Computational
efficiency

Proposed Two stage
Scheme

E| v
n+1
i

vni
|
2
≤ 1+ λΔt Explicitly accounts for

the Wiener process (dW)
o(Δt)2 (Second order) Compact sixth-order

scheme
Higher stability and
better accuracy with
fewer grid points

Euler- Maruyamma
Method

E|vn+1i |
2 ≤ 1 (Mean

Square Stability)
Limited handling of
higher-order stochastic
terms

O(Δt) First Order Second order central
difference

Simple but less stable for
small Δt

Runge-Kutta (RK2)
Scheme

|G(k)| ≤ 1 (Von
Neumann Satability)

Not designed for
stochastic PDEs

(Δt)2 (Second order) Second order central
difference

Requires a finer grid for
stability

Implicit crank nicolson
method

Unconditionally stable
for linear problems

It is not designed for
stochastic effects

(Δt)2 (Second order) Second order central
difference

Higher computational
cost due to implicit
structure

Adams bashforth
moulton method

Conditionally stable for
large Δt

Not explicitly designed
for stochastic PDEs

(Δt)2 (Second order) Second order central
difference

Less stable for stiff
problems

The Von Neumann stability analysis is applied to derive the
stability condition.The stochastic nature of the problem requires the
scheme to be stable in the mean-square sense. The derived stability
condition is: E| v

n+1
i
vni
|
2
≤ 1+ λΔt. This ensures the numerical scheme

remains bounded over time, preventing error amplification.
Table 1 effectively compares the stability criteria, stochastic

effects, accuracy, and efficiency of the proposed method versus
alternative approaches. The proposed scheme ensures stability in
stochastic problems and offers superior accuracy and computational
efficiency.

4 Problem formulation

Examine a laminar, unstable, incompressible Williamson fluid
above a fixed plate. The fluid flow is propelled by temperature
and concentration gradients. Let x∗-axis is taken perpendicular
along the plate and y∗- axis is taken horizontally. Suppose the
ambient temperature and concentration are less than those at the
plate. At t∗ = 0 the temperature and concentration are represented
by T∞ and C∞ respectively. After t∗ > 0 both temperature and
concentration become T∞ and C∞ plus some periodic functions.
Figure 1 illustrates the physical and mathematical configuration of
the problem involving non-NewtonianWilliamson fluid flow over a
stationary vertical sheet under the influence of Darcy–Forchheimer
porous medium effects, thermal diffusion, and solutal diffusion.
The x∗-axis represents the horizontal direction along the sheet.
The y∗-axis represents the normal direction (perpendicular) to
the sheet. The coordinate system is essential in defining velocity
components, boundary layer thicknesses, and external forces acting
on the flow. The figure depicts three different boundary layers:
The momentum boundary layer (Black Curve) Represents the
region where the velocity of the fluid gradually transitions from
zero (no slip at the wall) to the free-stream velocity. Thermal
boundary layer (Orange Curve): Shows the temperature distribution
within the fluid, where heat transfer occurs from the wall to the

fluid. Concentration boundary layer (Purple Curve): Indicates
the distribution of solute concentration in the fluid, where mass
transfer occurs due to concentration gradients. Gravity ( g): Acts
downward, influencing the buoyancy-driven (natural convection)
effects in the fluid flow. Magnetic Field B∘: Represents an applied
transverse magnetic field, which affects the flow characteristics
due to the magnetohydrodynamics (MHD) effect. Porous Medium
Effects: The presence of Darcy–Forchheimer drag forces affects the
momentum balance, introducing resistance to the fluid flow. At the
wall (y∗= 0): The velocity u∗ is zero due to the no-slip condition,
and the temperature T and concentration C are prescribed.
The expressions: u∗ = 0,T = Tw + ϵ1(Tw −T∞)cos (wt),C = Cw +
ϵ1(Cw −C∞)cos (wt) indicate that temperature and concentration
vary periodically over time due to oscillations in wall properties.
Far from the wall (as y∗→∞): The velocity approaches zero,
and temperature and concentration reach their respective free-
stream values T∞ and C∞. Considering the effect of the
Darcy Forchheimer model, the governing equations of the flow
can be expressed as [46]

∂u∗

∂t∗
= ν∂

2u∗

∂y∗2
+√2νΓ∂

2u∗

∂y∗2
∂u∗

∂y∗
− bu∗2

+ gβT(T−T∞) + gβc(C−C∞) +
σB2
∘

ρ
u∗ − ν

kp
u∗ (33)

∂T
∂t∗
= α ∂2T

∂y∗2
+ q‴ (34)

∂C
∂t∗
= D ∂2C

∂y∗2
− kc(C−C∞) (35)

Here is the explanation of each equation used in problem
formulation:

Momentum (Velocity) Equation 33: ∂u
∗

∂t∗
: represents the time-

dependent change in velocity. ν ∂2u∗

∂y∗2
: represents the viscous diffusion

term (Laplacian of velocity). √2νΓ ∂2u∗

∂y∗2
∂u∗

∂y∗
: Accounts for the non-

Newtonian Williamson fluid effects, where Γ is the Williamson
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FIGURE 1
Geometry of the problem.

parameter. bu∗2: represents the Forchheimer drag force, a correction
to the Darcy resistance term. gβT(T−T∞): represents buoyancy
forces due to thermal variations. gβc(C−C∞): represents buoyancy
forces due to concentration variations. σB2

∘
ρ
u∗: represents the

magnetohydrodynamic (MHD) Lorentz force, which opposes the
flow. − ν

kp
u∗: represents Darcy’s resistance in the porous medium.

Energy (Heat Transfer) Equation 34: ∂T
∂t∗

: represents the time-

dependent change in temperature.α ∂2T
∂y∗2

: represents heat conduction

(thermal diffusion). q‴ = kuR
ρx∗νcp
(A∗u(Tw −T∞) +B

∗
(T−T∞)):

represents the internal heat generation where A∗ and B
∗

are
dimensionless coefficients of space and temperature-dependent
terms, respectively.

Concentration (MassDiffusion) Equation 35: ∂C
∂t∗

: represents the

time-dependent change in concentration. D ∂2C
∂y∗2

: represents mass
diffusion. −kc(C−C∞): Represents a first-order chemical reaction,
where reactants are consumed over time.

Subject to initial and boundary conditions

u∗ = 0,T = T∞,C = C∞whent∗ = 0

u∗ = 0,T = T∞ + ϵ1(Tw −T∞)cos w∗t∗,

C = C∞ + ϵ1(Cw −C∞)cos w∗t∗wheny∗ = 0

u∗→ 0,T→ T∞,C→ C∞wheny
∗→∞

}}}}}}}
}}}}}}}
}

(36)

Let B∘ is the strength of the magnetic field applied transversely
to the plate. Now, using the transformations (Equation 36). By
introducing non-dimensional variables, the governing equations are
transformed into a more convenient form for numerical analysis:

4.1 Non-dimensional variables

y =
y∗

LR
,u = u

∗

uR
,w = tRw∗, t =

t∗

tR
,θ =

T−T∞
Tw −T∞

,ϕ =
C−C∞
Cw −C∞

}

(37)

where uR = (νgβTΔT)
1
3 : Characteristic velocity scale, LR =

( gβTΔT
ν2
)
− 1

3 : Characteristic length scale and tR = (gβTΔT)
− 2

3 ν
1
3 :

Characteristic time scale as mentioned in Equation 37.
The governing Equations 33–36 are reduce to Equations 38–40

∂u
∂t
= ∂

2u
∂y2
+We

∂2u
∂y2

∂u
∂y
−(M+ 1

Da
)u− Fsu

2 + θ+NC (38)

∂θ
∂t
= 1
Pr

∂2θ
∂y2
+ ϵ
Pr
(A∗u+B∗θ) (39)

∂ϕ
∂t
= 1
Sc

∂2ϕ
∂y2
− γϕ (40)

subject to the dimensionless initial and boundary conditions

u = 0,θ = 0,ϕ = 0 for t = 0

u = 0,θ = ε1coswt,ϕ = ε1coswt fory = 0

u→ 0,θ→ 0,ϕ→ 0 fory→∞

}}}}
}}}}
}

(41)

Where in Equation 41 N, Da,M, Pr,We, Sc, ϵ, FS and γ are given as

N =
βc(Cw −C∞)
βT(Tw −T∞)

,D
a
= k
νtR
,M =

tRσB
2
∘

ρ
,Pr =

νk
ρcp
,

We =
ΓuR
LR
, ϵ =

tRuR
x∗
,Fs = buRtR,γ = tRkc

The dimensionless local Nusselt and Sherwood numbers
are given as Equation 42

NuL = −
∂θ
∂y
|
y=0

ShL = −
∂ϕ
∂y
|
y=0

}}}}
}}}}
}

(42)

These describe the rate of heat and mass transfer at the surface.
The stochastic model is written as Equations 43–45

∂u = ( ∂
2u
∂y2
+We

∂2u
∂y2

∂u
∂y
−(M+ 1

Da
)u− Fsu

2 + θ+NC)dt+ σ1uΔW

(43)

∂θ = ( 1
Pr

∂2θ
∂y2
+ ϵ
Pr
(A∗u+B∗θ))dt+ σ2θΔW (44)

∂ϕ = ( 1
Sc

∂2ϕ
∂y2
− γϕ)dt+ σ3ϕΔW (45)

Subject to the same initial and boundary conditions for the
deterministic model.

5 Results and discussions

We present a detailed simulation study with the following
objectives:
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5.1 Demonstrate the accuracy and
efficiency of the proposed two-stage
computational approach

The proposed computational approach is validated for both
deterministic and stochastic models. For deterministic problems,
the method exhibits second-order accuracy, while it demonstrates
improved accuracy for stochastic differential equations compared
to the conventional Euler-Maruyamamethod.The Euler-Maruyama
scheme is an adaptation of the classical Euler method that
incorporates the Wiener process term, efficiently managed in our
approach through a two-stage process. The first phase involves
modifying the exponential integrator, while the second phase
employs the Runge-Kutta method. The results confirm that the
scheme effectively captures deterministic and stochastic effects,
ensuring numerical stability in the mean-square sense for stochastic
diffusion equations.

5.2 Demonstrate stability and performance
of the proposed scheme

The stability of the proposed scheme is verified for the scalar
stochastic diffusion equation. Unlike traditional approaches, the
scheme preserves consistency in the mean and does not require
linearization to address nonlinear differential equations.The explicit
nature of the scheme ensures efficient computation by solving
the differential equations in two distinct phases: the first stage
excludes the Wiener process, while the second stage incorporates it.
Numerical simulations confirm the scheme’s robustness in handling
nonlinear Darcy–Forchheimer flows and effectively capturing
oscillatory boundary conditions.

5.3 Investigate the impact of key physical
parameters on the velocity, temperature,
and concentration profiles

5.3.1 Effect of the Weissenberg number We on
velocity

Figure 2 illustrates the impact of the Weissenberg number We
on the velocity profile of a non-Newtonian Williamson fluid in
a porous medium. The Weissenberg number is a dimensionless
quantity that characterizes the elastic effects of a fluid, representing
the ratio of elastic forces to viscous forces. The graph shows velocity
variations for three different values ofWe (0.1,0.5,0.9)while keeping
other parameters constant: Fs = 0.1,Da = 7,N = 0.1,M = 0.1,A

∗
=

0.1,B
∗
= 0.1,Pr = 0.9,γ = 0.1,Sc = 0.9,ε = 0.1,ε1 = 0.1. The velocity

initially increases near the boundary due to the no-slip condition
at the wall. A peak velocity is observed at a certain distance from
the wall, gradually decreasing and asymptotically approaching zero
at larger distances. Higher Weissenberg numbers lead to a decrease
in the overall velocity. The solid blue line represents We = 0.1, the
dashed line representsWe = 0.5, and the dotted line representsWe =
0.9. As We increase, the peak velocity decreases due to the increase
in fluid elasticity. A higher We implies a longer relaxation time for
the fluid, making it more resistant to deformation and flow. This
causes the velocity to drop.The flow decelerates faster for higherWe,

FIGURE 2
Effect of weissenberg number on velocity profile using Fs = 0.1,Da =
7,N = 0.1,M = 0.1,A

∗
= 0.1,B

∗
= 0.1,Pr = 0.9,γ = 0.1,Sc = 0.9,ε = 0.1,ε1 =

0.1.

leading to lower fluid motion further from the boundary. Since the
Williamson fluid exhibits shear-thinning behavior, the increase in
Weissenberg number reduces the velocity as the fluid becomesmore
resistant to flow. A lowerWeissenberg number (We = 0.1)means the
fluid behaves closer toNewtonian behavior, allowing higher velocity.
For higherWe = 0.9, the elastic nature of the fluid dominates, leading
to stronger internal resistance and lower velocity.

5.3.2 Effect of the magnetic parameter M on
velocity

Figure 3 illustrates the impact of the magnetic field parameter
M on the velocity profile of a non-Newtonian Williamson fluid
in a porous medium. The analysis is performed while keeping
other parameters constant: Fs = 0.1,Da = 7,N = 0.1,We = 0.1,A

∗
=

0.1,B
∗
= 0.1,Pr = 0.9,γ = 0.9,Sc = 0.9,ε = 0.1,σ1 = 1,σ2 = 1,σ3 = 1.

The velocity starts from zero at the wall due to the no-slip condition.
It increases sharply, reaches a peak, and then gradually declines,
eventually approaching zero at larger distances. Higher values of
M lead to a decrease in velocity across the profile. The solid line
M = 0.1 represents the case with a weak magnetic field. The dashed
line M = 0.5 and dotted line M = 0.9 show results for increasing
magnetic effects. As M increases, the peak velocity decreases, and
the velocity profile declinesmore rapidly.The presence of amagnetic
field introduces a Lorentz force, which acts as a resistive force
(opposing the fluid motion). As M increases, the magnitude of
the Lorentz force increases, which results in greater resistance to
fluid movement.

5.3.3 Effect of Forchheimer Number Fs on
Velocity Profile

Figure 4 illustrates the effect of the Forchheimer number Fs on
the velocity profile of a non-NewtonianWilliamson fluid in a porous
medium. The analysis is conducted while keeping other parameters
constant: M = 0.1,Da = 7,N = 0.1,We = 0.1,A∗ = 0.1,B

∗
= 0.1,Pr =

0.9,γ = 0.9,Sc = 0.9,ε = 0.1,σ1 = 1,σ2 = 1,σ3 = 1. The velocity starts
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FIGURE 3
Effect of magnetic parameter on velocity profile using Fs = 0.1,Da =
7,N = 0.1,We = 0.1,A

∗
= 0.1,B

∗
= 0.1,Pr = 0.9,γ = 0.9,Sc = 0.9,ε = 0.1,σ1 =

1,σ2 = 1,σ3 = 1

FIGURE 4
Effect of Forchheimer number on velocity profile using M = 0.1,Da =
7,N = 0.1,We = 0.1,A

∗
= 0.1,B

∗
= 0.1,Pr = 0.9,γ = 0.9,Sc = 0.9,ε = 0.1,σ1 =

1,σ2 = 1,σ3 = 1.

from zero at the wall due to the no-slip condition. It increases
sharply, reaches a peak velocity, and then gradually declines,
approaching zero at larger distances. Higher values of Fs lead to
a decrease in velocity throughout the profile. The solid line Fs =
0.1 represents the case with a lower Forchheimer number. The
dashed line Fs = 0.5 and dotted line Fs = 0.9 shows the velocity
profiles as Fs increases. As Fs increases, the peak velocity decreases,
and the velocity profile shifts downward. The Forchheimer number
Fs represents the effect of inertial drag forces in a porous
medium. In classical Darcy’s law, the flow resistance in a porous
medium is proportional to velocity, but at higher velocities, inertial
effects become significant, leading to the nonlinear Forchheimer
drag term.

FIGURE 5
Effect of coefficient of space dependent term in heat source on
temperature profile using M = 0.1,Da = 7,N = 0.1,We = 0.1,Fs = 0.1,B

∗
=

0.1,Pr = 0.9,γ = 0.9,Sc = 0.9,ε = 0.1,σ1 = 0,σ2 = 0,σ3 = 0.

5.3.4 Effect of heat source coefficient on
temperature

Figure 5 illustrates the effect of the coefficient of the space-
dependent term in the heat source A∗ on the temperature profile
of a non-Newtonian Williamson fluid in a porous medium. The
analysis is conducted while keeping other parameters constant:
M = 0.1,Da = 7,N = 0.1,We = 0.1,Fs = 0.1,B

∗
= 0.1,Pr = 0.9,γ =

0.9,Sc = 0.9,ε = 0.1,σ1 = 0,σ2 = 0,σ3 = 0. The temperature starts
from a minimum value at the boundary. It increases rapidly to a
peak temperature and then gradually decreases, approaching an
equilibrium state further from the wall. Higher values of A∗ lead to
an increase in the overall temperature profile. The solid line A∗ = 0.1
represents a lower heat source intensity. The dashed line A∗ = 3.0
and dotted line A∗ = 5.0 shows an increase in A∗. As A∗ increases,
the maximum temperature increases, and the temperature profile
rises at all points. A∗ represents the intensity of space-dependent heat
generation in the fluid.

5.3.5 Effect of reaction rate parameter γ on
concentration

Figure 6 illustrates the effect of the reaction rate parameter
γ on the concentration profile of a non-Newtonian Williamson
fluid in a porous medium. The study is conducted while keeping
the following parameters constant: M = 0.1,Da = 7,N = 0.1,We =
0.1,Fs = 0.1,B

∗
= 0.1,Pr = 0.9,A

∗
= 0.9,Sc = 0.9,ε = 0.1,σ1 = 0,σ2 =

0,σ3 = 0. The concentration starts from a low value at the boundary
and increases rapidly to a peak concentration before gradually
declining to an equilibrium value. Higher values of γ lead to a
reduction in the overall concentration profile, meaning that the
concentration distribution becomes flatter for higher reaction rates.
The solid line γ = 0.1 represents a lower reaction rate.Thedashed line
γ = 0.5 and dotted line γ = 0.9 represent increasing reaction rates. As
γ increases, the peak concentration decreases, and the concentration
profile flattens. The reaction rate parameter γ represents the rate at
which chemical reactions consume or transform species in the
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FIGURE 6
Effect of reaction rate parameter on concentration profile using M =
0.1,Da = 7,N = 0.1,We = 0.1,Fs = 0.1,B

∗
= 0.1,Pr = 0.9,A

∗
= 0.9,Sc =

0.9,ε = 0.1,σ1 = 0,σ2 = 0,σ3 = 0.

concentration field. When γ is small, the chemical reaction is slow,
allowing the concentration to build up before gradually diffusing.

5.4 Study the effect of key parameters on
local nusselt and sherwood numbers

5.4.1 Impact of Prandtl number and heat source
coefficient on the local Nusselt number

Figure 6 illustrates the effect of the Prandtl number Pr and the
coefficient of the temperature-dependent term in the heat source B

∗
on

the local Nusselt number NuL in a non-Newtonian Williamson fluid
flow through a porousmedium. (Figure 7)The analysis is conducted
while keeping the following parameters constant: M = 0.1,Da =
7,N = 0.1,We = 0.1,Fs = 0.1,γ = 0.9,A

∗
= 0.1,Sc = 0.9,ε = 0.1,σ1 =

0,σ2 = 0,σ3 = 0. The Nusselt number NuL decreases with an increase
in the distance from the wall. The profiles remain almost identical
for different values of B

∗
, with a slight decline in heat transfer rate

as B
∗
increases. The solid line B

∗
= 0.1 represents a lower coefficient

of the temperature-dependent heat source. The dashed line B
∗
= 3.0

and dotted line B
∗
= 5.0 represent increasing B

∗
. As B

∗
increases,

the Nusselt number NuL decreases slightly, indicating a reduction in
heat transfer efficiency. The local Nusselt number NuL represents
the convective heat transfer rate relative to conductive heat transfer.
The Prandtl number Pr controls the relative thickness of the thermal
boundary layer.

5.4.2 Effect of Schmidt number Sc and reaction
rate parameter γ on the local sherwood number
ShL

Figure 8 illustrates the effect of the Schmidt number Sc and
the reaction rate parameter γ on the local Sherwood number ShL ,
which represents the mass transfer rate at the surface. The analysis
is conducted while keeping the following parameters constant:M =
0.1,Da = 7,N = 0.1,We = 0.1,Fs = 0.1,B

∗
= 5,A
∗
= 0.1,Pr = 0.9,ε =

FIGURE 7
Effect of Prandtl number and coefficient of temperature-dependent
term of heat source on local Nusselt number using M = 0.1,Da = 7,N =
0.1,We = 0.1,Fs = 0.1,γ = 0.9,A

∗
= 0.1,Sc = 0.9,ε = 0.1,σ1 = 0,σ2 = 0,σ3 =

0.

0.1,σ1 = 0,σ2 = 0,σ3 = 0. The Sherwood number ShL decreases with
increasing distance from the surface. Higher values of γ (reaction
rate parameter) lead to amore significant reduction in the Sherwood
number, meaning mass transfer efficiency decreases with higher
reaction rates. The solid line γ = 0.1 represents the case with a low
reaction rate. The dashed line γ = 0.5 and dotted line γ = 0.9 show
the behavior for increasing γ. As γ increases, the local Sherwood
number ShL declines, indicating a decrease in the mass transfer rate
at the boundary. The Schmidt number Sc represents the ratio of
momentum diffusivity to mass diffusivity. A higher Sc means lower
mass diffusivity, leading to stronger concentration gradients near
the surface.The reaction rate parameter γ governs the conversion of
reactant species into products, reducing the overall concentration
of species in the fluid.

5.4.3 Analyze the effect of oscillatory boundary
conditions and contour plots: contour plot for
velocity profile

Figure 9 presents a contour plot representing the velocity
distribution in a non-Newtonian Williamson fluid flow
through a porous medium under various physical effects. The
parameters used in the simulation are: M = 0.1,Da = 7,N =
0.1,We = 0.1,Fs = 0.1,B

∗
= 5,A
∗
= 0.1,Pr = 0.9,γ = 0.9,Sc = 0.9,ε =

0.1,σ1 = 0,σ2 = 0,σ3 = 0. The velocity is highest in the red-coloured
region near the bottom-right portion of the figure, indicating a peak
flow intensity in this region. As we move away from this region, the
velocity gradually decreases, transitioning from red to yellow, green,
and finally to blue, representing lower velocity regions. The velocity
boundary layer thickness is visible in the transition of colours from
the bottom-left (near-wall region) toward the top-right (free-stream
region). The velocity boundary layer thickness is visible in the
transition of colours from the bottom-left (near-wall region) toward
the top-right (free-stream region). The Weissenberg number We =
0.1 represents the fluid’s elastic nature. A lowWe value suggests that
the fluid behaves closer to Newtonian behaviour, meaning a more
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FIGURE 8
Effect of Schmidt number and reaction rate parameter on local
Sherwood number using M = 0.1,Da = 7,N = 0.1,We = 0.1,Fs = 0.1,B

∗
=

5,A
∗
= 0.1,Pr = 0.9,ε = 0.1,σ1 = 0,σ2 = 0,σ3 = 0.

FIGURE 9
Contour plot for velocity profile using M = 0.1,Da = 7,N = 0.1,We =
0.1,Fs = 0.1,B

∗
= 5,A

∗
= 0.1,Pr = 0.9,γ = 0.9,Sc = 0.9,ε = 0.1,σ1 = 0,σ2 =

0,σ3 = 0.

continuous velocity gradient is observed across the flow domain.
The magnetic field parameter M = 0.1 is relatively small, meaning
that Lorentz forces are weak, allowing the velocity to develop more
freely. The Darcy number Da = 7 indicates that the medium has
relatively high permeability, enabling a smoother flow through
the porous medium. The Prandtl number Pr = 0.9 suggests that
thermal and momentum diffusivity are nearly balanced, meaning
that the temperature effects on velocity are moderate. The buoyancy
force parameter N = 0.1 is low, meaning that natural convection
effects are not dominant, and the flow remains mostly forced
convection driven.The oscillatory boundary condition ϵ = 0.1might
influence small-scale perturbations in the velocity field, seen as
minor irregularities in the contour gradient near the boundary.

FIGURE 10
Contour plot for temperature profile using M = 0.1,Da = 7,N = 0.1,We =
0.1,Fs = 0.1,B

∗
= 5,A

∗
= 0.1,Pr = 0.9,γ = 0.9,Sc = 0.9,ε = 0.1,σ1 = 0,σ2 =

0,σ3 = 0.

5.4.4 Contour plot for temperature profile
Figure 10 presents a contour plot illustrating the temperature

distribution in a non-Newtonian Williamson fluid flow through a
porous medium under various physical parameters. The simulation
is conducted with the following parameter values: M = 0.1,Da =
7,N = 0.1,We = 0.1,Fs = 0.1,B

∗
= 5,A
∗
= 0.1,Pr = 0.9,γ = 0.9,Sc =

0.9,ε = 0.1,σ1 = 0,σ2 = 0,σ3 = 0. The colour gradient represents
temperature intensity, with red and orange regions indicating
higher temperatures, while blue and green regions represent lower
temperatures. The highest temperature zones (red/orange) are
observed near the bottom-right portion of the domain, showing
where heat accumulation occurs. As we move away from this
region, the temperature gradually decreases, transitioning from red
to yellow, green, and blue, illustrating the thermal diffusion process.
B
∗
= 5 signifies a strong internal heat source responsible for elevated

temperature levels in certain regions. The Prandtl number Pr = 0.9
indicates a moderate balance between momentum and thermal
diffusivity, leading to a smooth transition of temperature gradients.
The oscillatory boundary condition ϵ = 0.1 may introduce small
temperature fluctuations near the bottom edge of the plot, visible as
localized variations in temperature contours. A high Darcy number
Da = 7 implies that the medium has high permeability, allowing
better fluid motion and heat conduction. A low Forchheimer
number Fs = 0.1 means that inertial effects are weak, making the
temperature distribution uniform without abrupt fluctuations.
The buoyancy parameter N = 0.1 is relatively small, meaning that
natural convection does not dominate, and the heat transfer remains
primarily conduction-dominated. This temperature distribution
is important in thermal engineering applications such as heat
exchangers, geothermal energy extraction, polymer processing, and
industrial cooling systems.

5.4.5 Contour plot for concentration profile
Figure 11 presents a contour plot illustrating the concentration

distribution in a non-Newtonian Williamson fluid flowing through

Frontiers in Physics 11 frontiersin.org

https://doi.org/10.3389/fphy.2025.1533252
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


Arif et al. 10.3389/fphy.2025.1533252

FIGURE 11
Contour plot for concentration profile using M = 0.1,Da = 7,N =
0.1,We = 0.1,Fs = 0.1,B

∗
= 5,A

∗
= 0.1,Pr = 0.9,γ = 0.9,Sc = 0.9,ε = 0.1,σ1 =

0,σ2 = 0,σ3 = 0.

a porous medium. The concentration field is influenced by various
physical parameters, which are set as follows: M = 0.1,Da =
7,N = 0.1,We = 0.1,Fs = 0.1,B

∗
= 5,A
∗
= 0.1,Pr = 0.9,γ = 0.9,Sc =

0.9,ε = 0.1,σ1 = 0,σ2 = 0,σ3 = 0. The colour gradient represents
concentration intensity, with red and orange regions indicating
higher concentration levels, while blue and green regions represent
lower concentration regions. The highest concentration zones
(red/orange) are localized near the bottom-left region of the
figure, indicating maximum accumulation of mass transfer near
the boundary. The Schmidt number Sc = 0.9 represents the ratio of
momentum diffusivity to mass diffusivity. Since Sc is relatively high,
it means that momentum diffuses faster than mass, leading to a
thinner concentration boundary layer. The reaction rate parameter
γ = 0.9 indicates that chemical reactions consume the solute species,
reducing the overall concentration throughout the domain. This
explains the gradual decay in concentration levels moving away
from the boundary layer. The oscillatory boundary condition ϵ =
0.1 influences small-scale variations in concentration, which are
visible as irregularities in the contour patterns near the bottom of
the plot.The buoyancy parameterN = 0.1 is relatively low, indicating
that natural convection effects are weak and mass transport is
primarily due to forced convection and diffusion.TheDarcy number
Da = 7 suggests a highly permeable medium, which allows for
easier convective mass transfer. This concentration distribution
is important in mass transfer engineering applications, such as
chemical reaction systems, pollutant dispersion, and pharmaceutical
drug delivery.

5.5 Comparison of proposed and existing
schemes

Table 2 presents a comparative analysis of the proposed
numerical scheme and the existing second-order Runge-Kutta
(RK2) method for solving Stokes’ first problem. For comparison

TABLE 2 Comparison of proposed and existing second-order
runge-kutta method for Stokes’ first problem using Nx(grid points) =
50,t f = 1.

Nt
L2 error

Proposed 2nd Order
runge-kutta

Central Compact Central Compact

250 0.0858 0.0747 0.0876 0.0760

300 0.0754 0.0732 0.0768 0.0743

350 0.0695 0.0730 0.0705 0.0739

400 0.0669 0.0734 0.0677 0.0742

450 0.0667 0.0743 0.0674 0.0750

500 0.0680 0.0753 0.0685 0.0759

purposes, the corrector stage of the proposed scheme is replaced
with the following stage.

vn+1i = v
n
i e

1.5Δt +
(e1.5Δt − 1)

1.5
[ ∂v
∂t
|
n

i
− 1.5 fni ] (46)

The comparison is performed based on L2 error norms, which
measure the numerical accuracy of the computed solutions.Nx = 50
(Grid Points): A uniform spatial discretization with 50 grid points
is used. t f = 1: The final time for the simulation is t = 1. Nt (Time
Steps): The comparison is performed for different numbers of time
steps (Nt = 250, 300, 350, 400, 450, 500). The proposed numerical
scheme achieves a lower L2 errors than the existing second-order
Runge-Kutta method, demonstrating its superior accuracy. The
error difference is more pronounced at lower-time steps Nt = 250,
300, etc., indicating better stability and precision of the proposed
scheme. As Nt increases, the errors in both methods converge, but
the proposed scheme maintains a slight accuracy advantage. The
compact difference scheme consistently yields lower errors than
the central difference scheme in the proposed and existing RK2
methods.The improvement is more noticeable in smaller time steps
Nt = 250, 300. This suggests that the compact scheme enhances
spatial accuracy, making it more effective for solving Stokes’ first
problem. The proposed scheme with compact discretization shows
the best performance, achieving the lowest L2 error across all tested
Nt values.

These results validate the effectiveness of the two-stage
computational method developed in this study, demonstrating
its superior numerical performance in solving stochastic
Darcy–Forchheimer non-Newtonian flows.

6 Conclusion

This research introduces an innovative computational
method for addressing deterministic and stochastic partial
differential equations, specifically emphasizing the stochastic
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Darcy–Forchheimer flow of Williamson fluid over a stationary
surface. The suggested two-stage approach integrates a modified
time integrator with a second-stage Runge-Kutta algorithm,
attaining second-order temporal precision for deterministicmodels.
A sixth-order compact approach is utilized to tackle spatial
discretization difficulties, providing great accuracy and processing
efficiency. The strategy employs the Euler-Maruyama method
to manage Wiener processes in stochastic models, facilitating
flexibility to fluctuations in fluid flow dynamics. A numerical
scheme has been proposed for solving stochastic time-dependent
partial differential equations. The scheme was explicit, and it was
comprised of two stages. The compact scheme was chosen to
discretize space variable(s). The stability and consistency in the
mean square sense of the scheme were presented. The scheme did
not require any other scheme to get a solution to the problem.
The proposed scheme is implemented in a dimensionless stochastic
model of Williamson fluid dynamics, integrating essential physical
phenomena such as Darcy–Forchheimer drag and the shear-
thinning characteristics of the fluid. Numerical studies on the
Stokes first issue indicate that the suggested technique surpasses
current second-order Runge-Kutta methods in accuracy, especially
in describing the complex relationship between deterministic
and stochastic factors affecting the flow. The concluding points
can be expressed as.

1. The modification of the proposed scheme performed better
than the existing second-order Runge-Kutta method.

2. The compact sixth-order spatial discretization enhances
solution accuracy without introducing excessive
computational overhead, making it well-suited for high-
resolution simulations.

3. Velocity profile declined on average due to the increase in
Weissenberg’s number.

4. The velocity profile had dual behaviour on average due to the
rising Forchheimer number.

5. The concentration profile declined by raising the reaction rate
parameter.

6. The comparative analysis highlights the superior performance
of the proposed scheme, offering a reliable alternative to
existing methods for solving similar problems.

Finally, a computationally efficient and highly accurate
method for non-Newtonian fluids in porous media is introduced,
expanding the current state-of-the-art in stochastic fluid
dynamics numerical techniques. This paradigm could be further
developed in future studies to examine various types of non-
Newtonian fluids and more complicated flow configurations,
including three-dimensional geometries or transient boundary
conditions. Furthermore, there is still room for improvement
in the scheme’s optimization for real-time applications and
large-scale simulations.
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Glossary

u
∗
,v
∗

Horizontal and vertical components of velocity (m.s−1)

x
∗
,y
∗

Cartesian coordinates (m)

T Temperature of the fluid (K)

Tw Wall Temperature (K)

T∞ Free Stream temperature (K)

α Thermal Diffusivity (m2.s−1)

kp Permeability of porous medium (m2)

ν Kinematic viscosity (m2.s−1)

g Gravity (m.s−2)

Γ material fluid parameter (s)

cp Specific heat capacity (Jkg−1K)

N Buoyancy ratio

M Magnetic parameter

We Weissenberg number

ε dimensionless parameter

γ reaction rate parameter

C Concentration (mol.m−3)

C∞ Free stream concentration (mol.m−3)

Cw local couple stress coefficient at the wall (mol.m−3)

ρ Density of fluid (kg.m−3)

σ Electrical Conductivity (S.m−1)

B0 Magnetic field vector (A/m)

D Mass Diffusivity (m2.s−1)

βT coefficient of thermal expansion of the fluid (K−1)

βC coefficient of solutal expansion of the fluid (K−1)

kc Reaction rate parameter (s−1)

b Forchheimer coefficient (m−1)

Da Darcy’s number

Pr Prandtl number

Sc Schmidt number

FS Forchheimer number
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