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Lyme disease, caused by the bacterium Borrelia burgdorferi and transmitted
through infected black-legged ticks, remains a significant health concern
due to its potential for severe complications, including arthritis, neurological
disorders, and cardiac issues. Early diagnosis and treatment are essential
to prevent these outcomes. This study explores the predictive potential of
reverse degree-based entropy indices for analyzing the molecular structures
of therapeutic compounds used in Lyme disease treatment. While the use
of topological indices for predicting physicochemical properties is well-
established, our research uniquely integrates reverse entropy indices with a
computational framework to refine the prediction process. We focus specifically
on antibiotic drugs such as doxycycline, ceftriaxone, Doxy 100, cefotaxime,
Ceftin, Cefuroxime, Erythromycin, EryPed, Erythrocin Lactobionate, Ofloxacin,
Moxifloxacin, amoxicillin, and penicillin G potassium—commonly used to treat
Lyme disease—and leverage a novel Maple-based algorithm for calculating
reverse degree-based entropy indices. SPSS software was employed to assess
correlations between these indices and critical physicochemical properties, such
as molecular weight (MW), complexity (C), molar volume (MV), and XLog P.
Unlike traditional experimental methods mandated by regulatory authorities
for Chemistry, Manufacturing, and Controls (CMC) processes, our approach
provides a supplementary predictive framework to streamline early-stage
drug property estimation. The results reveal that first reverse Zagreb entropy
effectively predicts molecular weight, reverse atom bond connectivity entropy
effectively predicts complexity, reverse augmented Zagreb entropy effectively
predicts molar volume and reverse geometric arithmetic entropy effectively
predicts molecular XLog P. This study not only advances the computational
methodology by employing novel combinations of entropy indices but also
builds on existing work by focusing on a specific subset of Lyme disease drugs.
While this framework offers a cost-effective preliminary tool for predicting
physicochemical properties, it complements rather than replaces rigorous
experimental validation required for regulatory reporting. These findings lay
the groundwork for integrating computational and experimental methods,
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potentially accelerating drug development and enhancing therapeutic precision
for Lyme disease.

KEYWORDS

quantitative structure-property relationship, reverse degree degree-based entropy,
lyme disease drugs, statistical model, human health

1 Introduction

Lyme disease is a disease spread by ticks. Because of a complex
interplay of ecological, medicinal, and environmental elements, tick
bites are the primary means of transmitting bacteria under the
skin, where they can cause severe illness. The common symptoms
include rash, headache, and fever. If left untreated, this disease can
lead to more severe problems with the heart, joints, and brain.
Thus, Lyme disease is being identified more frequently in patients
with symptoms that are medically inexplicable [1, 2], as well as in
individuals with more clearly recognized diseases [3, 4].

A new chapter in understanding of this sickness was opened in
1982 [5] when the causative agent was found in Ixodes ticks. Lyme
disease is the most prevalent vector-borne illness (transmitted by
mosquitoes, ticks, or fleas) in the United States. In recent years,
the Centers for Disease Control and Prevention have reported
approximately 20,000 to 30,000 confirmed cases annually [6].
Additionally, children and individuals who spend a lot of time
outside in wooded areas are at risk. Once an Ixodes tick bite
has occurred, humans become infected. For the disease-causing
bacteria, Borrelia burgdorferi, to proliferate, the tick must feed for a
minimum of 36 h. The most common sign of infection is erythema
migrants, a developing red rash that appears at the site of the tick
bite and usually appears a week or more after the incident [7]. Most
often, the rash is not uncomfortable or annoying.

In roughly 70%–80% of the cases, a rash develops. Fatigue,
headaches, and fever are possible symptoms. The total number
of cases has been smoothly increasing, with cases recorded not
only from endemic regions but increasingly from other Regional
locations [8].

Prolonged, untreated Lyme disease can result in serious
complications affecting multiple systems. Neurological issues may
include facial palsy (Bell’s palsy), meningitis, encephalitis, and
peripheral neuropathy. Cardiac complications can involve irregular
heartbeat and inflammation of the heart muscle. Joint problems,
such as arthritis, are also common. To reduce the risk of tick-borne
infections, preventive measures are crucial. Wearing protective
clothing, such as long-sleeved shirts, long pants tucked into
socks, and closed-toe shoes, can help minimize skin exposure to
ticks. Applying insect repellents containing DEET or picaridin to
exposed skin provides an additional layer of protection. Regularly
performing tick checks on yourself, your family, and pets after
outdoor activities is vital for early detection. If a tick is found,
it should be removed promptly and carefully using fine-tipped
tweezers. Showering soon after being outdoors can also help wash
away unattached ticks and make it easier to spot those that
may have latched on. These simple precautions can significantly
reduce the likelihood of tick infections [9]. A variety of antibiotics,
including cefuroxime, amoxicillin, and doxycycline, are effective

in treating Lyme disease and preventing complications when
administered promptly.

In conclusion, the fusion of multiple scientific domains has
prompted the creation of cutting-edgemethodologies and analytical
instruments that deepen our understanding of complex systems.
Returning to the medical field, Lyme disease is still an issue that
needs to be addressed on a regular basis due to its complexity and
long-term consequences [10, 11]. Education and prevention efforts
are also needed.

A graph H = (V,E) consists of V, a nonempty set of vertices
(or nodes), and E, a set of edges. Each edge has two vertices
associated with it, known as its endpoints, and is said to connect
these endpoints. In the context of chemical graph theory, a chemical
graph represents individual atoms as vertices and the bonds between
them as edges. The primary objective of chemical graph theory is to
identify topological indices that closely correlate with the properties
of chemical compounds [12, 13].

Topological indices are widely used in chemistry,
nanotechnology, and medicine to explore and quantify the
relationships between molecular structure and properties, as well
as structure and biological or chemical activity. These indices
are essential as numerical molecular descriptors in quantitative
structure-activity relationship (QSAR) and quantitative structure-
property relationship (QSPR) models, which help in predicting
molecular behaviors [14, 15].

The Wiener index, introduced by Wiener [16], was the first
topological index to demonstrate a clear correlation between the
boiling points of alkane molecules and the values of this index.
Further research into quantitative structure-activity relationships
has shown that such correlations extend to other molecular
properties, including dimensions [17], density, surface tension,
liquid-phase viscosity [18], and van der Waals surface area [19].
These relationships enable the prediction of molecular properties
and behaviors based on structural characteristics.

Applications of graph invariant (topological indices) to
QSPR and QSAR studies have garnered significant attention in
recent years. Topological indices are employed in many fields
of study, including arithmetic, physics, chemistry, biology, and
informatics [20–22]. This thorough and systematic basis makes
it easier to comprehend how a chemical molecule’s molecular
structure influences its physical, chemical, and biological properties.
Nonetheless, their most important applications to date have been
the non-empirical Quantitative Structure-Property Relationships
(QSPR) and Quantitative Structure-Activity Relationships (QSAR)
[23–26]. These days, the main focus of computational chemistry is
on the investigation of QSPRs, or quantitative structure-property
correlations. Classifications of topological indices can be based on
a graph’s structural attributes, including matching, spectrum, vertex
degree, and vertex separation. The indices that are most commonly
used are the Wiener index [16], which measures the separation
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between the vertices, the Zagreb and Randi ć indices [27, 28], which
measures degree; the Estrada index [29] which measures a graph’s
spectrum; and the Hosoya index [30], which measures matching.

Many topological indices having applications in QSPR/QSAR
have been developed since 1947 [31, 32]. Some examples of
topological indices include the 1stZagreb index [33], the 2ndZagreb
index, redefined first Zagreb index [34], redefined second Zagreb
index [35], geometric arithmetic index [36], augmented Zagreb
index [37], the atom-bond connectivity index [38], forgotten index
[39], hyper-Zagreb index [40], redefined third Zagreb [41], and
Balaban index [42].

Reverse degree-based indices employ a cutting-edge technique
that challenges conventional wisdom and offers a distinct
perspective in computing and mathematical domains [43]. Entropy
indices derived from information theory, provides a method
for quantifying disorder and uncertainty, with applications in
environmental science and data science. In mathematical and
computational contexts, reversing the traditional degree ordering in
polynomial or numerical expressions yields a distinctive approach
known as reverse degree-based indices [44]. This contemporary
indexingmethod has applications in fields such as signal processing,
mathematics, and computer science. Within mathematics, one
particularly intriguing area is the development of techniques for
solving equations by employing reverse degree-based indices.

Shannon introduced the concept of entropy in 1948 [45],
providing a foundation for estimating a system’s uncertainty through
the entropy of a probability distribution. The concept of graph
entropy was first introduced by Rashevsky in 1955 [46] in relation
to the classification of vertex orbits. Recently, graph entropies have
been extensively utilized in the fields of biology, ecology, chemistry,
and sociology [47]. In graph entropy, a graph element associated
with a probability distribution can be divided into embedded and
external measurements [48]. Dehmer’s information-based function
graph entropy examines the characteristics and structural data of
these graphs [45, 49].

In this work, we have considered eight graph entropy measures
based on reverse degree of a graph. These graph entropy measures
include reverse Randic entropy, reverse atom-bond connectivity
entropy, reverse geometric arithmetic entropy, reverse first Zagreb
entropy, reverse second Zagreb entropy, reverse hyper Zagreb
entropy, reverse forgotten entropy, and reverse augmented Zagreb
entropy. The values of these entropy indices are computed for
thirteen drugs structures using MAPPLE software. Additionally, the
regression models are developed to estimate the four key physical
properties of these drugs.

The paper is structured as follows: In Section 2, we provide the
definitions of the eight entropy indices based on the reverse degree
of a graph. Section 3 outlines the research methodology, which is
illustrated with a flow chart. In Section 4, we compute the entropy
indices for the drug structures using MAPPLE software. Section 5
presents the development of the regression model for the physical
properties of the drug structures, along with the calculation of
correlation coefficients and other regression parameters using SPSS
software. A detailed discussion of the results obtained from the
regression models is presented in Section 6. The validation of the
regression models is performed in Section 7. Limitations and future
directions are discussed in Section 8 and finally, Section 9 concludes
the article.

2 Reverse degree based entropy
indices

In this section, we define some basic definitions related to
graph theory.

2.1 Reverse degree

The degree of a vertex v is the number of edges incident to it. Let
△(H) denotes the maximum degree of a graph. Then the modified
reverse degree of a vertex v with variable parameter k (where k ≥ 1)
is denoted and defined as

ℵ(v)(k) =
{
{
{

△(H) − dv + k :k ≤ dv
△(H) − dv + k(mod △(H)) :k > dv

.

here in this manuscript, we considered the special case when k = 1,
we represent the reverse degree of a vertex v simply by ℵ(v).

2.2 Reverse degree-based entropy of graph

Assume that a connected graph H = (V,E) has size q (number
of edges) and order p (number of vertices) and Ψ be a meaningful
function. The entropy function for the graph H is defined as:

ENTΨ (H) = −
p

∑
i=1

Ψ(xi)

∑p
j=1

Ψ(xi)
log [

[

Ψ(xi)

∑p
j=1

Ψ(xi)
]

]
. (1)

Now if xi ∈ V and information function Ψ (xi) symbolize
the reverse degree of vertex xi, that is, Ψ(xi) = ℵ
(xi), then Equation 1 becomes

ENTΨ (H) = −∑
p
i=1

ℵ(xi)

∑p
j=1
ℵ(xj)

log [

[

ℵ(xi)

∑p
j=1
ℵ(xj)
]

]

ENTΨ (H) = log(
p

∑
j=1
ℵ(xj))‐

1

(∑p
j=1
ℵ(xj))

p

∑
i=1
[ℵ(xi) log (ℵ(xi)]

Using the fundamental theorem of graph theory, we formulate
the following relation for the sum of reverse degrees ℵ(xi), with xi
є V as

p

∑
j=1
ℵ(xj) = log ((p+ 1)△(H) − 2q).

As a result, the above equation for ENTΨ (H) takes the form

ENTΨ (H) = log ((p+ 1)△(H) − 2q)‐
1

((p+ 1)△ (H) − 2q)

log [
p

∐
i=1
ℵ(xi)]

ℵ(xi)

.

2.3 Edge weight-based entropy of a graph

Chen et al. (2014) introduced the edge weight graph’s entropy.
For an edge weight graph H = (V(H); E(H): Ψ(xy)), where V(H) is
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the vertex set, E(H) is the edge set and Ψ(xy) is the edge weight of
the edge (xy) in H, the entropy function is defined as:

ENTΨ (H) = ‐ ∑
x′y′єE

Ψ(x′y′)

∑
xyєE

Ψ(xy)
log [

[

Ψ(x′y′)

∑
xyєE

Ψ(xy)
]

]
(2)

2.4 Reverse Randi ć entropy

If Ψ(xy)=(ℵ (x) × ℵ (y)) α with α = 1,-1, 1
2
,- 1

2
, then the reverse

Randic index is defined as

Rα = ∑
xyєE(H)

Ψ(xy) = ∑
xyєE
(ℵ (x) ×ℵ (y))α

Incorporating it in Equation 2 gives the reverse Randi ć entropy

ENTα(H) = log(Rα)
1
(Rα)

log [∏
xyєE
[(ℵ (x) ×ℵ (y))α

(ℵ (x)×ℵ (y))α

].

(3)

We use the notations RE to denote the Reverse Randi ć
entropy in Equation 3 for the special cases α = − 1

2
.

2.5 Reverse atom bond connectivity
entropy

If Ψ(xy) =√ℵ(x)+ℵ(y)−2
ℵ(x)×ℵ(y)

, then the reverse atombond connectivity
index is defined as.

ABC(H) = ∑
xyєE

Ψ(xy) = ∑
xyєE
√ℵ(x) +ℵ(y) − 2
ℵ(x) ×ℵ(y)

This leads to the reverse atom bond connectivity
entropy by using Equation 2 as

ABCE = log (ABC(H))– 1
(ABC(H))

log
[[[

[

∏
xyєE
√ℵ(x) +ℵ(y) − 2
ℵ(x) ×ℵ(y)

√ ℵ(x)+ℵ(y)−2ℵ(x)×ℵ(y) ]]]

]

2.6 The reverse geometric arithmetic
entropy

If Ψ(xy) =
2√ℵ(x)×ℵ(y)

ℵ(x)×ℵ(y)
, then the reverse geometric arithmetic

index is defined as

GA(H) = ∑
xyєE

Ψ(xy) = ∑
xyєE

2√ℵ(x) ×ℵ(y)

ℵ(x) ×ℵ(y)

Now, Equation 2 reduces to the reverse geometric arithmetic
entropy, which is as follows:

GAE = log (GA(H)– 1
(GA(H)

log
[[[[

[

∏
xyєE

2√ℵ(x) ×ℵ(y)

ℵ(x) ×ℵ(y)

2√ℵ(x)×ℵ(y)

ℵ(x)×ℵ(y) ]]]]

]

2.7 The reverse first zagreb entropy

If Ψ(xy) = ℵ (x) × ℵ (y), then the reverse first Zagreb index
is defined as

M1(H) = ∑
xyєE

Ψ(xy) = ∑
xyєE
(ℵ (x) +ℵ (y))

For the reverse first Zagreb entropy, we use
this value in Equation 2. This gives

FZE1 = log M1(H) −
1
(M1(H))

log[∏
xyєE
[ℵ (x) +ℵ (y)ℵ (x)+ℵ (y)]]

2.8 The reverse second zagreb entropy

If Ψ(xy) = ℵ (x) ×ℵ (y)then the reverse second Zagreb index
is defined as

M2(H) = ∑
xyєE

Ψ(xy) = ∑
xyєE
(ℵ (x) ×ℵ(y))

Now for the reverse second Zagreb entropy, we use
this value in Equation 2. This gives

SZE1 = log M2(H) −
1
(M2(H))

log[∏xyєE[(ℵ (x) ×ℵ(y)]
(ℵ (x)×ℵ(y) ]

2.9 The reverse hyper zagreb entropy

If Ψ(xy)= (ℵ (x)+ ℵ (y))2, then the reverse hyper Zagreb index
is defined as

HM(H) = ∑
xyєE

Ψ(xy) = ∑
xyєE
(ℵ (x) +ℵ (y))2

Now for the reverse hyper Zagreb entropy, we use
this value in Equation 2. This gives

HZE1 = log HM(H) − 1
(HM(H))

log[∏xyєE[(ℵ (x) +ℵ (y))
2](ℵ (x)+ℵ (y))

2
]

2.10 The reverse forgotten entropy

If Ψ(xy)= (ℵ (x))2+(ℵ (y))2, then the reverse forgotten index
is defined as

F(H) = ∑
xyєE

Ψ(xy) = ∑
xyєE
(ℵ (x)2 +ℵ (y)2)

By using Equation 2, the reverse forgotten entropy is expressed
in the form of

FE = log F(H) − 1
(F(H))

log[∏
xyєE
[(ℵ (x)2 +ℵ (y)2)](ℵ (x)

2+ℵ (y)2)]
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FIGURE 1
Flow diagram.

FIGURE 2
Molecular structure for Lyme disease drugs.

2.11 The reverse augmented zagreb
entropy

If Ψ(xy)=( ℵ(x)+ℵ(y)
ℵ(x)+ℵ(y)−2

)3, then reverse augmented Zagreb index
is defined as

AZI(H) = ∑
xyєE

Ψ(xy) = ∑
xyєE
(
ℵ(x) +ℵ(y)
ℵ(x) +ℵ(y) − 2

)
3( ℵ(x)+ℵ(y)ℵ(x)+ℵ(y)−2

)
3

By using Equation 2, the reverse augmented Zagreb entropy
has the form

AZI1 = logAZI(H) − 1
(AZI(H))

log
[[[

[

∏
xyєE
(
ℵ(x) +ℵ(y)
ℵ(x) +ℵ(y) − 2

)
3
( ℵ(x)+ℵ(y)ℵ(x)+ℵ(y)−2 )

8

]]]

]

Despite extensive efforts in Quantitative Structure-Property
Relationship (QSPR) analysis, much of the existing work relies
heavily on classical degree-based topological indices to model
the physicochemical properties of molecules. While these indices
have demonstrated utility, they often fail to capture the full
complexity and intricacies of molecular structures, particularly
whendealingwith drugs exhibiting diverse structural and functional
characteristics, such as those used in the treatment of Lyme disease.
This limitation creates a significant research gap in developing
more accurate and statistically robust predictivemodels.The novelty
of this study lies in the use of reverse degree-based entropy
indices, which combine the principles of molecular topology and
information theory. Unlike classical indices, entropy indices provide
a richer quantification of structural variability and disorder within
molecular graphs. The reverse formulation further enhances their
sensitivity to subtle differences in molecular architecture.

3 Research methodology

This research employs a structured approach to investigate
the relationship between graph entropy measures and the physical
properties of drug structures. Eight graph entropy measures
based on the reverse degree of a graph are considered in this
study. These entropy measures are selected for their relevance to
structural descriptors in cheminformatics and their ability to capture
complex topological properties of molecular graphs. Thirteen drug
structures, which represent various pharmacological classes, are
selected for the analysis. The molecular graphs of these drugs
are constructed based on their chemical structure, where atoms
are represented as nodes and bonds as edges. The structures are
obtained from standard chemical databases pubchem, ensuring that
accurate molecular representations are used. The entropy indices
for each drug structure are computed using MAPPLE software,
which is capable of efficiently handling graph-based computations.
Each of the eight entropy measures is calculated for the molecular
graphs of the thirteen drug structures. These entropy values are
then used as descriptors for further analysis and correlation with
physical properties of the drugs. Regression models are developed
to estimate four key physical properties of the drugs, including
properties such as molecular weight (MW), complexity (C), XLog
P, and molar volume (MV). The property XlogP is a measure of the
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TABLE 1 Physicochemical characteristics of Lyme disease medication.

Drug Name Molecular Formula MW C XLogP MV

Doxycycline C22H24N2O8 444.4 956 −0.7 182

Ceftriaxone C18H18N8O7S3 554.6 1,110 −1.3 288

Doxy 100 C46H58Cl2N4O18 1,025.9 958 NaN 384

Cefotaxime C16H17N5O7S2 455.5 833 −1.4 227

Ceftin C20H22N4O10S 510.5 968 0.9 214

Cefuroxime C16H16N4O8S 424.4 798 −0.2 199

Erythromycin C37H67NO13 733.9 1,180 2.7 194

EryPed C43H75NO16 862.1 1,450 3.4 226

Erythrocin Lactobionate C49H89NO25 1,092.2 1,580 nan 412

Ofloxacin C18H20FN3O4 361.4 634 −0.4 73.3

Moxifloxacin C21H24FN3O4 401.4 727 0.6 82.1

Amoxicillin C16H19N3O5S 365.4 590 −2.0 158

Penicillin g potassium C16H17KN2O4S 372.5 536 NaN 115

TABLE 2 Values of entropy indices of Lyme disease drugs.

Antibiotic RE ABCE GAE FZE1 SZE1 HZE1 FE AZE1

Doxycycline 3.53089171 3.552295882 3.554476369 3.448147257 3.473803125 3.462829245 3.530275563 3.47134248

Ceftriaxone 3.632,757 3.662,284 3.662,188 3.510,559 3.545,306 3.530,830 3.639,530 3.584,836

Doxy 100 4.250,504 4.273,288 4.275,814 4.165,494 4.186,327 4.177,874 4.249,721 4.174,646

Cefotaxime 3.432410742 3.464219194 3.464277508 3.310574081 3.341208841 3.329375027 3.439105533 3.376971548

Ceftin 3.578031699 3.609221064 3.609472684 3.472117228 3.495263975 3.487711686 3.583698767 3.518641520

Cefuroxime 3.396452449 3.432037780 3.432560860 3.278990125 3.300510888 3.294102915 3.402049770 3.334262643

Erythromycin 3.945,823 3.965,603 3.968,357 3.891,016 3.890,030 3.895,742 3.939,767 3.843,912

EryPed 3.945822926 3.965603455 3.968357192 3.891015871 3.890030331 3.895741836 3.939766576 3.843912213

Erythrocin Lactobionate 4.321259557 4.339784876 4.342309719 4.263891439 4.267769203 4.269629770 4.316815991 4.232688347

Ofloxacin 3.33739500 3.3664070 3.36585000 3.20320900 3.25645300 3.23190600 3.34502500 3.31451700

Moxifloxacin 3.46442500 3.4950300 3.49544900 3.33439800 3.35935000 3.34991700 3.46988000 3.40929800

Amoxicillin 3.27756100 3.2922500 3.29414900 3.22655300 3.23467900 3.23503100 3.27284000 3.20553800

Penicillin g potassium 3.19869300 3.2145930 3.21706900 3.15720700 3.15410800 3.16087300 3.19208400 3.11086800

molecule’s lipophilicity (molecules with high XlogP are lipophilic
and will reside in the cell membrane) and solubility (molecules with
high XlogP tend to be insoluble). The physicochemical properties
of drugs, such as complexity, molar volume, molecular weight,

and lipophilicity (e.g., XLogP), play a pivotal role in determining
their biological activity, pharmacokinetics, and overall therapeutic
effectiveness in treating Lyme disease. These properties influence
critical factors such as drug solubility, bioavailability, and tissue
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penetration, which are essential for targeting the bacterial pathogen
Borrelia burgdorferi effectively.

Linear regression analysis is employed to develop the models,
using the entropy indices as independent variables and the physical
properties as dependent variables. The regression analysis is
conducted using SPSS software, where the correlation coefficients
and other regression parameters (such as R-squared, p-values,
and standard errors) are computed to assess the strength of
the relationships between the entropy measures and the physical
properties. These statistical metrics are crucial for evaluating the
predictive power and reliability of the regression models. The flow
chart of the research is shown in Figure 1.

4 Computation of reverse degree
entropy indices

In this study, we examine a set of thirteen drugs commonly
used in the treatment of Lyme disease. These drugs include
doxycycline, ceftriaxone, Doxy 100, cefotaxime, Ceftin, Cefuroxime,
Erythromycin, EryPed, Erythrocin Lactobionate, Ofloxacin,
Moxifloxacin, amoxicillin, and penicillin G potassium. The
molecular structures of these drugs, illustrated in Figure 2, form
the basis for the subsequent computational analysis. To compute
the reverse degree entropy indices, we utilized the MAPPLE code,
a specialized computational tool for deriving molecular entropy
indices from the structural data. For each drug, the molecular
structure was transformed into a graph where atoms are treated
as vertices, and chemical bonds as edges. These graphs were then
analyzed to determine the distribution of connectivity degrees,
which serve as input for entropy calculations. The pseudocode of
theMAPPLE code is presented inAlgorithm 1.The computed values
of these entropy indices are presented in Table 2.

5 Linear regression models

Linear regression is the simplest form of regression that assumes
a direct proportional relationship between the independent and
dependent variables. It is typically chosen as a baseline model due
to its interpretability and minimal risk of overfitting. By starting
with a linear model and gradually exploring higher-order models
based on visual inspection and statistical criteria, this approach
ensures that the selectedmodel achieves a balance between accuracy
and generalizability while minimizing the risk of overfitting. In
this section, we develop linear regression models to estimate the
physicochemical properties of thirteen drugs used for the treatment
of Lyme disease. The degree-based entropy indices are utilized as
independent variables, while the physicochemical properties of the
drugs serve as dependent variables. The linear regression model
under consideration is of the form:

P = a+ b×Ent

where P represent the physicochemical property, and Ent denotes
the entropy indices of the drug.

A linear regression model is used to describe the relationship
between a dependent variable P and an independent variable Ent. In

P1: Commence.

P2: Input: C denotes the adjacency matrix.

P3: Output: Computation of reverse entropy based

on edge weight and entropy based on degree.

P4: Initialization: V ← Number of vertices, E ←

Number of edges, D [V] ← vertex degrees, Conn [E]

← connection matrix, Ver [V] ← Vertex list, adj

[count] ← adjacent elements, Count ← 1.

P5: Loop b = 1 to V.

P6: For each vertex in the array Ver [V].

P7: Loop c = 1 to E.

P8: Count adjacent vertices from Conn [E].

P9: Increment c.

P10: End loop.

P11: D [V] = count.

P12: Loop t = 1 to count.

P13: adj [count] = store adjacent vertices.

P14: Increment t P15: End loop P16: End loop.

P17: Loop a = 1 to count.

P18: Compute reverse entropy based on degree.

P19: End loop.

P20: Loop b = 1 to count.

P21: Compute reverse entropy based on edge weight.

P22: End loop.

P23: Loop c = 1 to E.

P24: Compute reverse edge weight-based entropy,

reverse Atom-bond connectivity entropy, reverse

Geometric arithmetic entropy, First, Second, Hyper

and Augmented reverse Zagreb entropy, reverse

forgotten entropy, reverse Balaban entropy,

reverse Redefined first, second and third reverse

Zagreb entropy.

P25: End loop.

P26: End.

Algorithm 1. Pseudocode to compute reverse degree entropy indices.

this equation, a is the intercept, which represents the predicted value
of P when Ent is zero. The term b is the coefficient associated with
Ent, indicating the rate of change in PPP for a one-unit increase in
Ent. The model predicts P by fitting a straight line to the observed
data, where the parameters a and b are estimated by minimizing the
Mean Squared Error (MSE), which measures the average squared
difference between observed values of P and those predicted by
the model. A lower MSE reflects a better fit of the regression line
to the data.

The performance of this regression model is assessed using
metrics such as R2, the coefficient of determination, which
quantifies the proportion of variability in P explained by Ent. A
higher R2 indicates a better fit, suggesting that Ent is a strong
predictor of P. The strength and direction of the linear relationship
between P and Ent can be evaluated using Pearson’s correlation
coefficient (R), with its corresponding p-value assessingwhether this
correlation is statistically significant. Together, thesemetrics provide
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TABLE 3 Relation of entropy indices with molecular Weight (MW).

Entropy indices MSE R2 Pearson R Pearson p-value MW = a + b (Ent)

RE1 2279.598 0.962,793 0.98122 3.29E-09 MW = −1942.06 + 694.3481 (RE)

GAE 2452.419 0.959,973 0.979,782 4.92E-09 MW = −1963.36 + 695.2276 (GAE)

FZE1 1,662.54 0.972,865 0.986,339 5.77E-10 MW = −1815.16 + 676.038(FZE1)

SZE1 1852.08 0.969,771 0.98477 1.05E-09 MW = −1864.24 + 686.2682(SZE1)

HZE1 1711.549 0.972,065 0.985,933 6.77E-10 MW = −1843.59 + 681.5583(HZE1)

FE 2459.19 0.959,862 0.979,726 4.99E-09 MW = −1952.64 + 697.1275(FE)

AZE1 3046.338 0.950,279 0.974,823 1.63E-08 MW = −1955.9 + 711.5452 (AZE1)

ABCE 2485.605 0.959,431 0.979,505 5.3E-09 MW = −1966.21 + 696.2655 (ABCE)

FIGURE 3
Graphical representation of linear regression model between entropy indices and molecular weight (A) Relation between molecular weight and FZE1
with regression model MW = −1815.16 + 676.038(FZE1) (B) Relation between molecular weight and HZE1 with regression model MW = −1843.59 +
681.5583(HZE1).

a comprehensive understanding of the relationship and the model’s
predictive performance.

We used SPSS software to develop the linear regression models.
The physicochemical properties of the drugs were obtained from
PubChemandare listed inTable 1.Theentropy indiceswerecomputed
using theMAPPLE-based code, and their values are shown in Table 2.
Regression parameters were calculated for each case, and the results
for the physicochemical properties—molecular weight, complexity,
molar volume (MV), and XLogP are presented in Table 3 through
6, respectively. The regression model plots for each physicochemical
property are generated against two entropy indices, illustrating their
respective relationships. These plots are presented in Figures 3–6,
providing a visual representation of the models and highlighting the
trends and correlations observed in the data.

6 Results and discussion

The results of the linear regression analysis provide valuable
insights into the relationship between the degree-based entropy
indices and the physicochemical properties of the drugs used to
treat Lyme disease. By examining the regression parameters, we can
assess the strength and direction of these relationships, as well as the
predictive capability of the entropy indices for key properties such
as molecular weight, complexity, XLogP, and molar volume.

Table 3 through 6 present the linear regression models and
their corresponding parameters for the selected physicochemical
properties of the drugs. From Table 3, it is evident that molecular
weight is best predicted by the reverse first Zagreb entropy index,
yielding a high R value of 0.986,339 and an extremely low P-value of
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FIGURE 4
Graphical representation of regression model between entropy indices and Complexity (A) Relation between complexity and GAE with regression
model C = −1742.52 + 733.9461 (GAE) (B) Relation between complexity and RE1 with regression model C = −1714.8 + 731.577 (RE).

FIGURE 5
Graphical representation of linear regression model between entropy indices and Molar volume (A) Relation between Molar volume and AZE1 with
regression model MV = −648.323 + 240.893 (AZE1) (B) Relation between Molar volume and RE1 with regression model MV = −634.346 + 232.5181 (RE).

5.77E-10, indicating a strong and statistically significant correlation.
Similarly, Table 4 shows that complexity is most accurately modeled
using the reverse atom bond connectivity index, with an R value
of 0.838,192 and a P-value of 0.000345, reflecting a robust and
significant relationship.

Formolar volume, as depicted in Table 5, the reverse augmented
Zagreb entropy index provides the best approximation, achieving
an R value of 0.831,033 and a P-value of 0.000432, both indicative
of a strong predictive model. Lastly, Table 6 demonstrates that
XLogP is most effectively modeled using the reverse geometric
arithmetic entropy index, with an R value of 0.844,862 and a
P-value of 0.002092, suggesting a meaningful and statistically
significant association. These results highlight the capability of

specific entropy indices to serve as reliable predictors for distinct
physicochemical properties, underscoring their relevance in
understanding molecular characteristics.

Huang et al. [50] conducted a Quantitative Structure-Property
Relationship (QSPR) analysis on eleven drugs used in the
treatment of Lyme disease. In their study, the authors utilized
classical degree-based topological indices to construct regression
models for predicting physicochemical properties. However, a
comparison of their results with the findings in this study reveals
that the regression parameters derived using reverse degree
entropy indices are more statistically significant. Specifically,
the R2 values and P-values associated with the entropy-based
models indicate stronger predictive accuracy and better fits. This
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FIGURE 6
Graphical representation of linear regression model between entropy indices and XLog P (A) Relation between XLog P and RE1 with regression model
XLog P = −22.6356 + 6.413,784 (RE) (B) Relation between XLog P and GAE with regression model XLog P = −22.9996 + 6.466,432 (GAE).

TABLE 4 Relation of entropy indices with complexity (C).

Entropy indices MSE R2 Pearson R Pearson p-value C = a+b (Ent)

RE1 27833.37 0.701735 0.837696 0.000351 C = −1714.8 + 731.577 (RE)

GAE 27767.83 0.702437 0.838115 0.000346 C = −1742.52 + 733.9461 (GAE)

FZE1 27851.39 0.701542 0.837581 0.000352 C = −1,567.62 + 708.4912(FZE1)

SZE1 28130.35 0.698553 0.835795 0.000373 C = −1,617.66 + 718.8223(SZE1)

HZE1 27874.64 0.701293 0.837432 0.000354 C = −1,598.01 + 714.4434(HZE1)

FE 27883.85 0.701194 0.837373 0.000355 C = −1728.99 + 735.3425(FE)

AZE1 28836.4 0.690986 0.831256 0.000429 C = −1726.24 + 748.8149 (AZE1)

ABCE 27755.84 0.702566 0.838192 0.000345 C = −1746.54 + 735.3164 (ABCE)

TABLE 5 Relation of entropy indices with molar volume (MV).

Entropy indices MSE R2 Pearson R Pearson p-value MV = a+b (Ent)

RE1 3047.649 0.684595 0.827403 0.000482 MV = −634.346 + 232.5181 (RE)

GAE 3030.781 0.686341 0.828457 0.000467 MV -643.819 + 233.4515 (GAE)

FZE1 3153.031 0.673689 0.820786 0.000585 MV = −581.285 + 223.4106(FZE1)

SZE1 3084.161 0.680816 0.825116 0.000516 MV = −603.071 + 228.3513(SZE1)

HZE1 3121.496 0.676953 0.822771 0.000552 MV = −592.952 + 225.8727(HZE1)

FE 3021.044 0.687348 0.829065 0.000459 MV = −640.893 + 234.2747(FE)

AZE1 2989.479 0.690615 0.831033 0.000432 MV = −648.323 + 240.893 (AZE1)

ABCE 3026.392 0.686795 0.828731 0.000463 MV = −645.303 + 233.9434 (ABCE)
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TABLE 6 Relation of entropy indices with XLog P.

Entropy indices MSE R2 Pearson R Pearson p-value XLog P = a+b (Ent)

RE1 0.813918 0.710391 0.842847 0.002198 XLog P = −22.6356 + 6.413,784 (RE)

GAE 0.804361 0.713791 0.844862 0.002092 XLog P = −22.9996 + 6.466,432 (GAE)

FZE1 0.852552 0.696644 0.834652 0.002665 XLog P = −20.1774 + 5.883,544(FZE1)

SZE1 0.861182 0.693573 0.83281 0.002779 XLog P = −21.2007 + 6.140,477(SZE1)

HZE1 0.852,968 0.696,496 0.834,563 0.00267 XLog P = −20.6705 + 6.000752(HZE1)

FE 0.817379 0.709159 0.842116 0.002237 XLog P −22.9379 + 6.495,111(FE)

AZE1 0.85206 0.696819 0.834757 0.002659 XLog P = −23.7898 + 6.861,783 (AZE1)

ABCE 0.80521 0.713489 0.844683 0.002101 XLog P −23.0617 + 6.485,612 (ABCE)

TABLE 7 Values of Entropy indices of Penicillin G Sodium and Pfizerpen.

Drug name RE1 GAE FZE1 SZE1 HZE1 FE AZE1 ABCE

Penicillin G Sodium (C16H17N2NaO4S) 3.198693 3.217069 3.157207 3.154108 3.160873 3.192084 3.110868 3.214593

Pfizerpen (C16H18N2O4S) 3.198693 3.217069 3.157207 3.154108 3.160873 3.192084 3.110868 3.214593

TABLE 8 Comparison between the expected values and the experimental values.

Molecular weight Complexity Molar volume XLog P

Penicillin G Sodium

Experimental Value 356.4 536 115.0 NaN

Predicted Value 319.232 617.203 101.06 −2.1966

Pfizerpen

Experimental Value 334.4 530 112 1.8

Predicted Value 319.232 617.203 101.06 −2.1966

suggests that entropy indices capture molecular complexity and
structural nuances more effectively than classical topological
indices. Consequently, the reverse degree entropy indices provide
a more robust framework for constructing regression models in
QSPR analyses.

7 Validation of regression models

In this section, we validate the accuracy of the regression
models by comparing the experimental values of the drugs
with the predicted values obtained from the models. For this
validation, we selected two drugs: Penicillin G Sodium and
Pfizerpen. The corresponding entropy indices are calculated and
presented in Table 7. A comparison of the experimental and
predicted values is provided in Table 8. It can be observed that the

physicochemical properties, such as molecular weight and molar
volume, of these two drugs are predicted with high accuracy by the
regression models.

Potential sources of error in the predictions include inaccuracies
in the computed entropy indices, which may arise from numerical
approximations in the MAPPLE-based code or sensitivity to slight
variations in molecular structure. Additionally, the regression
models rely on assumptions of specific functional relationships
(e.g., linear or quadratic), which may not fully capture the
complexity of the underlying interactions. Experimental variability
in physicochemical property data, arising from differences in
measurement conditions or techniques, introduces noise that can
affect model reliability. Furthermore, the relatively small dataset
of thirteen drugs and limited structural diversity may hinder
generalizability and increase the risk of overfitting. Addressing
these challenges through incorporation of advanced models, and
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expansion of the dataset can enhance the robustness and accuracy
of the predictions.

8 Limitations and future directions

Despite promising results, the study has certain limitations.
First, the dataset includes only thirteen drugs specifically used
for Lyme disease, which restricts the generalizability of the
regression models. A larger and more diverse dataset is essential
to validate the methodology across different therapeutic areas.
Second, the analysis focuses on a limited set of physicochemical
properties. Finally, the computational workflow involves using
separate software tools like MAPPLE and SPSS, which may be
cumbersome for users unfamiliar with these platforms, limiting
accessibility.

To improve the generalizability of the models, future studies
should include a broader dataset encompassing drugs used for other
diseases. Furthermore, exploring a wider range of physicochemical
properties, such as solubility, lipophilicity, and drug-likeness
scores, alongside additional entropy indices and other molecular
descriptors, could provide a more comprehensive understanding
of drug behavior. By addressing these limitations and pursuing
these directions, the methodology could evolve into a versatile
framework for predictive drug design, accelerating the development
of safer and more effective therapeutics across diverse medical
conditions.

9 Conclusion

This study explored the use of degree-based entropy indices to
model and predict the physicochemical properties of thirteen drugs
commonly used in the treatment of Lyme disease. Linear regression
models were developed using entropy indices as independent
variables and physicochemical properties, such asmolecular weight,
complexity, molar volume, and XLogP, as dependent variables. The
results demonstrate strong and statistically significant correlations
between specific entropy indices and these properties, indicating
their effectiveness as predictors.

Notably, the reverse first Zagreb entropy index emerged as the
best predictor for molecular weight, while the reverse atom bond
connectivity index and reverse augmented Zagreb entropy index
showed strong associations with complexity and molar volume,
respectively. Additionally, the first Zagreb entropy index was
identified as the most suitable predictor for XLogP. These findings
underscore the potential of entropy indices to provide meaningful
insights into molecular characteristics and their relevance to drug
design and evaluation. Future work could extend these models to
other classes of drugs or incorporate additional entropy indices to
further enhance predictive accuracy and applicability.
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