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Automatic location of relevant
time slices and patterns in both
signals and video-movies:
real-time and off-line
visualization

J. Vega* and R. Castro

Laboratorio Nacional de Fusión, CIEMAT, Madrid, Spain

Next generation nuclear fusion devices, (for instance ITER), will generate Pbytes
of data. To gain knowledge about the nature of thermonuclear plasmas, an
in depth analysis of such massive databases is required. Typically, to get
statistical relevance in the study of the plasma properties, particular databases
around specific plasma events are created. This means their location not
only in discharges but also in the corresponding times. In this respect,
visualization tools are essential. Of course, manual location of any relevant
phenomenology bymeans of visual analysis is no longer valid. Instead, automatic
software based methods are necessary. These methods have to be applied
in both real-time and off-line not only for visualization purposes but also
for data access. Candidates for their implementation are machine learning
techniques.
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1 Introduction

In fusion, most of the signals collected in each discharge store the temporal evolution
of plasma quantities: time series, evolution of profiles and video-movies. For this reason,
a first step to judge the plasma behavior during a shot is to perform visual data analysis
(VDA). The VDA can be seen as a high level diagnostic about the plasma evolution.
Typically, VDA starts with the inspection of whole signals (from plasma start to extinction).
This global visualization allows for recognizing special signatures in the signals: abrupt
variations of amplitude, changes in noise distributions, presence or removal of regular
structures, sharp peaks and so on. By making zoom in the visualization window around
these special signatures, it is possible to find out morphological patterns in the signals
that reveal the presence of well-known plasma behaviors, for instance, start of NBI
injection, sawtooth activity, edge localized modes (ELMs), confinement transitions or
MARFEs among others. However, the long-pulse characteristic of ITER discharges (let’s
say 30 min) does not make easy the VDA procedure described above. Moreover, ITER
is expected to collect data at 100 Gbits/s, which means to store more than 10 TBytes per
discharge.

Therefore, in ITER, the long pulse conditions together with the massive databases
generation make necessary the availability of software tools (machine learning based)
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to accomplish four main objectives to help in the data analysis
process. First, to suggest signal segments of potential interestwithout
performing manual searches through VDA. Second, to execute data
retrieval based on physics aspects. Third, to carry out automatic
location of particular physics events and, fourth, to detect anomalies
in signals.

This article reviews and puts together a summary of smart
existing software tools to carry out the above four objectives. It
should be noted that all those toolswere developed by the first author
(J. Vega) and co-workers some years ago.

2 Intelligent software tools

For an efficient use of the ITER massive databases, automatic
methods for data selection are necessary. It should be noted that the
term “automatic” means “minimal human intervention”. This is the
main motivation as a consequence of the long pulse characteristic
of the ITER discharges. As a general idea to assist scientists in their
analysis work, the main objective consists of helping them to focus
the attention on possibly relevant time segments without having to
look for them in a manual way (by means of VDA or whatever).
This can be accomplished by developing software tools that in an
automatic way identify and locate possible relevant data, physical
events and off-normal behaviors. To this end, machine learning
methods are essential elements to create such software tools.
However, it is important to emphasize the above term “possible”.
“Possible” means that false positive identifications may occur. This
is not a problem if the corresponding false positive rate is low. It is
better to automatically find out most of the relevant behaviors (even
with some false positive) than either missing a large fraction of them
or having to performmanual searches. It is important to note that the
false positive identifications should be analyzed in order to include
“human feedback” to the intelligent data tools.

2.1 Searching for signal segments of
potential interest

Physical/engineering events are characterized by local
information in the signals either in the time (or space) domain
or in the frequency (or spatial frequency/wave number) domain
or in both. In the case of temporal evolution signals, abrupt/slow
variations are signatures of big/small alterations in the system state.
Other signatures can be spikes, transients or special structures
located in time. In non-temporal evolution signals, clear signs of
events are edges, peaks or textures well-located inside signals. Some
years ago, Vega and co-workers developed a Universal Multi-Event
Locator (UMEL) technique [1]. UMEL is a universal technique for
the automatic location of events in signals. UMEL is “universal”,
firstly, because it does not depend on particular physical events.
The technique locates those special signatures in the signals that
have been mentioned above. Secondly, the “universal” character
of UMEL resides in the fact that the technique is exactly the
same, independently of the type of signals: waveforms, images or
multivariate signals with an arbitrary number of dimensions.

UMEL is based on a specific regression estimation method:
Support Vector Machines (SVM). The resulting regressions

incorporate the maximum information content provided by
the data independently of factors such as sampling period or
assumptions about the form of noise. SVM regressions are robust
estimates even using sparse data. UMEL is founded in an original
interpretation of the support vectors [1]. The support vectors of a
regression represent the most difficult samples to regress and their
coordinates in the input domain allow determining the location of
physical/engineering events.

Figure 1 shows the samples (blue points) of a step function
corrupted with noise and its SVM regression (black plain line) with
a Radial Basis Function (RBF) kernel. The dashed lines define an
insensitive zone (or e-tube). Its width provides the required level
of accuracy to approximate a function f(x) by another function
f∗(x) where f(x) is situated in the e-tube of f∗(x). It is important to
emphasize that the wider the e-tube the smoother the regression.

According to the SVM regression theory, not all samples of the
training dataset are necessary to obtain f∗(x) [2]. The samples that
are required are called support vectors. In the example of Figure 1,
only the samples with markers in green (inside the e-tube) and in
red (outside the e-tube) are support vectors. In UMEL, the support
vectors inside the e-tube are called Internal Support Vectors (ISV)
whereas the ones outside the e-tube are called External Support
Vectors (ESV). SVM regressions tend to be smooth inside the e-
insensitive zone. The ISV are necessary samples for the regression
estimation but they have lesser relevance than the ESV for UMEL.
The ESV can be considered as outliers because they cannot be
fitted inside a smooth e-tube and, therefore, they represent singular
characteristics in the signals.

UMEL has shown to be useful in fusion [1] to locate the
time instants of sawteeth crashes, to determine the incremental
plasma diffusivity according to the time-to-peakmethod, to identify
disruption times and to reveal the presence of hot spots by means of
infrared cameras. Moreover, Ref. [3] shows in JET, on the one hand,
how to apply UMEL for the automatic location of Edge Localized
Modes (ELMs). On the other hand, the previous reference describes
the automatic identification of time intervals of potential interest
through the analysis of video-movies from an ultra-high-speed
visible camera. González et al. [4] also have applied UMEL for the
automated analysis of the edge pedestal gradient degradation during
ELMs. An in-depth analysis with UMEL for the location of ELMs in
the JET database was presented in [5]. Reference [6] presents the
use of UMEL in JET diagnostics of both infrared and visible light
cameras. UMEL is used to locate generic events, to recognize regions
of interest (ROI) in single frames and to study the evolution of these
ROI during plasma discharges.

To finish this section, it is important to note that UMEL has been
used outside fusion in environmental physics applications [7].

2.2 Searching for data based on
physics/engineering aspects

Nuclear fusion diagnostics produce similar signals for
reproducible plasma behavior.This means that physical phenomena
are translated into signal patterns. Therefore, there is a direct
correspondence between physical behaviors and the structural
shapes that they generate in the signals. Due to this fact, the standard
analysis method is to perform statistical analysis. The objective is
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FIGURE 1
The samples with markers in red are ESV because they cannot be fitted inside a smooth e-tube. They show singular segments of the signal. The gray
rectangle defines a relevant temporal segment (in this case an abrupt amplitude change). The segment is defined by the first external support vector
and the last external support vector. The axes represent amplitude vs. time, both in arbitrary units.

TABLE 1 Data input and data output according to two different models of data retrieval.

Input Output

Classical model Shot numbers Samples

Pattern oriented model Signal patterns Shot numbers
Pattern location (temporal/spatial)

to perform statistical inference from a large enough number of
similar structural shapes in different discharges. So far, finding
similar structural shapes within the database of a fusion device is a
manual and tedious procedure in which signals need to be examined
individually (typically bymeans of VDA). However, there are several
issues related to this process: manual searches, massive databases,
typical scale of the pattern and pulse length. Thus, although human
behavior for data analysis is pattern oriented, present tools for data
retrieval are not: location of patterns is carried out by means of data
inspection. Reference [8] discusses the necessary change of model
(from manual searches to automatic searches) to look for data in
massive databases and it is summarized in Table 1.

The classical model of data retrieval is to ask the database for
shot numbers and signal names and, as a result, signal samples are
obtained. A more advanced model in view of long pulse conditions
and massive databases is to use patterns of signals as query inputs.
The outputs would be the shot numbers and the pattern location
(temporal/spatial) within the signals.

To implement the “pattern oriented model”, the searching
process has to be efficient. Taking into account the possible high
dimensionality problem involved in the search, efficiencymeans not
to traverse the entire database when searching for similar patterns.
The use of machine learning methods results essential to develop
intelligentmechanisms to reduce the searching space just to themost
probable signals of containing a similar pattern [8].

Examples of the pattern orientedmodel can be to look for similar
a) entire waveforms [8], b) specific patterns inside waveforms [9], c)
entire images [10] and d) particular patterns within images [10].

The software architecture to implement the “pattern oriented
model” can be seen as made up of three-layers [8]. The architecture
is shown in Figure 2. The first layer (Application layer) contains
user applications, where these applications can be user programs
or end user applications. The third layer (Databases) consists of all
databases related to the device (physics and engineering ones). The
middle layer (Software library layer) comprises software functions
to read data from the databases and to send them to the Application
layer. The Software library layer covers not only classical libraries
to access data but also libraries for intelligent data access based on
pattern recognition.

A crucial point to make useful the data retrieval based on the
pattern oriented model of Figure 2 is a fast access time to satisfy
the user requirement. To this end, the Software library layer has to
implement a collection of different machine learning methods to
find similar patterns to the one provided by the user. The several
methods depend on the type of signal to process: time series
or video-movies. The searching process has to be fast enough to
provide a reasonable response time (the lesser the better). The term
“similar” refers to discover patterns in the database within a short
distance (in the mathematical sense) of the user input. Therefore,
the output is not only the location of similar patterns but also
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FIGURE 2
Software architecture to implement a pattern oriented model.

how similar the patterns are in relation to the input one. A typical
similarity measure is the cosine distance. The values vary between
0 (identical patterns) and 1 (completely different patterns). Usual
machine learning models for fast data retrieval are unsupervised
classification systems.

2.3 Automatic location of particular
physics events

During the evolution of discharges, several and varied
physical events can arise and can take place at different times
and different shots. Some events can be triggered as part of
an experimental objective (for instance L/H transitions and
internal transport barriers) or they can emerge in an intermittent
manner due to the plasma natural evolution (for example ELMs
and magnetohydrodynamic instabilities). To analyze the physics
involved in these events, ad hoc databases have to be created and
one of the main needs is the exact times when the events occur.
Determining these times is in general a difficult problem. These
times are typically estimated by means of VDA by relating several
waveforms of a discharge. Clearly, this manual process is far from
being optimal for massive databases. Therefore, techniques for
the automatic estimation of the times of specific physical events
are essential to speed up the data analysis process and to assure
unbiased results.

According to this, it is obvious the need of having big databases
from a reduced number of examples. In [11], it is described
a machine learning method for the unattended estimation of
the L/H and H/L transitions in JET. Also, Ref. [12] describes a
completely unattended methodology to generate large databases of
L/H transition times in JET using time series.

2.4 Anomaly detections and off-normal
behaviors

From the point of view of diagnostics, the long pulse
characteristic of ITER will make necessary the continuous

monitoring of plasma quantities to identify anomalies and off-
normal behaviors in the temporal evolution of discharges.Moreover,
the control systems of diagnostics and crucial ITER systems have to
be monitored not only during the production of discharges but also
at any time. It is important to note that in order to react properly,
the recognition of anomalies and off-normal behaviors has to be
performed as earlier as possible.

It should be noted that the observation process just described
corresponds to a data streaming setting, i.e. data are observed
sequentially from their respective sources. The objective of the
supervision process can be related to plasma evolution monitoring,
quality control, fault detection or system monitoring. From a
mathematical point of view, the goal is to signal any change in
the data generating process. Due to this fact, it is also known as
sequential change point detection procedure.

This problem can be tackled from a machine learning point of
view. Methods include the use of instance selection [13], instance
weighting [14], ensemble learning [15] and exchangeability tests
[16]. Both real-time and off-line methods based on the latter have
been described for nuclear fusion applications. A first application
[17] was devoted to the automatic recognition of anomalies during
the temporal evolution of bolometry profiles in the TJ-II stellarator.
The algorithm was tested in a real-time system with FPGAs.
A second application [18] was the simulation of the automatic
detection of changes in the plasma magnetohydrodynamic activity.
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