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In this work, we calculated the product connectivity index of three structures
for the T2-type twists and formulated expressions of expected values of the
forgotten index, atom bond connectivity index, sum connectivity index, product
connectivity index and geometric arithmetic index of these random structures
in the ( ́η−2) stage. In addition, we calculated the expected values numerically,
graphically and analytically and found the topological indices that have the
maximum and minimum value.
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1 Introduction

A square-hexagonal system is connected geometric shape and a unique geometric
arrangement formed by connecting equal sized squares and/or hexagons together. In
this system, the lattice points form a repeating pattern that resembles a combination of
squares and hexagons. In contrast, a square-hexagonal chain is a one-dimensional linear
sequence where square and hexagonal units alternate or connect in a line, creating a chain-
like arrangement. This configuration is useful in fields like combinatorics and polymer
chemistry, where alternating shapes along a single axis influence the overall behavior and
properties of the chain. Different square-hexagoal chains are formed depending on the way
how polygons are concatenated.

A [1, 2] polyomino chain is a sequence of connected squares, where each square shares
at least one side with the next in the sequence. A hexagonal chain is a one-dimensional,
linear sequence of connected hexagonal units, where each hexagon is linked to the next in
a chain-like formation. Unlike a full hexagonal lattice, which extends in two dimensions, a
hexagonal chain progresses in a single direction, creating a structure that resembles a series
of hexagonal “tiles” arranged side by side. In graph theory, a graph ψ is defined as an ordered
pairψ = (Vψ,Eψ), whereVψ (also called vertices ornodes) is a set elements that represent pints
in a graph and Eψ (called edges or arcs) is a set of pairs of vertices. Each pair (u,v) represents
a connection (edge) between two vertices u and v.

Topological indices are the quantitative values that represent the structural characteristic
of a graph which are used to relate the structure with its physical and chemical properties.
These indices are usually known as descriptors of graphical structures for precisely this
reason. These are the conclusions reached by applying logic and mathematics to a symbolic
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representation of a graph in an usable number. Some topological
descriptors which we have used in our paper are described below.

The [3] geometric-arithmetic index is defined as;

GA (ψ) = ∑
uv∈E(ψ)

2√du × dv
du + dv

(1)

The sum-connectivity and product-connectivity indices are
defined respectively as;

SC (ψ) = ∑
uv∈E(ψ)

1

√du + dv
(2)

PC (ψ) = ∑
uv∈E(ψ)

1

√du × dv
(3)

Different relations between these two indices are
established in [4].

In article [5] the forgotten index is given as;

F (ψ) = ∑
uv∈E(ψ)
(du)

3

or it can also be defined as;

F (ψ) = ∑
uv∈E(ψ)
[(du)

2 + (dv)
2] (4)

The [6] atom bond connectivity index is defined as;

ABC (ψ) = ∑
uv∈E(ψ)

√du + dv − 2
du × dv

(5)

In mathematical chemistry the application of chemical graph
theory to the study of complex structures, using different chemical
invariants, has revolutionary effects. The total count of nodes or
vertices in a graph is known as its order, represented by |Vψ|.
Whereas the total count of edges between the nodes in a graph is
called its size which is represented by |Eψ|. In a molecular graph
atoms are represented by u ∈ Vψ, while uivj ∈ E(ψ) represents the
bonds connecting the corresponding atoms. The degree of a vertex,
indicated by deg(u) or du, refers to the count of edges connected to
that vertex. Further notations of graph are discussed in [7].

Phenylene chains are part of a broader class of conjugated
organic polymers, formed by joining squares and hexagons
alternatively. Raza et al. in [8] compared numerically as well as
graphically, the random phenylene chains among the expected
values of atom bond connectivity and geometric-arithmetic indices.
Wei et al. [9] formulated the expected values of various topological
indices for random phenylene chains using auxiliary graphical
structures, with a particular focus on theMerrifield-Simmons index.

Several researchers [10–12] have provided exact expressions
and comparative analyses of topological indices for chemical
graph structures, including random phenylene and polyphenyl
chains. In [2], Sigarreta et al. computed the Sombor, Forgotten,
Zagreb, Atom-Bond Connectivity, Randic, and Geometric-
Arithmetic indices for polyomino chains, deriving precise
expressions for their expected values and variances in random
polyomino structures.

The first Zagreb connection index, a widely studied topological
descriptor, has been extensively used to investigate the structural

properties and chemical stability of molecular networks. Recent
studies [14] have explored its expected value in random
cyclooctatetraene chains, random polyphenyl chains, and random
chain networks, providing valuable insights into the probabilistic
behavior of these indices in complex molecular structures.
This research contributes significantly to the understanding of
topological indices in stochastic chemical graph theory, particularly
in the context of polymers and organic chain networks. Distance-
based graphical indices have proven highly effective in predicting
the thermodynamic properties of benzenoid hydrocarbons [15],
highlighting their practical applications in computational chemistry
and materials science.

Similarly, eigenvalue-based graphical indices have demonstrated
significant predictive capabilities in modeling and determining
the thermodynamic properties of polycyclic aromatic
hydrocarbons [16]. This method has been particularly useful in
studying polyacenes, providing valuable insights into their structural
and thermal behavior.

Furthermore, temperature-based topological indices have
been utilized in structure-property modeling to predict the
thermodynamic properties of benzenoid hydrocarbons [17],
contributing to a deeper understanding of their thermal
characteristics. Depending on the attachment of polygons and
graphical representation, there are two types of square-hexagonal
kinks, kinks of type T1 and T2. In type T1 hexagon occurs as a kink
holding the criteria to have two adjacent vertices of degree two.
While in type T2, a square is said to be a kink if contains a vertex
of degree 2. Kinks of type T2 are divided into three types [1] based
on the possibilities of connecting polygons (square and hexagon)
at different places of a square. These three types, 2T1, 2T2 and 2T3,
are shown in Figure 1

By considering ́η being the kink, we have further discovered
three types of kink chains of type 2T2, named as [18] 2T

1
2, 2T

2
2

and 2T
3
2. Also computed Forgotten, atom-bond connectivity, Sum-

connectivity and Product-connectivity indices of these chains and
found out the maximizing and minimizing index using graphical
representation. For the sake of generality, we expressed our results
into odd and even numbered kink chains. In graph theory, the
concept of expected value is not inherently a property of a graph,
but it is often used in the context of random graphs or randomized
processes on graphs.

In [19], we calculated 1st and 2nd Gourava, 1st and 2nd Revan,
Redefind 1st and 2nd Zagreb andHyper-Zagreb indices of these three
structures of kink chains of type 2T2 and found out maximizing
and minimizing index. In addition to that, we also got the expected
valued values for these descriptors at ( ́η− 1)th stage and made
comparison among them.

We are motivated to consider square and hexagonal kink
chains in our work due to their superior mechanical and structural
properties, which are highly relevant in material science and
engineering applications due to their unique geometric and
mechanical properties. They enhance stress distribution and
energy absorption, making them ideal for impact-resistant
materials in aerospace, automotive, and structural engineering. A
comprehensive examination of these structural and topological
characteristics offers valuable understanding of how kink
chains impact material properties, forming a crucial foundation
for bridging theoretical outcomes with practical engineering
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FIGURE 1
Kinks of type 2T1,2T2 and 2T3.

applications. This research establishes a basis for future studies
to implement these insights in addressing specific engineering
challenges, including the design and optimization of materials for
advanced technological applications.

2 Methodology

In this study, we employed a comprehensive methodology
to analyze the connectivity indices of random T2 kink chains.
We began by graphically representing the kink structures as
graphs, where vertices denote atoms and edges represent bonds.
We calculated several topological indices including the Product
Connectivity Index (PC), Sum Connectivity Index (SC), Atom
Bond Connectivity Index (ABC), and Forgotten Index (F) using
established mathematical definitions. The expected values of these
indices were derived at various stages of the kink evolution,
employing relationships from previous literature in mathematical
chemistry. Numerical analysis were performed to identify the
maximizing and minimizing values of these indices, complemented
by graphical visualizations to portray their behavior throughout the
kinking process. Finally, a comparative analysis with existing studies
allowed us to validate our results and deepen our understanding
of the structural implications of these connectivity indices in
molecular networks.

3 Main results

In this article, we will expand our work and calculate PC index
of three possible arrangements of kinks of type 2T2 and the expected
value of PC, SC, F, ABC and GA indices of three random structures
for the kink of type 2T2. We will numerically, graphically as well as
analytically find out the maximizing and minimizing expectation at
( ́η− 2)th stage.

Let ́η represents the kink. Tables 1, 2 represents the vertex and
edge partitions of each kink chain accordingly [18].

Theorem 3.1: Let n ∈ N, then the product connectivity topological
index of kink chain Tp

2,2 is given as;

PC(Tp
2,2) =
{{
{{
{

1.937278497 ́η+ 2.980171716 if p = 1
1.950715223 ́η+ 2.966734989 if p = 2 ; for ́η = 2n− 1
1.935660172 ́η+ 2.98179004 if p = 3

TABLE 1 Edge partitions of 2T
1
2, 2T

2
2 and 2T

3
2; n ∈N.

|Eij| For ή = 2n− 1 For ή = 2n

2T
1
2 2T

2
2 2T

3
2 2T

1
2 2T

2
2 2T

3
2

|E22| 4 ́η+7
2

́η+ 3 6 ́η+10
2

́η+ 4

|E23| 2( ́η+ 1) 3 ́η+5
2

4 2 ́η 3 ́η+2
2

4

|E24| 2 ́η 3 ́η+1
2

3 ́η− 1 2 ́η 3 ́η+2
2

3 ́η− 2

|E34| ́η+ 1 3 ́η+1
2

2 ́η 3 ́η−2
2

2

|E44|
́η−1
2

́η−1
2

3( ́η−1)
2

́η
2

́η
2

3 ́η−4
2

TABLE 2 Vertex partitions of 2T
1, 2T

2
2 and 2T

3
2.

|Vi| For ή = 2n− 1 For ή = 2n

2T
1
2, 2T

2
2 and 2T

3
2 2T

1
2, 2T

2
2 and 2T

3
2

|V2| 2 ́η+ 5 2 ́η+ 6

|V3| ́η+ 1 ́η

|V4| ́η ́η

PC(Tp
2,2) =
{{
{{
{

1.937278497 ́η+ 3 if p = 1
1.950715223 ́η+ 2.973126546 if p = 2 ; for ́η = 2n
1.935660172 ́η+ 3.00323665 if p = 3

Proof. Let ́η = 2n− 1. Using the edge partition given in Table 1
and the definition of product connectivity topological index, we get

PC (T1
2,2) = (4)  (

1
2) + (2 ( ́η+ 1)) (

1
√6
)+ (2 ́η) ( 1

2√2
)

+( ́η+ 1) ( 1
2√3
)+( ́η− 12 ) (

1
4)

= 1.937278497  ́η+ 2.980171716
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PC (T2
2,2) = (

́η+ 7
2
) ( 1

2
)+(

3 ́η+ 5
2
) ( 1
√6
)+(

3 ́η+ 1
2
) ( 1

2√2
)

+(
3 ́η+ 1
2
) ( 1

2√3
)+(
́η− 1
2
) ( 1

4
)

= 1.950715223  ́η+ 2.966734989

PC (T3
2,2) = ( ́η+ 3)  (

1
2
)+ (4) ( 1

√6
)+ (3 ́η− 1) ( 1

2√2
)

+ (2) ( 1
2√3
)+(

3 ( ́η− 1)
2
) (1

4
)

= 1.935660172  ́η+ 2.98179004

Let ́η = 2n. Using the edge partition given in Table 1 and the
definition of product connectivity topological index, we get

PC (T1
2,2) = (6)  (

1
2
)+ (2 ́η) ( 1

√6
)+ (2 ́η) ( 1

2√2
)+ ( ́η) ( 1

2√3
)+(
́η

2
) ( 1

4
)

= 1.937278497  ́η+ 3

PC (T2
2,2) = (

́η+ 10
2
) ( 1

2
)+(

3 ́η+ 2
2
) ( 1
√6
)+(

3 ́η+ 2
2
) ( 1

2√2
)

+(
3 ́η− 2
2
) ( 1

2√3
)+(
́η

2
) ( 1

4
)

= 1.950715223  ́η+ 2.973126546

PC (T3
2,2) = ( ́η+ 4)  (

1
2
)+ (4) ( 1

√6
)+ (3 ́η− 2) ( 1

2√2
)

+ (2) ( 1
2√3
)+(

3 ́η− 4
2
) ( 1

4
)

= 1.935660172  ́η+ 3.00323665

Observe that there is no edge between two adjacent vertices of
degree 2, only one edge between two adjacent vertices of degree 2,
and two edges between two adjacent vertices of degree two in three
random (the second and third arrangements are same) structures
of kink of type 2T2 respectively, except at terminal polygons, so
we have only three possible arrangements of type 2T2, holding the
conditions to make kink at each step. The possible arrangement
for ́η = 1 is same as shown in Figure 1b and for ́η = 2 is shown in
Figure 2. For ́η ≥ 2, the possible arrangements for attaching terminal
polygons are shown in Figure 3 in three different ways, resulting
three types [18]2T

1
2, 2T

2
2 and 2T

3
2. Let ́γ be the probability of attaching

terminal polygons in the first or second kind of arrangement, then
1− 2 ́γ be the probability of attaching the terminal polygon in the
third type of arrangement.

Consider kink chain 2T2 with ́η number of kinks and probability
́γ is represented by (2T

́γ
2)ή. Now we compute expected values of

product-connectivity, Forgotten, atom-bond connectivity, product-
connectivity and sum-connectivity indices of possible square-
hexagonal kink chains (2T

́γ
2) ́η. Let |Eij| = βij denotes the number of

edges for (2T
́γ

2) ́η with end vertices of degree i and j accordingly.There

are only β22, β23, β24, β34 and β44-type of edges in (2T
́γ

2) ́η. From
Equations 1–5, topological descriptors can be expressed as

F(2T
́γ

2) ́η = 8β22 (2T
γ
2) ́η + 13 β23 (2T

γ
2) ́η

+ 20β24 (2T
γ
2) ́η + 25 β34 (2T

γ
2) ́η + 32 β44 (2T

γ
2) ́η (6)

FIGURE 2
Kinks of type 2T1,2T2and 2T3.

FIGURE 3
Possible arrangements of kink chains of type 2⊤2.

GA(2T
γ
2) ́η = β22 (2T

γ
2) ́η + 2
√6
5
β23 (2T

γ
2) ́η + 2
√2
3
β24 (2T

γ
2) ́η

+ 4
√3
7
β34 (2T

γ
2) ́η + β44 (2T

γ
2) ́η (7)

SC(2T
γ
2) ́η =

1
2
β22 (2T

γ
2) ́η +

1
√5
β23  ((2T

γ
2) ́η +

1
√6
β24 (2T

γ
2) ́η

+ 1
√7
β34  ((2T

γ
2) ́η +

1
2√2
β44 (2T

γ
2) ́η (8)

ABC(2T
γ
2) ́η =
√2
4
β22 (2T

γ
2) ́η +
√3
6
β23 (2T

γ
2) ́η +

1
4
β24 (2T

γ
2) ́η

+
√5
12
β34 (2T

γ
2) ́η +
√6
16
β44 (2T

γ
2) ́η (9)
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TABLE 3 Change in edge partitions of (2T
́γ

2)k at ( ́η−2)
th step for ́η = 2n− 1 and ́η = 2n; n ∈ n.

Type p (2T2) ́η−2→ (2T
p
2) ́η (βij) ́η = (βij) ́η−2± no. of edges

(β22) ́η (β23) ́η (β24) ́η (β34) ́η (β44) ́η

1 (2T2) ́η−2→ (2T
1
2) ́η (β22) ́η−2 (β23) ́η−2 + 4 (β24) ́η−2 + 4 (β34) ́η−2 + 2 (β44) ́η−2 + 1

2 (2T2) ́η−2→ (2T
2
2) ́η (β22) ́η−2 + 1 (β23) ́η−2 + 3 (β24) ́η−2 + 3 (β34) ́η−2 + 3 (β44) ́η−2 + 1

3 (2T2) ́η−2→ (2T
3
2) ́η (β22) ́η−2 + 2 (β23) ́η−2 (β24) ́η−2 + 6 (β34) ́η−2 (β44) ́η−2 + 3

PC(2T
γ
2) ́η =

1
2
β22 (2T

γ
2) ́η +

1
√6
β23 (2T

γ
2) ́η +

1
2√2
β24 (2T

γ
2) ́η

+ 1
2√3
β34 (2T

γ
2) ́η +

1
4
β44 (2T

γ
2) ́η (10)

As (2T
́γ

2) ́η is a possible kink chain, it proceeds that F(2T
́γ

2) ́η,

GA(2T
́γ

2) ́η, SC(2T
́γ

2) ́η,ABC(2T
́γ

2) ́η and PC(2T
́γ

2) ́η are possible variables.

Let us denote by EF ́η = E[F(2T
́γ

2) ́η], EGÁη = E[GA(2T
́γ

2) ́η], EABĆη =

E[ABC(2T
́γ

2) ́η], ESĆη = E[SC(2T
́γ

2) ́η] and EPĆη = E[PC(2T
́γ

2) ́η] the
expected values of these indices respectively.

To compute the expected values for above mentioned indices
we will compute the change in edge partitions of (2T

́γ
2) ́η for three

possible constructions of kink chains as shown in Figure 3. It is
to be noted that if ́η is odd in possible arrangements (2T

1
2, 2T

2
2

and 2T
3
2) of kink chain then at ( ́η− 1)th step, even numbered kink

chains are formed and at ( ́η− 2)th step, odd numbered kink chains
are formed. Similarly, if ́η is even in possible arrangements of
kink chain then at ( ́η− 1)th step, odd numbered kink chains are
obtained and at ( ́η− 2)th step, even numbered kink chains are
obtained again. We will formulate our expressions at ( ́η− 2)th

stage.

4 Results at ( ́η−2)th stage

The three possible constructions at ( ́η− 2)th stage are as follows:

1. (2T2)ή−2→ (2T
1
2)ή

2. (2T2)ή−2→ (2T
2
2)ή

3. (2T2)ή−2→ (2T
3
2)ή

It is interested to note that change in edge partitions of (2T
́γ

2)k
remains same for ́η = 2n− 1 and ́η = 2nwhen we take ( ́η− 2)th stage.
Change in edge partitions of (2T

́γ
2) ́η at ( ́η− 2)

th stage for ́η = 2n− 1
and ́η = 2n is shown in Table 3

Theorem 4.1: For square-hexagonal kink chain 2T2 with ́η number
of kinks, we have

(a) For ́η = 2n− 1; n ∈ N

EF ́η = ́η [−18 ́γ+ 116] + 18 ́γ+ 58

(b) For ́η = 2n; n ∈ N

EF ́η = ́η [−18 ́γ+ 116] + 36 ́γ+ 30

Proof. Let ́η ≥ 2, then there are three possibilities. Using
Table 3 and Equation 3, we get

1. If (2T2)ή−2→ (2T
1
2)ή, then

F(2T
1
2) ́η = 8β22 (2T2) ́η−2 + 13 [β23 (2T2) ́η−2 + 4] + 20  [β24 (2T2) ́η−2 + 4]

+ 25  [β34 (2T2) ́η−2 + 2] + 32 [β44 (2T2) ́η−2 + 1]

= F(2T2) ́η−2 + 214 (11)

2. If (2T2)ή−2→ (2T
2
2)ή, then

F(2T
2
2) ́η = 8[β22 (2T2) ́η−2 + 1] + 13 [β23 (2T2) ́η−2 + 3] + 20 [β24 (2T2) ́η−2 + 3]

+ 25 [β34 (2T2) ́η−2 + 3] + 32 [β44 (2T2) ́η−2 + 1]

= F(2T2) ́η−2 + 214 (12)

3. If (2T2)ή−2→ (2T
3
2)ή, then

F(2T
3
2) ́η = 8[β22 (2T2) ́η−2 + 2] + 13β23 (2T2) ́η−2

+ 20 [β24 (2T2) ́η−2 + 6] + 25β34 (2T2) ́η−2

+ 32 [β44 (2T2) ́η−2 + 3]= F(2T2) ́η−2 + 232 (13)

Thus, we have

EF ́η = ́γF(2T
1
2) ́η + ́γF(2T

2
2) ́η + (1− 2 ́γ)F(2T

3
2) ́η

Using Equations 11–13, we get the following relation

EF ́η = ́γ  [F(2T2) ́η−2 + 214] + ́γ  [F(2T2) ́η−2 + 214]

+ (1− 2 ́γ)  [F(2T2) ́η−2 + 232]

= F(2T2) ́η−2 − 36 ́γ+ 232

Applying operator E on both sides and ∴E(EF ́η) = E
F
́η

EF ́η = E
F
́η−2 − 36 ́γ+ 232
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FIGURE 4
Expected values of PC, ABC and SC at ( ́η−2)th stage for ́η = 2n− 1.

FIGURE 5
Expected values of PC, ABC and SC at ( ́η−2)th stage for ́η = 2n.

• Let ́η = 2n− 1
For n = 1⇒ ́η = 1, E1 = 174, which is indeed true. Using

recursive relation upto ́η− 1 trerms

EF ́η = E
F
́η−( ́η−1) +(

́η− 1
2
)[−36 ́γ+ 232] = 174+ ( ́η− 1) [−18 ́γ+ 116]

= ́η [−18 ́γ+ 116] + 18 ́γ+ 58

which completes the result.

• Let ́η = 2n
For n = 1⇒ ́η = 2, E2 = 262, which is indeed true. Using

recursive relation upto ́η− 2 terms

EF ́η = E
F
́η−( ́η−2) +(

́η− 2
2
)[−36 ́γ+ 232] = 262+ ( ́η− 2) [−18 ́γ+ 116]

= ́η [−18 ́γ+ 116] + 36 ́γ+ 30
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FIGURE 6
Expected values of F and GA at ( ́η−2)th stage for ́η = 2n− 1.

FIGURE 7
Expected values of F and GA at ( ́η−2)th stage for ́η = 2n.

which completes the proof.

Theorem 4.2: For square-hexagonal kink chain 2T2 with ́η number
of kinks, we have

EGÁη = ́η [0.04662133 ́γ+ 5.328427125] − 0.04662133 ́γ+ 6.455861185

(b) For ́η = 2n; n ∈ N

EGÁη = ́η [0.04662133 ́γ+ 5.328427125] − 0.09324266 ́γ+ 6.01305214

Proof. Let ́η ≥ 2, then there are three possibilities. Using
Table 3 and Equation 7, we get

1. If (2T2)ή−2→ (2T
1
2)ή, then

GA(2T
1
2) ́η = β22 (2T2) ́η−2 + 2

√6
5
 [β23 (2T2) ́η−2 + 4] + 2

√2
3
 [β24 (2T2) ́η−2 + 4]

+ 4
√3
7
 [β34 (2T2) ́η−2 + 2] + β44 (2T2) ́η−2 + 1

= GA(2T2) ́η−2 + 10.66990639 (14)

2. If (2T2)ή−2→ (2T
2
2)ή, then

GA(2T
2
2) ́η = β22 (2T2) ́η−2 + 1+ 2

√6
5
 [β23 (2T2) ́η−2 + 3] + 2

√2
3
 [β24 (2T2) ́η−2 + 3]

+ 4
√3
7
 [β34 (2T2) ́η−2 + 3] + β44 (2T2) ́η−2 + 1

= GA(2T2) ́η−2 + 10.73704477 (15)

Frontiers in Physics 07 frontiersin.org

https://doi.org/10.3389/fphy.2025.1538443
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


Ling et al. 10.3389/fphy.2025.1538443

3. If (2T2)ή−2→ (2T
3
2)ή, then

GA(2T
3
2) ́η = β22 (2T2) ́η−2 + 2+ 2

√6
5
β23 (2T2) ́η−2

+ 2
√2
3
 [β24 (2T2) ́η−2 + 6] + 4

√3
7
β34 (2T2) ́η−2 + β44 (2T2) ́η−2 + 3

= GA(2T2) ́η−2 + 10.65685425 (16)

Thus, we have

EGÁη = ́γGA(2T
1
2) ́η + ́γGA(2T

2
2) ́η + (1− 2 ́γ)GA(2T

3
2) ́η

Using Equations 14–16, we get the following relation

EGÁη = ́γ [GA(2T2) ́η−2 + 10.66990639] + ́γ  [GA(2T2) ́η−2 + 10.73704477]

+ (1− 2 ́γ)  [GA(2T2) ́η−2 + 10.65685425]

EGÁη = GA(2T2) ́η−2 + 0.09324266 ́γ+ 10.65685425

Applying operator E on both sides and ∴E(EGÁη ) = E
GA
́η

EGÁη = E
GA
́η−2 + 0.09324266 ́γ+ 10.65685425

• Let ́η = 2n− 1
For n = 1⇒ ́η = 1, E1 = 11.78428831, which is indeed true.

Using recursive relation upto ́η− 1 trerms

EGÁη = E
GA
́η−( ́η−1) +(

́η− 1
2
)  [0.09324266 ́γ+ 10.65685425]

= 11.78428831+ ( ́η− 1)  [0.04662133 ́γ+ 5.328427125]
= ́η [0.04662133  ́γ+ 5.328427125] − 0.04662133 ́γ+ 6.455861185

which completes the result.
• Let ́η = 2n
For n = 1⇒ ́η = 2, E2 = 16.66990639, which is indeed true.

Using recursive relation upto ́η− 2 terms

EGÁη = E
GA
́η−( ́η−2) +(

́η− 2
2
)  [0.09324266  ́γ+ 10.65685425]

= 16.66990639+ ( ́η− 2)  [0.04662133  ́γ+ 5.328427125]

= ́η  [0.04662133  ́γ+ 5.328427125] − 0.09324266  ́γ+ 6.01305214

which completes the proof.

Theorem 4.3: For square-hexagonal kink chain 2T2 with ́η number
of kinks, we have

ESĆη = ́η  [0.032431259  ́γ+ 2.255074958] − 0.032431259  ́γ

+ 3.106204951

(b) For ́η = 2n; n ∈ N

ESĆη = ́η  [0.032431259  ́γ+ 2.255074958] − 0.064862518  ́γ

+ 3.021179965

Proof. Let ́η ≥ 2, then there are three possibilities. Using
Table 3 and Equation 8, we get

1. If (2T2)ή−2→ (2T
1
2)ή, then

SC(2T
1
2) ́η =

1
2
β22 (2T2) ́η−2 +

1
√5
 [β23 (2T2) ́η−2 + 4] +

1
√6
 [β24 (2T2) ́η−2 + 4]

+ 1
√7
 [β34 (2T2) ́η−2 + 2] +

1
2√2
 [β44 (2T2) ́η−2 + 1]

= SC(2T2) ́η−2 + 4.53132988 (17)

2. If (2T2)ή−2→ (2T
2
2)ή, then

SC(2T
2
2) ́η =

1
2
 [β22 (2T2) ́η−2 + 1] +

1
√5
 [β23 (2T2) ́η−2 + 3] +

1
√6
 [β24 (2T2) ́η−2 + 3]

+ 1
√7
 [β34 (2T2) ́η−2 + 3] +

1
2√2
 [β44 (2T2) ́η−2 + 1]

= SC(2T2) ́η−2 + 4.553832468 (18)

3. If (2T2)ή−2→ (2T
3
2)ή, then

= 1
2
 [β22 (2T2) ́η−2 + 2] +

1
√5
β23 (2T2) ́η−2 +

1
√6
 [β24 (2T2) ́η−2 + 6]

+ 1
√7
β34 (2T2) ́η−2 +

1
2√2
 [β44 (2T2) ́η−2 + 3]

SC(2T
3
2) ́η = SC(2T2) ́η−2 + 4.510149915 (19)

Thus, we have

ESĆη = ́γSC(2T
1
2) ́η + ́γSC(2T

2
2) ́η + (1− 2 ́γ)SC(2T

3
2) ́η

Using Equations 17–19, we get the following relation

ESĆη = ́γ [SC(2T2) ́η−2 + 4.53132988] + ́γ [SC(2T2) ́η−2 + 4.553832468]

+ (1− 2 ́γ)  [SC(2T2) ́η−2 + 4.510149915]

ESĆη = SC(2T2) ́η−2 + 0.064862518 ́γ+ 4.510149915

Applying operator E on both sides and ∴E(ESĆη ) = E
SC
́η

ESĆη = E
SC
́η−2 + 0.064862518 ́γ+ 4.510149915

• Let ́η = 2n− 1; n ∈ N
For n = 1⇒ ́η = 1, E1 = 5.361279909, which is indeed true.

Using recursive relation upto ́η− 1 trerms

ESĆη = E
SC
́η−( ́η−1) +(

́η− 1
2
)  [0.064862518 ́γ+ 4.510149915]

= 5.361279909+ ( ́η− 1)  [0.032431259  ́γ+ 2.255074958]

= ́η  [0.032431259  ́γ+ 2.255074958] − 0.032431259  ́γ

+ 3.106204951

which completes the result.
• Let ´=; n ∈ N
For n = 1⇒ ́η = 2, E2 = 7.53132988, which is indeed true. Using

recursive relation upto ́η− 2 terms

ESĆη = E
SC
́η−( ́η−2) +(

́η− 2
2
)  [0.064862518 ́γ+ 4.510149915]

= 7.53132988+ ( ́η− 2)  [0.032431259  ́γ+ 2.255074958]

= ́η  [0.032431259  ́γ+ 2.255074958] − 0.064862518  ́γ

+ 3.021179965
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which completes the proof.

Theorem 4.4: For square-hexagonal kink chain 2T2 with ́η number
of kinks, we have

(a) For ́η = 2n− 1; n ∈ N

EABĆη = [0.014694163  ́γ+ 1.333193054]  ́η− 0.014694163  ́γ+ 2.108399043

(b) For ́η = 2n; n ∈ N

EABĆη = [0.014694163  ́γ+ 1.333193054]  ́η− 0.029388326  ́γ+ 2.135405879

Proof. Let ́η ≥ 2, then there are three possibilities. Using
Table 3 and Equation 9, we get1. If (2T2)ή−2→ (2T

1
2)ή, then

ABC(2T
1
2) ́η =
√2
4
β22 (2T2) ́η−2 +

√3
6
 [β23 (2T2) ́η−2 + 4]

+ 1
4
 [β24 (2T2) ́η−2 + 4]

+
√5
12
 [β34 (2T2) ́η−2 + 2] +

√6
16
 [β44 (2T2) ́η−2 + 1]

= ABC(2T2) ́η−2 + 2.680471644
(20)

2. If (2T2)ή−2→ (2T
2
2)ή, then

ABC(2T
2
2) ́η =
√2
4
 [β22 (2T2) ́η−2 + 1] +

√3
6
 [β23 (2T2) ́η−2 + 3]

+ 1
4
 [β24 (2T2) ́η−2 + 3] +

√5
12
 [β34 (2T2) ́η−2 + 3]

+
√6
16
 [β44 (2T2) ́η−2 + 1]

= ABC(2T2) ́η−2 + 2.681688898

(21)

3. If (2T2)ή−2→ (2T
3
2)ή, then

ABC(2T
3
2) ́η =
√2
4
 [β22 (2T2) ́η−2 + 2] +

√3
6
β23 (2T2) ́η−2

+ 1
4
 [β24 (2T2) ́η−2 + 6] +

√5
12
β34 (2T2) ́η−2

+
√6
16
 [β44 (2T2) ́η−2 + 3]

ABC(2T
3
2) ́η = ABC(2T2) ́η−2 + 2.666386108 (22)

Thus, we have

EABĆη = ́γABC(2T
1
2) ́η + ́γABC(2T

2
2) ́η + (1− 2 ́γ)ABC(2T

3
2) ́η

Using Equations 20–22, we get the following relation

EABĆη = ́γ  [ABC(2T2) ́η−2 + 2.680471644]

+ ́γ  [ABC(2T2) ́η−2 + 2.681688898]

+ (1− 2 ́γ)  [ABC(2T2) ́η−2 + 2.666386108]

EABĆη = ABC(2T2) ́η−2 + 0.029388326 ́γ+ 2.666386108

Applying operator E on both sides and ∴E(EABĆη ) = E
ABC
́η

EABĆη = E
ABC
́η−2 + 0.029388326 ́γ+ 2.666386108

For ή = 2n− 1 For n = 1⇒ ́η = 1, E1 = 3.441592097, which is
indeed true. Using recursive relation upto ́η− 1 trerms

EABĆη = E
ABC
́η−( ́η−1) +(

́η− 1
2
)  [0.029388326  ́γ+ 2.666386108]

= 3.441592097+ ( ́η− 1)  [0.014694163  ́γ+ 1.333193054]

= [0.014694163  ́γ+ 1.333193054]  ́η− 0.014694163  ́γ

+ 2.108399043

which completes the result.
For ή = 2n For n = 1⇒ ́η = 2, E2 = 4.801791987, which is indeed

true. Using recursive relation upto ́η− 2 terms

EABĆη = E
ABC
́η−( ́η−2) +(

́η− 2
2
)  [0.029388326  ́γ+ 2.666386108]

= 4.801791987+ ( ́η− 2)  [0.014694163  ́γ+ 1.333193054]

= [0.014694163  ́γ+ 1.333193054]  ́η− 0.029388326  ́γ

+ 2.135405879

which completes the proof.

Theorem 4.5: For square-hexagonal kink chain 2T2 with ́η number
of kinks, we have

(a) For ́η = 2n− 1; n ∈ N

EPĆη = [0.016673376  ́γ+ 1.935660172]  ́η− 0.016673376  ́γ+ 2.98179004

(b) For ́η = 2n; n ∈ N

EPĆη = [0.016673376  ́γ+ 1.935660172]  ́η− 0.033346752  ́γ+ 3.003236649

Proof. Let ́η ≥ 2, then there are three possibilities. Using
Table 3 and Equation 10, we get

1. If (2T2)ή−2→ (2T
1
2)ή, then

PC(2T
1
2) ́η =

1
2
β22 (2T2) ́η−2 +

1
√6
 [β23 (2T2) ́η−2 + 4] +

1
2√2
 [β24 (2T2) ́η−2 + 4]

+ 1
2√3
 [β34 (2T2) ́η−2 + 2] +

1
4
 [β44 (2T2) ́η−2 + 1]

= PC(2T2) ́η−2 + 3.874556993 (23)

2. If (2T2)ή−2→ (2T
2
2)ή, then

PC(2T
2
2) ́η =

1
√2
 [β22 (2T2)n−2 + 1] +

1
√6
 [β23 (2T2)n−2 + 3]

+ 1
2√2
 [β24 (2T2)n−2 + 3] +

1
2√3
 [β34 (2T2)n−2 + 3]

+ 1
4
 [β44 (2T2)n−2 + 1]= PC(2T2) ́η−2 + 3.901430447

(24)
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3. If (2T2)ή−2→ (2T
3
2)ή, then

PC(2T
3
2) ́η =

1
2
 [β22 (2T2) ́η−2 + 2] +

1
√6
β23 (2T2) ́η−2

+ 1
2√2
 [β24 (2T2) ́η−2 + 6] +

1
2√3
β34 (2T2) ́η−2 +

1
4
 [β44 (2T2) ́η−2 + 3]

PC(2T
3
2) ́η = PC(2T2) ́η−2 + 3.871320344 (25)

Thus, we have

EPĆη = ́γPC(2T
1
2) ́η + ́γPC(2T

2
2) ́η + (1− 2 ́γ)PC(2T

3
2) ́η

Using Equations 23–25, we get the following relation

EPĆη = ́γ [PC(2T2) ́η−2 + 3.874556993] + ́γ  [PC(2T2) ́η−2 + 3.901430447]

+ (1− 2 ́γ)  [PC(2T2) ́η−2 + 3.871320344]

EPĆη = PC(2T2) ́η−2 + 0.033346752 ́γ+ 3.871320344

Applying operator E on both sides and ∴E(EPĆη ) = E
PC
́η

EPĆη = E
PC
́η−2 + 0.033346752 ́γ+ 3.871320344

For ή = 2n− 1 For n = 1⇒ ́η = 1, E1 = 4.917450212, which is
indeed true. Using recursive relation upto ́η− 1 trerms

EPĆη = E
PC
́η−( ́η−1) +(

́η− 1
2
)  [0.033346752  ́γ+ 3.871320344]

= 4.917450212+ ( ́η− 1)  [0.016673376  ́γ+ 1.935660172]
= [0.016673376  ́γ+ 1.935660172]  ́η− 0.016673376 ́γ+ 2.98179004

which completes the result.
For ή = 2n For n = 1⇒ ́η = 2, E2 = 6.874556993, which is indeed

true. Using recursive relation upto ́η− 2 terms

EPĆη = E
PC
́η−( ́η−2) +(

́η− 2
2
)  [0.033346752  ́γ+ 3.871320344]

= 6.874556993+ ( ́η− 2)  [0.016673376  ́γ+ 1.935660172]
= [0.016673376  ́γ+ 1.935660172]  ́η− 0.033346752  ́γ+ 3.003236649

which completes the proof.
From Figure 3 it is easy to that three possible kink chains can be

obtained from (2T
́γ

2) ́η by taking the value of ́γ =
1
3
.

Corollary 1: If ́η = 2n− 1; n ∈ N then at ( ́η− 2)th stage
• F = 110( ́η− 2) + 284
• GA = 5.343967568( ́η− 2) + 17.12825588
• SC = 2.265885378( ́η− 2) + 7.627165287
• ABC = 1.338091108( ́η− 2) + 4.779683205
• PC = 1.941217964( ́η− 2) + 6.858668176

Corollary 2: If ́η = 2n; n ∈ N then at ( ́η− 2)th stage
• F = 110( ́η− 2) + 262
• GA = 5.343967568( ́η− 2) + 16.66990639
• SC = 2.265885378( ́η− 2) + 7.531329882
• ABC = 1.338091108( ́η− 2) + 4.801791986
• PC = 1.941217964( ́η− 2) + 6.874556993

4.1 Analytical comparison at ( ́η−2)th stage

In this section we analytically prove that forgotten index attains
the greatest expected values at ( ́η− 2)th stage, for any value of ́γ and ́η
and for ́η = 2n− 1 and ́η = 2n, while atom-bond connectivity attains
minimum expectations.

Corollary 3: For ́η = 2n− 1 and ́η = 2n; n ∈ N, we have

E[F(2T
́γ

2) ́η] > E[GA(2T
́γ

2) ́η]

Proof. • For ή = 2n− 1

E [F(2T
́γ

2) ́η] −E [GA(2T
́γ

2) ́η] = { ́η  [−18 ́γ+ 116] + 18 ́γ+ 58}

− { ́η  [0.04662133 ́γ+ 5.328427125]
−0.04662133 ́γ+ 6.455861185}

= 18.04662133  ́γ (1− ́η) + 110.6715729  ́η

+ 51.54413881 > 0

which holds for ́γ = 1
3
and for all ́η ∈ N, so we have

E[F(2T
́γ

2) ́η] > E[GA(2T
́γ

2) ́η]

• For ή = 2n

E [F(2T
́γ

2) ́η] −E [GA(2T
́γ

2) ́η]

= { ́η  [−18  ́γ+ 116] + 36  ́γ+ 30}
−{ ́η [0.04662133 ́γ+ 5.328427125] − 0.09324266 ́γ+ 6.01305214}
= 18.04662133 ́γ  (2− ́η) + 110.6715783  ́η+ 23.98694786 > 0

which holds for ́γ = 1
3
and for all ́η ∈ N, so we have

E[F(2T
́γ

2) ́η] > E[GA(2T
́γ

2) ́η]

Corollary 4: For ́η = 2n− 1 and ́η = 2n; ́η ∈ N, we have

E[GA(2T
́γ

2) ́η] > E[SC(2T
́γ

2) ́η]

Proof. • For ή = 2n− 1

E [GA(2T
́γ

2) ́η] −E [SC(2T
́γ

2) ́η]

= { ́η  [0.04662133  ́γ+ 5.328427125] − 0.04662133 ́γ+ 6.455861185}
−{ ́η  [0.032431259  ́γ+ 2.255074958] − 0.032431259  ́γ+ 3.106204951}
= 0.014190071 ́γ  ( ́η− 1) + 3.073352167  ́η+ 3.349656234 > 0

which holds for ́γ = 1
3
and for all ́η ∈ N, so we have

E[GA(2T
́γ

2) ́η] > E[SC(2T
́γ

2) ́η]

• For ή = 2n

E [GA(2T
́γ

2) ́η] −E [SC(2T
́γ

2) ́η]

= { ́η  [0.04662133  ́γ+ 5.328427125] − 0.09324266 ́γ+ 6.01305214}
−{ ́η  [0.032431259  ́γ+ 2.255074958] − 0.064862518  ́γ+ 3.021179965}
= 0.014190071 ́γ  ( ́η− 2) + 3.073352167  ́η+ 2.991872175) > 0
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which holds for ́γ = 1
3
and for all ́η ∈ N, so we have

E[GA(2T
́γ

2) ́η] > E[SC(2T
́γ

2) ́η]

Corollary 5: For ́η = 2n− 1 and ́η = 2n; ́η ∈ N, we have

E[SC(2T
́γ

2) ́η] > E[PC(2T
́γ

2) ́η]

Proof. • For ή = 2n− 1

E [SC(2T
́γ

2) ́η] −E [PC(2T
́γ

2) ́η]

= { ́η  [0.032431259 ́γ+ 2.255074958] − 0.032431259 ́γ+ 3.106204951}
−{[0.016673376  ́γ+ 1.935660172]  ́η− 0.016673376 ́γ+ 2.98179004}
= 0.015757883 ́γ  ( ́η− 1) + 0.319414786  ́η+ 0.124414911) > 0

which holds for ́γ = 1
3
and for all ́η ∈ N, so we have

E[SC(2T
́γ

2) ́η] > E[PC(2T
́γ

2) ́η]

• For ή = 2n

E [SC(2T
́γ

2) ́η] −E [PC(2T
́γ

2) ́η]

= { ́η [0.032431259  ́γ+ 2.255074958] − 0.064862518  ́γ+ 3.021179965}
−{[0.016673376  ́γ+ 1.935660172]  ́η− 0.033346752  ́γ+ 3.003236649}
= 0.015757883  ́γ  ( ́η− 2) + 0.319414786  ́η+ 0.017943316 > 0

which holds for ́γ = 1
3
and for all ́η ∈ N, so we have

E[SC(2T
́γ

2) ́η] > E[PC(2T
́γ

2) ́η]

Corollary 6: For ́η = 2n− 1 and ́η = 2n; ́η ∈ N, we have

E[PC(2T
́γ

2) ́η] > E[ABC(2T
́γ

2) ́η]

Proof. • For ή = 2n− 1

E [PC(2T
́γ

2) ́η] −E [ABC(2T
́γ

2) ́η]

= { ́η [0.016673376  ́γ+ 1.935660172] − 0.016673376  ́γ+ 2.98179004}
−{[0.014694163  ́γ+ 1.333193054]  ́η− 0.014694163  ́γ+ 2.108399043}
= 0.001979213  ́γ  ( ́η− 1) + 0.602467118  ́η+ 0.873390997 > 0

which holds for ́γ = 1
3
and for all ́η ∈ N, so we have

E[PC(2T
́γ

2) ́η] > E[ABC(2T
́γ

2) ́η]

• For ή = 2n

E [PC(2T
́γ

2) ́η] −E [ABC(2T
́γ

2) ́η]

= {[0.016673376  ́γ+ 1.935660172]  ́η− 0.033346752  ́γ+ 3.003236649}
−{[0.014694163  ́γ+ 1.333193054]  ́η− 0.029388326  ́γ+ 2.135405879}
= 0.001979213  ́γ  ( ́η− 2) + 0.602467118  ́η+ 0.86783077 > 0

which holds for ́γ = 1
3
and for all ́η ∈ N, so we have

E[PC(2T
́γ

2) ́η] > E[ABC(2T
́γ

2) ́η]

The above corollaries implies that;

Corollary 7:

E[F(2T
́γ

2) ́η] > E[GA(2T
́γ

2) ́η] > E[SC(2T
́γ

2) ́η] > E[PC(2T
́γ

2) ́η]

> E[ABC(2T
́γ

2) ́η]

From these analytical expressions, we conclude that that the
expected value of Forgotten index for ́γ = 1

3
is greatest among all

other computed topological indices at ( ́η− 2)th stage.

4.2 Graphical comparison of expected
values of topological indices at ( ́η−2)th
stage

The numerical values as well as graphical representation in
Figures 4–7 meet with the results of analytical comparison. So, we
conclude that the expected value of F index reaches maximum
value for both odd and even numbered kinked chains at ( ́η− 2)th

stage. And the expected value of ABC index for both odd and even
numbered kinked chains attains minimum value at ( ́η− 2)th stage,
and for ́γ = 1

3
.

5 Conclusion

In conclusion, at the ( ́η− 2)th stage, the expected value of
a certain topological descriptor for three kink chains with ́η =
2n− 1 is equal to the average of the corresponding topological
descriptor for ́η = 2n− 1, and similarly, the expected value of
the topological descriptor for ́η = 2n equals the average for ́η =
2n. This establishes the validity of the results. The values of the
topological descriptors R1, R2, HZ, ReZ2, GO1, and GO2 can
be calculated using the theorems proven above for ́γ = 1

3
at the

( ́η− 2)th stage. Furthermore, at this stage, for both ́η = 2n− 1 and
́η = 2n, the expected values of the descriptors E ́η

R1
, E ́η

R2
, E ́ηHZ,

E ́ηReZ2
, E ́ηGO1

, and E ́ηGO2
depend on both ́γ and the number of kinks

́η. However, the expected value of ReZ1 depends solely on the
number of kinks ́η and is identical in both cases. Moreover, the
expected values for the forgotten index attains maximum value,
whereas those for the ABC index attains minimum value, for
both the cases.
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