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Reflection of P1-wave incident
obliquely at the free surface of a
fluid-saturated half-space: a
comprehensive study via the
model of soil mechanics
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China

Introduction: Elastic wave propagation in fluid-saturated porous media is of
great significance in various fields. Based on the soil mechanics model of a two-
phase medium, the reflection problem of an obliquely incident plane P1-wave
at the free surface is systematically explored, which aims to reveal the physical
mechanism of wave propagation in saturated semi-infinite space.

Methods: The dispersion characteristic equations of body waves are obtained
by using the Helmholtz decomposition method. The theoretical formulas
of reflection coefficients and surface displacements are derived and verified
for correctness by simplifying. Finally, numerical investigations are carried
out on the variations of the displacement reflection coefficients and surface
displacements with the incident angle for different boundary conditions, wave
frequencies f, porosities n, Poisson’s ratios ν, and modulus ratios Ew/μ.

Results: It is shown that the surface response of half-space is somewhat affected
by the boundary conditions while little influenced by the wave frequency. It is
also found that the effects of material properties on the surface response cannot
be ignored.

Discussion: These conclusions provide a theoretical basis for wave survey
technology of seismic engineering and site seismic response analysis.

KEYWORDS

saturated two-phase medium, model of soil mechanics, dispersion equation, boundary
conditions, reflection coefficients, surface displacement

1 Introduction

Elastic wave propagation in fluid-saturated porous media has been studied for
many years. It is of theoretical and practical significance in various fields such as
soil dynamics, geotechnical engineering, earthquake engineering, geophysics, acoustics,
petroleum engineering, etc. The reflection of elastic waves in saturated two-phase media
is one of the important branches. Due to the existence of pore water in the soil skeleton,
the mechanical properties of two-phase media become very complex, which results in the
problem of wave propagation being much more complicated than that of a single-phase
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medium [1, 2]. Therefore, when the seismic wave propagates to the
free surface of two-phase media, it will show complex reflection
characteristics.

It is well known that Biot first predicted the existence of three
body waves in a two-phase medium, namely, the fast P1-wave, the
slow P2-wave, and the S-wave. The three body waves are dispersed
and attenuated, the speed and attenuation of which are related
to the frequency and the properties of saturated soil materials
[3, 4]. All these laid the foundation for the theoretical study of wave
propagation in a fluid-saturated porous medium. After that, many
scholars studied the various aspects of wave propagation in such
medium. The P2-wave with strong dispersion and high attenuation
characteristics was successively confirmed through experiments by
Plona and Berryman in 1980 [5, 6]. Following the Biot model,
different two-phase medium models, including the Zienkiewicz
model [7, 8], the Men Fu-lu model [9–11], the model of soil
mechanics [12], and the theory of mixture [13], were proposed
by different researchers. Chen and Liao [14] compared the first
four models in detail and pointed out the essential differences
between them. They also theoretically explained that the soil
mechanics model is a special case of the Biot model, which has
the advantage of a clear physical meaning of modeling parameters.
At the same time, more and more scholars used the Biot model
to study the reflection of elastic waves at the boundary of the
fluid-saturated medium. For example, Deresiewicz [15] deduced
theoretical formulas for the reflection coefficient of plane waves
incident on a free interface of a non-dissipative liquid-filled porous
solid. Deresiewicz and Rice [16] derived analytical formulas for
the reflection coefficients and reflection angles of body waves (P1-
, P2-, and SV-waves) incident upon a free interface because of
the dissipation. Xu et al. [17] presented analytical expressions of
reflection coefficients when P1-wave incident obliquely at four kinds
of plane interfaces of saturated soil (i.e., free drainable/undrainable
boundary, fixed drainable/undrainable boundary) and analyzed the
effect of incident frequency, incident angle, and interface conditions
on reflection coefficients. Lin et al. [18–20] investigated the dynamic
response (e.g., surface displacement, surface strain, rocking strains,
and energy partitions) of a half-space saturated with inviscid fluid
subjected to obliquely incident P1- or SV-wave in the case of free
draining boundary, and he also adopted the linear porosity-modulus
relation. Unlike Lin et al. [20], Rjoub [21, 22] presented the dynamic
response (same as Lin et al., but without surface displacement) of
a half-space saturated with viscous fluid, considering the oblique
incidence of P1- and SV-waves. Tajuddin and Hussaini [23] studied
the reflection of body waves at free permeable and impermeable
boundaries and rigid permeable and impermeable boundaries. Xia
et al. [24] developed the secular equation of the Rayleigh surface
wave and discussed its dispersion characteristic in a poroelastic half-
space. You [25] discussed the free-surfacemotion caused by incident
P1- or SV- wave in drained or undrained boundary conditions
based on the exact dynamic-stiffness matrix of half-space. Nie
and Xu [26] deduced the wave field solutions by using the Wave
Based Method and the boundary conditions (i.e., permeable and
impermeable conditions) of saturated half-space when incident P-
and SV-waves, and they also showed the effects of permeability
coefficient, angle, and frequency on them. Yang [27] introduced
the concept of homogeneous pore fluid into Biot’s theory to
analyze the saturation effects of subsoil on ground motions when

an inclined SV-wave incident on the free surface of a partially
saturated half-space. Later, based on governing equations of a three-
phase medium, Chen [28] explained that a special wave mode
conversion occurred when the fast P1-wave incident at a certain
angle on the nearly saturated soil. Zhou [29] investigated the
dynamic response of P1- and SV- waves incident at the interface
of partially saturated soil and discussed the effects of boundary
conditions, water saturation, frequency, Poisson’s ratio, andmodulus
ratio (i.e., shear modulus of soil frame to bulk modulus of fluid)
on it. Xue et al. [30] explored the phenomenon of wave mode
conversion for a P1-wave incident on the surface of a partially
saturated half-space, and the critical saturation degree and angle of
wave mode conversion were found for a specific nearly saturated
soil. Afterward, wave propagation in the semi-infinite space was
further enriched to the reflection and refraction of waves at different
interfaces [31–37] and extended to wave propagation in the distinct
media [38–43].

Since Chinese scholar Men proposed the soil mechanics model,
quite a few researchers have also used it to study the wave
propagation characteristics in a two-phasemedium from theoretical
[44–50] and practical views [51–54]. Among them, it is worth
mentioning that Chen and Men [52] and Cui [51] presented a new
method to understand themechanismof soil liquefaction. Chen [44]
and Chen et al. [45] analyzed the near-field wave motions combing
the transmitting boundary. Recently, Xiao et al. [49] investigated
the propagation and attenuation characteristics of Rayleigh waves
in ocean sites. A preliminary analysis of the wave propagation
characteristics in the infinite saturated medium based on the model
of soil mechanics has been conducted by Zhang et al. [50]. The
results showed that the frequency and soil properties may have
a significant influence on the velocity and attenuation coefficient
of the three body waves. For this reason, these parameters are
bound to affect the reflection of each wave incident upon a free
plane boundary.

Among the existing literature, the velocity of plane P1-wave is
the fastest, and the attenuation of it is slow in the saturated infinite
space. Therefore, it is of great interest to study the propagation
characteristic of P1-wave under different boundary conditions in
a fluid-saturated half-space. However, it is rare to use the model
of soil mechanics to study the propagation of elastic waves in
the semi-infinite field. As mentioned above, the model of soil
mechanics is introduced to discuss the reflection of P1-wave on
the free surface of saturated two-phase media in this paper. By
Fortran software, numerical analysis is conducted to study the effects
of boundary drainage, wave frequency, porosity, Poisson’s ratio,
and modulus ratio on the displacement reflection coefficients and
surface displacements.

2 The propagation theory of elastic
wave based on the model of soil
mechanics

2.1 The equations of motion

The model of soil mechanics for a fluid-saturated
medium in which the liquid phase is assumed to
be ideal, the solid phase is isotropic elastic, and
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the compression modulus of solid particles in point
contact tends to infinity, can be expressed as [12, 44, 49, 50].

{{{{
{{{{
{

μΔu+ (λ+ μ)∇(∇ · u) + (1− n)∇p f + [B](U̇ − u̇) = ρ1ü

n∇p f − [B](U̇ − u̇) = ρ2Ü

(1− n)∇ · u+ n∇ ·U − n
Ew

p f = 0
(1)

Where, Δ (=∇2) is the Laplace operator in the Cartesian
Coordinate, ∇ is the Hamiltonian operator. u, u̇, and ü denote
the solid phase’s displacement, velocity, and acceleration vector,
respectively. U , U̇ and Ü represent the absolute displacement,
velocity, and acceleration vector of the liquid phase separately. λ
and μ are the classical Lame constants, which are functions of the
Poisson’s ratio υ and the elastic modulus of the solid phase E, λ
= Eυ/((1+ υ)(1− 2υ)) and μ = E/2(1+ υ). n is the porosity. ρ1 and
ρ2 are defined to describe the solid and liquid density per unit
volume, in which ρ1 = (1− n)ρs and ρ2 = nρw, ρs and ρw are the
solid and fluid mass densities separately. p f is the true pore pressure.
Ew refers to the bulk modulus of liquid. k (=K/ρwg) is the dynamic
permeability coefficient of the solid skeleton, in which K (m/s) is
the permeability coefficient that satisfies Darcy’s law, and g is the
gravitation acceleration. [B] represents the dissipation coefficient,
which is a third-order diagonal matrix. [B] = diag(bx,by,bz), and bx
= by = bz = n2/k in the isotropic medium.

2.2 Solutions of the equations

Considering Helmholtz’s resolution, we introduce scalar
potential functions (ϕs, ϕw) and vector potential functions (ψs,
ψw) to describe the displacements of solid- and liquid-phase, which
can be written as follows [11, 50, 55].

{
u = ∇ϕs +∇×ψs

U = ∇ϕw +∇×ψw
(2)

Insertion of Equation 2 in Equation 1 yields the wave
equation expressed by potential function, as can be shown in the
following form [50].

{{{{{{{{{
{{{{{{{{{
{

ρ1ϕ̈s − (λ+ 2μ)Δϕs = p f − ρ2ϕ̈w
ρ1ψ̈s − μΔψs = −ρ2ψ̈w

np f − [B](ϕ̇w − ϕ̇s) − ρ2ϕ̈w = 0

ρ2ψ̈w + [B](ψ̇w − ψ̇s) = 0

(1− n)Δϕs + nΔϕw −
n
Ew

p f = 0

(3)

The in-plane wave problem in a fluid-saturated medium is a P-
SV wave problem in the xoz plane. Assuming the displacements u
and U are independent of the coordinate y. The scalar potential
functions ϕs = ϕs(x,z, t), and ϕw = ϕw(x,z, t) in the xoz plane.
The vector potential functions ψs =(0, ψs(x,z, t),0), and ψw =(0,
ψw(x,z, t),0). The components of solid-phase displacement (ux, uz)
and the components of liquid-phase displacement (Ux, Uz) can be
written in the form of potential functions, as shown in Equations 4a,
4b; [1, 20]. The potential function expressions of normal stress
(σzz) and shear stress (σxz) are written in Equation 4c by the
plane strain character. From the fifth of Equation 3, the potential

function expression of pore fluid pressure (p f) can be given by
the third of Equation 4c.

{{{
{{{
{

ux =
∂ϕs
∂x
−
∂ψs

∂z

uz =
∂ϕs
∂z
+
∂ψs

∂x

(4a)

{{{
{{{
{

Ux =
∂ϕw
∂x
−
∂ψw

∂z

Uz =
∂ϕw
∂z
+
∂ψw

∂x

(4b)

{{{{{{{{
{{{{{{{{
{

σzz = (λ+
1− n
n

Ew)∇
2ϕs + 2μ(

∂2ϕs
∂z2
+
∂2ψs

∂x∂z
)+Ew∇

2ϕw

σxz = 2μ
∂2ϕs
∂x∂z
+ μ(

∂2ψs

∂x2
−
∂2ψs

∂z2
)

p f =
1− n
n

Ew∇
2ϕs +Ew∇

2ϕw

(4c)

Assuming the plane harmonic wave solutions of the potential
functions in the following forms [11].

{{{{{
{{{{{
{

ϕs = Ase
i(ωt−kP·r)

ϕw = Awe
i(ωt−kP·r)

ψs = Bse
i(ωt−kS·r)

ψw = Bwe
i(ωt−kS·r)

(5)

Where,As andAw are the potential function amplitudes of solid-
and liquid-phases for P-wave, respectively. Bs and Bw represent the
potential function amplitudes of solid- and liquid-phases for S-wave
separately. kP and kS denote the propagation directions of P- and S-
waves (wave vector). kP and kS are the values of vectors (kP and kS),
with kP and kS representing the wave numbers of P- and S-waves,
respectively. r denotes the position vector. i =√−1. ω is the circular
frequency of a wave.

Substituting Equation 5 into Equation 3, we can obtain the
dispersion equations of P- and S-waves.

(λ+ 2μ)nEw
ρ1ρ2

(
kP
ω
)
4
−{(

λ+ 2μ
ρ1
+
nEw
ρ2
+
(1− n)2Ew

nρ1
)

− ib
ωρ1ρ2
(λ+ 2μ+

Ew
n
)}(

kP
ω
)
2
+ 1− ib

ω
( 1
ρ1
+ 1
ρ2
) = 0 (6a)

(
ibμ

ωρ1ρ2
−

μ
ρ1
)(

kS
ω
)
2
+ 1− ib

ω
( 1
ρ1
+ 1
ρ2
) = 0 (6b)

It can be seen from Equations 6a, 6b that the velocities and
attenuation coefficients for two kinds of compressional waves (P1-
and P2- waves) and one shear wave (S- wave) in an unbounded
saturatedmedium are calculated. All three body waves are dispersed
and attenuated, which are related to the properties of medium and
wave frequency.

3 Reflection of P1-wave in a
semi-infinite saturated medium

The obliquely incident P1-wave at the free surface of a semi-
infinite saturated medium is a free field problem and also an
important part of the site response analysis. In this case, the stresses
on the free surface are zero. The upper medium is air without
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FIGURE 1
Fluid-saturated half-space subjected to an incident P1-wave.

density, and the lower medium is saturated soil. We now introduce
a rectangular coordinate system, with x as the horizontal axis and
z as the vertical axis. The z-axis points downward vertically, which
is directed into the interior of the two-phase medium. The half-
space is bounded by a horizontal plane (z = 0). The plane P1-wave
with angular frequency ω is incident from the bottom to the free
surface at an angle θIP. Then the reflected P1-, P2-, and SV-waves
are generated in the saturated medium (i.e., z > 0), whose angles of
reflection are θR1, θR2, and θRS. All the reflected waves travel at the
incident wave frequency (ω).The geometry considered in this paper
is shown in Figure 1.

According to Snell’s law, the relations between the angles of the
reflected and incident waves are given by [55, 56].

VP1

sin θIP
=

VP1

sin θR1
=

VP2

sin θR2
=

VS

sin θRS
(7)

Where, VP1, VP2, and VS are the wave velocities. As
is shown in Equation 7, the reflection angles of each reflected wave
can be determined when the wave velocity and incident angle are
known. Moreover, the reflection angle (θR1) of the P1 wave is the
same as its incident angle (θIP).

3.1 Potential functions of elastic wave

In the two-phasemedium (i.e., the half-space z > 0), the incident
P1-wave gives rise to reflected waves of all three types, i.e., P1-,
P2-, and SV- waves. The expressions for solid- and liquid-phases
potential functions of P-wave (ϕs, ϕw) and SV-wave (ψs, ψw) are
shown inEquation 8; [27].Theplane harmonic solutions of potential
functions for different waves are shown in Equations 9a-9d; [27].

{{{{{
{{{{{
{

ϕs = ϕ
I
s1 +ϕ

R
s1 +ϕ

R
s2

ϕw = ϕ
I
w1 +ϕ

R
w1 +ϕ

R
w2

ψs = ψ
R
s

ψw = ψ
R
w

(8)

{
ϕIs1 = A

I
s1 exp[i(ωt− k

I
1xx+ k

I
1zz)]

ϕIw1 = A
I
w1 exp[i(ωt− k

I
1xx+ k

I
1zz)]

(9a)

{
ϕRs1 = A

R
s1 exp[i(ωt− k

R
1xx− k

R
1zz)]

ϕRw1 = A
R
w1 exp[i(ωt− k

R
1xx− k

R
1zz)]

(9b)

{
ϕRs2 = A

R
s2 exp[i(ωt− k

R
2xx− k

R
2zz)]

ϕRw2 = A
R
w2 exp[i(ωt− k

R
2xx− k

R
2zz)]

(9c)

{
ψR
s = B

R
s exp[i(ωt− kRsxx− kRszz)]

ψR
w = B

R
w exp[i(ωt− kRsxx− kRsxz)]

(9d)

Where, ϕIs1 (ϕIw1) is a potential function in the solid (liquid)
of incident P1-wave. AI

s1 and AI
w1 are the amplitudes of the

corresponding potential functions. Similarly, ϕRs1, ϕRs2, and ψR
s

are the solid-phase potential functions of the reflected P1-, P2-
, and SV-waves, respectively. AR

s1, AR
s2 and BR

s correspond to
the solid-phase potential amplitudes. ϕRw1, ϕRw2 and ψR

w denote
the liquid-phase potential functions of the reflected P1-, P2-
, and SV-waves, separately. AR

w1, AR
w2 and BR

w are the liquid-
phase potential amplitudes. kI1x and kI1z represent the components
of the incident P1-wave vector in the x and z directions. kR1x
and kR1z are the components of the reflected P1-wave vector in
the x and z directions. Similarly, kR2x, k

R
2z, k

R
sx and kRsz are the

components of the reflected P2- and SV- wave vectors of the
corresponding directions.

Following the geometric relationship of wave vectors, it can
be seen that the wave vectors and their components of all
waves satisfy the equalities Equation 10. Moreover, by Snell’s
law, the x-components of the wave numbers for the incident
and reflected waves are the same, as shown in Equation 11;
[55, 56].

{{{{{{
{{{{{{
{

(kI1x)
2 + (kI1z)

2 = (kI1)
2

(kR1x)
2 + (kR1z)

2 = (kR1 )
2

(kR2x)
2 + (kR2z)

2 = (kR2 )
2

(kRsx)
2 + (kRsz)

2 = (kRs )
2

(10)

kI1x = k
R
1x = k

R
2x = k

R
sx (11)

From Equations 6a, 6b, the relations between the various
amplitudes in Equations 9 can be obtained as follows.

δ1 =
Aβ
w1

Aβ
s1

=
(λ+ 2μ+ 1−n

n
Ew)(k

β
1)

2
− ρ1ω

2

ρ2ω
2 −Ew(k

β
1)

2 ,β = I,R (12a)

δ2 =
AR
w2

AR
s2

=
(λ+ 2μ+ 1−n

n
Ew)(k

R
2 )

2 − ρ1ω
2

ρ2ω
2 −Ew(k

R
2 )

2 (12b)

δs =
BR
w

BR
s
=
μ(kRs )

2 − ρ1ω
2

ρ2ω
2 (12c)

Where, δ1, δ2, and δs are the amplitude ratios of potentials
related to liquid and solid phases for P1-, P2-, and SV-waves,
respectively.

3.2 Boundary conditions and solutions

3.2.1 Boundary conditions of the free surface
When P1-wave is obliquely incident on the free surface of

the saturated medium, the boundary conditions can be completely
permeable or impermeable, i.e., (a) Open-pore boundary and (b)
Sealed-pore boundary [15, 57]. In case (a), the pore fluid can flow
freely, so the normal and shear stresses of the soil skeleton and
the pore pressure are zeros. Under condition (b), the pore fluid is
enclosed in a porous medium, so the normal and shear stresses
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of the soil skeleton and the displacement of solid related to liquid
are zeros. Then, the drained and undrained conditions can be
expressed as [17].

{
σij|z=0+ = 0
p f|z=0+ = 0

(13a)

{
σij|z=0+ = 0
uz|z=0+ −Uz|z=0+ = 0

(13b)

In which the subscripts (i, j = x, z) represent the components
in both x and z directions. σij|z=0+ denotes the total stress of
a saturated two-phase medium. p f|z=0+ is the pore pressure of
the boundary.

On inserting Equations 4a–4c, together with Equation 12a,
12b, 12c, into Equations 13a, 13b, and taking account of
Equation 10 and Equation 11, we find the analytical formulas of
amplitude ratios under permeable and impermeable boundaries,
i.e., AR

s1/A
I
s1, A

R
s2/A

I
s1, and BR

s /AI
s1. The formulas in the form of the

matrix are through

[SP−SV] f{A
R
s1,A

R
s2,B

R
s }

T = {F}TAI
s1 (14a)

[SP−SV] f{A
R
s1,A

R
s2,B

R
s }

T = {F}TAI
s1 (14b)

Where, the superscript   denotes the impermeable boundary.
{F} and {F} are the matrixes related to the incident P1-wave.
[SP−SV] f and [SP−SV] f are the 3-order matrixes corresponding to the

reflected waves. The elements of {F}, {F}, [SP−SV] f , and [SP−SV] f are
given in the Appendix.

3.2.2 Surface response of saturated half-space
Without loss of generality, we assume the potential function

amplitude of the incident wave equals unity, i.e., AI
s1 = 1 [1].

Substituting Equations 11, 12a–c into Equations 14a, b, we can
obtain the potential function amplitudes of the reflected waves AR

s1,
AR
s2, and BR

s (i.e., the amplitude reflection coefficients of P1-, P2-,
and SV-waves). Then inserting AR

s1, A
R
s2, and BR

s into Equation 4a,
the solid-phase displacement reflection coefficients of each reflected
wave are given through the expressions

{{{{{{{{
{{{{{{{{
{

RR
s1 = A

R
s1

RR
s2 =

kR2
kI1

AR
s2

RR
ss =

kRs
kI1

BR
s

(15)

Where,RR
s1,R

R
s2, andR

R
ss are employed to denote the displacement

reflection coefficients of P1-, P2-, and SV-waves in the solid phase,
respectively.

Insertion of Equations 8, 9 in Equation 4a yields the surface
displacement components (e.g., the horizontal and vertical
displacements ux and uz) of the solid phase corresponding
to the sum of one incident and three reflected waves may
be written

{
ux = kI1xA

I
s1 + k

R
1xA

R
s1 + k

R
2xA

R
s2 − k

R
szB

R
s

uz = −kI1zA
I
s1 + k

R
1zA

R
s1 + k

R
2zA

R
s2 + k

R
sxB

R
s

(16)

4 Degenerate validation of solutions

4.1 Validation of degenerate formulas

Let the liquid density ρw = 0, and the bulk modulus of liquid Ew
= 0. Then, the solution in this paper can degenerate into the case of
a P-wave incident on the free interface of a single-phase medium.
Now, the potential amplitude ratios of the liquid-solid phase in the
two-phase medium δ1 = 0, δ2 = 0, and δs = 0. And the wave vector
of the reflected P1-wave is the same as that of the P2-wave, i.e.,
kR1 = kR2 , k

R
1z = kR2z. When the two-phase medium is reduced to a

single-phase medium, the velocity of P-wave VP = √(λ+ 2μ)/ρs,

the velocity of SV-wave VS = √μ/ρs, which can be derived from
the dispersion Equations 6a, 6b. The potential amplitude of the
reflected P-waveAR

s =AR
s1 +AR

s2. Accordingly, Equation 14a, 14b can
be simplified as

{{{
{{{
{

μ(
V2
P

V2
S

(kI1)
2 − 2(kI1x)

2)(AI
s +AR

s ) + 2μkRsxkRszBR
s = 0

2μkI1xk
I
1z(A

R
s −AI

s) + μ((kRsx)
2 − (kRsz)

2)BR
s = 0

(17)

Equation 17 is further simplified to obtain a new expression,
which is the same as the Equations of a single-phase medium in
Stein and Wysession [56]. It can be seen that the reflection of the P-
wave on the free surface of a single-phase medium is a special case
in this paper.

4.2 Validation of numerical analysis

To further verify the correctness of the formulas for reflection
coefficient and surface displacement, Equation 17 is compared with
the curve of P-wave incident on the free surface of a single-phase
medium in Pujol [55]. The parameters for single-phase media are
taken from Pujol [55], namely, VP/VS = 1.732 and υ = 0.25. The
variations of amplitude ratios and surface displacements with the
incident angle are shown in Figure 2 when the P-wave is incident
on the interface. It is noted that the displacement components
ux and uz in Figure 2b are normalized by a factor kI1, which
represents the displacement intensity of the incident P-wave. If not
specified, the surface displacements in the following figures are
all normalized.

It can be seen from Figure 2 that the calculated results of
Equation 17 are consistent with those of Pujol [55]. This is
sufficient to demonstrate the correctness of the formula derived
in this paper.

5 Numerical analysis

In this section, we use the formulas derived above to
compute the displacement reflection coefficients and surface
displacements when the plane P1-wave is incident obliquely on
the free boundary of a fluid-saturated half-space. Numerical
examples are conducted in Fortran to explore the influence
of boundary conditions, wave frequency, and characteristics of
saturated soil materials (the porosity n, the Poisson’s ratio υ,
the fluid bulk modulus to the stiffness of soil Ew/μ) on the
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FIGURE 2
Surface response versus P-wave incident angle for an elastic half-space. (a) Amplitude reflection coefficient; (b) Surface displacement.

surface response of saturated half-space. Some soil parameters
of the two-phase medium used in the calculation are taken
from Ref. [21] and listed as follows: ρs = 2650 kg.m-3, ρw =
1000 kg.m-3, Ew = 2.0 × 109Pa, and k = 1.0 × 10-7 m3.s/kg. The
other soil parameters, i.e., the porosity n, the Poisson’s ratio υ,
and the modulus ratio Ew/μ, will be given in the analysis of each
section below.

Figure 3 through Figure 7 present the variations of the
displacement reflection coefficients and surface displacements as
described in Equations 15, 16 with incident angles under different
conditions, i.e., boundary conditions, wave frequencies, porosities,
Poisson’s, and modulus ratios. It can be seen that the displacement
reflection coefficients and surface displacements vary smoothly
with the incident angle of the P1-wave. The displacement reflection
coefficient of the P2-wave is one order of magnitude smaller than
those of the other reflected waves (P1- and SV-waves). When the
P1-wave is at normal or grazing incidence, i.e., the incident angle
equals zero or 90°, only the incident wave is reflected, and the
reflected P2- and SV-waves vanish. At this time, the displacement
reflection coefficient of the reflected P1-wave is −1.0, of which
the phase is opposite to that of the incident P1-wave. This is
consistent with the reflection characteristics of compressive P-
wave on the surface of an elastic medium [56]. Furthermore,
when the incident P1-wave strikes the interface perpendicularly,
the surface displacements ux = 0, uz = −2.0. When the incident
angle is 90°, the surface displacements ux = 0.0, uz = 0.0, which
implies that the reflected P1-wave annihilates the incident P1-wave
at the free surface. And the phase difference between ux and uz is
180° [51]. This holds for a single-phase medium as well [55]. In
addition, with increasing incident angle, the vertical displacement
uz decreases, while the horizontal displacement ux increases
before reaching its peak value (near θIP = 60°) and has a reverse
tendency thereafter.

5.1 Influence of boundary conditions

When P1-wave propagates in a saturated half-space, specific
solutions can be obtained using appropriate boundary conditions.
The single control variable method is introduced to analyze the
influence of boundary drainage on the surface response of half space.
The values of the physical parameters of the saturated poroelastic

half-space are selected from Section 5, and the other parameters
are as follows: n = 0.1, υ = 0.2, and Ew/μ = 0.1. The frequency
of incident wave f = 100 Hz. The curves in Figure 3 represent the
displacement reflection coefficients and surface displacements with
distinct boundaries.

It can be seen from Figure 3a that the displacement reflection
coefficient of P1-wave decreases with an increase in the incident
angle before reaching its minimum value near 65ºunder different
conditions. Moreover, when the incident angle θIP is greater than
36°, the displacement reflection coefficient under the impermeable
interface is more than that of the permeable interface. Figure 3b
shows that the displacement reflection coefficient of the P2-wave
is much less than those of other reflected P1- and SV-waves, and
the coefficient under a permeable interface is greater than that
under an impermeable boundary. From Figure 3c, for the reflected
SV-wave, the displacement reflection coefficient increases with a
rise in the incident angle before attaining its maximum value near
45°. Also, the displacement reflection coefficient at an impermeable
interface is more than that at a permeable interface if the θIP
is within the range of 16º-90°. Given Figure 3d, ux reaches its
peak value at approximately 60°, while uz reaches its peak value
at 0°, and the peak value of uz is larger than that of ux. If θIP
< 30°, the vertical and horizontal displacements (e.g., ux and uz)
under two boundary conditions are the same. However, if θIP
> 30°, both displacements ux and uz (absolute values) increase
slightly under the impervious interface. Accordingly, the boundary
conditions have a certain effect on the surface response of half-
space, and this effect manifests a considerable dependence on the
incident angle.

5.2 Influence of wave frequency

As analyzed in Refs. [2, 50], all three body waves are dispersive
and attenuated, and the velocities and attenuation are frequency-
dependent. To illustrate the effects of wave frequency on the
reflection, four different values of wave frequency are considered
in this paper, i.e., f = 1, 10, 100, and 1000 Hz. The four typical
frequencies are within the common frequency range used in
engineering and experimental testing [58]. The soil parameters
remain invariable, as described in Section 5.1. The boundary is
completely permeable. Figure 4 shows the variations of displacement
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FIGURE 3
The displacement reflection coefficients and surface displacements versus incident angle with different permeable boundaries. (a) P1-wave; (b)
P2-wave; (c) SV-wave; (d) Surface displacement.

FIGURE 4
The displacement reflection coefficients and surface displacements versus incident angle with different frequencies. (a) P1-wave; (b) P2-wave; (c)
SV-wave; (d) Surface displacement.

coefficients and surface displacements with the incident angle for
different frequencies.

It is clear from Figure 4 that the surface response is not
sensitive to wave frequency. However, the displacement reflection

coefficient of P2-wave decreases as the frequency is reduced.
This result matches the case of Rjoub [21]. So, the frequency
is assumed to be 100 Hz when analyzing the effect of soil
parameters on surface response next.
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FIGURE 5
The displacement reflection coefficients and surface displacements versus incident angle with different porosities. (a) P1-wave; (b) P2-wave; (c)
SV-wave; (d) Surface displacement.

5.3 Influence of porosity

Since porosity mainly affects the loose degree of soil, it is
instructive to investigate the effect of porosity on the displacement
reflection coefficients and surface displacements. Except for the
porosity, the soil parameters remain invariable, as described in
Section 5.1. The frequency of the incident plane P1-wave is also
taken to be 100 Hz. The boundary is completely permeable. The
variations with the incident angle of displacement coefficients and
surface displacements are shown in Figure 5 in the case that the
porosity n = 0.1, 0.2, 0.3, and 0.4, respectively.

It is shown in Figure 5a that the variations of displacement
reflection coefficient for reflected P1-wave with porosity are very
complex. When the porosity n = 0.3 and 0.4, a special wave mode
conversion occurs, namely, only P2-and SV- waves are reflected,
and the reflected P1-wave is not generated. Under the case that n
= 0.3, the displacement reflection coefficient of P1-wave exhibits
zero values at incident angles of 60° and 77°. The angles for
incidence corresponding to wave mode conversion are 57ºand 79°
with the instance that n = 0.4. If the porosity n = 0.1 and 0.2,
this phenomenon disappears. Moreover, the displacement reflection
coefficient for P1-wave decreases with the increase of porosity when
the incident angles θIP < 57ºor θIP > 79°. From Figures 5b, c, the
displacement reflection coefficient for SV-wave (P2-wave) increases
(decreases) with the increase in porosity, and that for P2-wave is
the smallest of all three reflected waves as described in Section 5.1.
It is noticed from Figure 5d that the horizontal displacement ux
increases with a rise in porosity. However, the porosity considered
in this study has little impact on vertical displacement uz . The effect
of porosity on the surface response depends on the incident angle to
a large extent.

5.4 Influence of Poisson’s ratio

The Poisson’s ratio mainly affects Lame constants (λ and μ),
which reflect the consolidation status of the soil. To investigate the
effects of Poisson’s ratio on the displacement reflection coefficients
and surface displacements, the soil parameters remain constants as
described in Section 5.1, except for Poisson’s ratio. The frequency of
the incident plane P1-wave f = 100 Hz. The boundary is completely
permeable. Figure 6 shows the effects of Poisson’s ratio on the
displacement reflection coefficients and surface displacements. In
calculations, the Poisson’s ratio (υ) is taken to be 0.1, 0.2, 0.3, and 0.4.

It can be found from Figures 6a–c that the displacement
reflection coefficient of P1-wave increases with the increasing
Poisson’s ratio at the same incident angle, while those of P2- and
SV-waves diminish with a rise of Poisson’s ratio. For all three
reflected waves, the amplitude of variation is related to the incident
angle. As observed in Figure 6d, the horizontal displacement
ux (the vertical displacement uz) decreases (increases) with the
rise of Poisson’s ratio. When the Poisson’s ratio increases, the
variation range of horizontal displacement is larger than that of
vertical displacement, and the variation range depends on the
incident angle.

5.5 Influence of modulus ratio

The modulus ratio mainly affects the stiffness of the soil layer
in the saturated half-space. The larger the modulus ratio is, the
softer the soil layer is. For this reason, there is a need to study
the effects of the modulus ratio on the displacement reflection
coefficients and surface displacements. Except for the modulus
ratio, the soil parameters are taken according to Section 5.1. The

Frontiers in Physics 08 frontiersin.org

https://doi.org/10.3389/fphy.2025.1540732
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


Zhang and Qiu 10.3389/fphy.2025.1540732

FIGURE 6
The displacement reflection coefficients and surface displacements versus incident angle with different Poisson’s ratios (a) P1-wave; (b) P2-wave; (c)
SV-wave; (d) Surface displacement.

FIGURE 7
The displacement reflection coefficients and surface displacements versus incident angles with different modulus ratios (a) P1-wave; (b) P2-wave; (c)
SV-wave; (d) Surface displacement.

frequency f of the incident plane P1-wave is taken as 100 Hz.
The boundary is completely permeable. The modulus ratio Ew/μ =
0.1, 1.0, 10, and 100. Figure 7 depicts the displacement reflection
coefficients and surface displacements as a function of incident angle
for the above four values of modulus ratio.

It can be revealed from Figure 7 that the displacement reflection
coefficients and surface displacements vary with the modulus ratio.
As can be seen from Figures 7a–c, the displacement reflection
coefficient of P1-wave (P2- or SV-wave) increases (decreases) with
the increasing modulus ratio at the same incident angle. The
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variation amplitude is related to the incident angle. Moreover,
when the modulus ratio Ew/μ = 100, the displacement reflection
coefficient of P1-wave increases towards −1.0, and that of
SV-wave reduces to nearly 0, indicating that soft soil mainly
transmits compression waves. All in all, the effect of incident
angle on the reflection coefficients of P2 and SV waves
diminishes with the increase of the modulus ratio. Figure 7d
shows us that the horizontal displacement ux decreases with
a rise in modulus ratio, while the vertical displacement uz
is less affected. For Ew/μ = 100, the peak displacement ux
decreases to 0.063. The extent of influence is decided by the
incident angle.

6 Conclusion

Based on the soil mechanics model in a fluid-saturated
medium, the dispersion equation of elastic waves is established.
When the P1-wave travels toward the free ground of a two-
phase medium, the theoretical formulas of displacement reflection
coefficient and surface displacement for all reflected waves are also
obtained by combining the boundary conditions. Thereafter, the
analytical expressions mentioned above degenerate to the reflection
problem of a single-phase half-space to verify correctness. At last,
when the boundary conditions, wave frequency, porosity, Poisson’s
ratio, and modulus ratio are taken to be different values, the
variation of the surface response of saturated half-space with the
incident angle of P1-wave is numerically analyzed. In light of the
previous discussion, some main conclusions can be summarized
as follows.

(1) The displacement reflection coefficient and surface
displacement are angle-dependent. When the incident angle
θIP equals 0ºor 90°, only reflected P1-wave occurs.

(2) The boundary conditions have a certain effect on the surface
response of half-space. The surface displacements in the
impermeable interface are slightly larger than those in the
permeable interface, and the magnitude of the increase is
related to the incident angle.

(3) For all frequencies being considered, its influence on surface
response is insignificant.

(4) The effect of material properties (i.e., porosity, Poisson’s ratio,
and modulus ratio) on the surface response is discussed
in detail. The wave mode conversion will occur when the
porosity n = 0.3, 0.4. The displacement component ux
(uz) decreases (increases) with a rise in Poisson’s ratio.
The effect of the modulus ratio can not be ignored. The
impacts of all soil parameters strongly depend on the
incident angle.

In addition, the conclusions drawn in this paper not only
theoretically reveal that more attention should be paid to the
influence exerted by the incident angle of elastic waves in soil
dynamics research but also have practical engineering significance
for the commonly used seismic reflection wave method and
well-logging data processing in the field of engineering seismic
exploration.
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Appendix

 

Let q1 =
1−n
n
+ δ1 and q2 =

1−n
n
+ δ2, then the elements of {F}, {F},

[SP−SV] f , and [SP−SV] f are shown as follows.
1. The amplitude coefficients of the incident P1-wave

{F} = {−(λ+ q1Ew)(k
I
1)

2 − 2μ(kI1z)
2,2μkI1xk

I
1z,−q1Ew(k

I
1)

2}

{F} = {−(λ+ q1Ew)(k
I
1)

2 − 2μ(kI1z)
2,2μkI1xk

I
1z, (1− δ1)k

I
1z}

2. The amplitude coefficients of all the reflected waves

[SP−SV] f =
[[

[

d11 d12 d13
d21 d22 d23
d31 d32 d33

]]

]

,[SP−SV] f =
[[[

[

d11 d12 d13
d21 d22 d23
d31 d32 d33

]]]

]

;

d11 = (λ+ q1Ew)(k
I
1)

2 + 2μ(kI1z)
2,d12 = (λ+ q2Ew)(k

R
2 )

2 + 2μ(kR2z)
2,

d13 = 2μkRsxkRsz;

d21 = 2μkI1xk
I
1z,d22 = 2μk

R
2xk

R
2z,d23 = μ((k

R
sx)

2 − (kRsz)
2);

d31 = q1Ew(k
I
1)

2,d32 = q2Ew(k
R
2 )

2,d33 = 0;

d31 = (1− δ1)k
I
1z,d32 = (1− δ2)k

R
2z,d33 = (1− δs)k

R
sx.
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Nomenclature

Symbols:

Ew bulk modulus of pore water (unit: Pa)

K permeability coefficient (unit: m/s)

k dynamic permeability coefficient (unit: m3.s/kg)

n porosity

υ Poisson’s ratio

λ, μ Lame’s constants of solid phase (unit: Pa)

E elastic modulus of the solid phase (unit: Pa)

ρw pore fluid mass density (unit: Kg/m3)

ρs solid mass density (unit: Kg/m3)

ρ total density (unit: Kg/m3)

pf true pore pressure (unit: Pa)

ω angular frequency

u, u̇, ü displacement, velocity, and acceleration vectors of the solid

phase (unit: m, m/s, m/s2)

U, U̇, Ü displacement, velocity, and acceleration vectors of fluid phase

(unit: m, m/s, m/s2)

ϕs, ψs potential functions associated with solid phase

ϕw, ψw potential functions associated with pore fluid.
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