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Smart decimation method
applied to real-time monitoring

Rodrigo Castro* and Jesús Vega

National Fusion Energy Laboratory, Research Centre for Energy, Environment, and Technology,
Madrid, Spain

Real-time signal monitoring in high-data-rate environments, such as fusion
energy experiments, requires efficient data reduction techniques to ensure
timely and accurate visualization. Traditional decimation methods, like the
widely used “1 of N,” select points uniformly without considering the signal’s
intrinsic characteristics. This approach often results in poor similarity between
the decimated and original signals, particularly for high acquisition rate data.
This work introduces a novel intelligent decimation method tailored for one-
dimensional time-evolving signals. The proposed method dynamically analyzes
the signal in real-time to identify regions of high informational content and
adaptively determines the most suitable decimation points. By prioritizing signal
richness and distributing points more precisely, this method achieves superior
fidelity compared to classical decimation, while maintaining or surpassing
decimation efficiency. Experimental validation using TJ-II data demonstrates
significant improvements in signal similarity, highlighting the potential of
intelligent decimation for advancing real-time monitoring in data-intensive
scientific environments.
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1 Introduction

The ever-growing complexity of fusion energy research experiments poses significant
challenges in managing and analyzing experimental data. Modern facilities, such as
the International Thermonuclear Experimental Reactor (ITER), are expected to generate
unprecedented volumes of data, with over onemillion variables derived from control signals
and diagnostic systems. During a single long-pulse experiment, lasting up to 30 min, ITER is
projected to produce data streams exceeding 50 GBper second. Suchmassive data rates place
immense strain on computational resources, storage systems, and data analysis workflows,
necessitating the development of innovative methods to ensure efficient and effective access
to actionable insights.

One of the most critical tasks in this context is real-time signal monitoring,
which involves visualizing the evolution of key signals as an experiment unfolds.
This process enables researchers to make informed decisions on-the-fly, ensuring
experimental objectives are met and potential issues are addressed promptly.
However, real-time monitoring faces unique challenges: the high sampling rates of
experimental signals, the vast number of signals being monitored simultaneously,
and the potential involvement of multiple users accessing these signals in parallel.
Combined, these factors create a scenario where the sheer volume of data exceeds
the capacity of traditional systems to process and visualize information efficiently.
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Decimation has emerged as an essential functionality to address
this challenge. By reducing the number of data points selected for
visualization, decimation ensures manageable data sizes for real-
time monitoring. Conventional decimation methods, such as the
widely used “1 of N″ approach, uniformly select data points at
fixed intervals. While computationally efficient, these methods fail
to consider the varying informational content of the signals. As a
result, critical features of the original signals are often lost, and the
resulting visualizations provide limited insights.

To overcome these limitations, this work introduces a novel
intelligent decimation method designed specifically for one-
dimensional time-evolving signals in real-time applications. Unlike
traditionalmethods, this approach dynamically adapts to the signal’s
characteristics, prioritizing regions of high informational richness.
By leveraging advanced signal processing techniques, the proposed
method achieves higher fidelity in preserving critical signal features
while maintaining real-time performance.

This paper details the architecture and implementation of the
intelligent decimation system and presents experimental results
using data from the TJ-II stellarator at CIEMAT. The findings
demonstrate the effectiveness of the proposed approach, showcasing
its potential to address the challenges of real-time signal monitoring
in data-intensive fusion research environments.

2 A new approach

Signal monitoring in high-data-rate environments often relies
on decimation to reduce data volume, allowing only a subset of
points to be visualized. Conventional decimation techniques, such
as the widely used “1 of N″ method, uniformly sample data at
fixed intervals, disregarding the signal’s intrinsic characteristics.
While computationally simple, this approach has significant
limitations: it fails to account for the non-uniform relevance of
data points, particularly in time-evolving experimental signals,
where certain regions may contain richer or more critical
information. Consequently, classical decimation methods often
yield visualizations with poor fidelity to the original signal,
impairing the ability to extract meaningful insights.

To overcome these limitations, this work proposes the
application of the smart decimation method, which has previously
demonstrated its effectiveness as a decimation technique for
accessing fusion experimental data [1]. Unlike traditional
approaches, the smart decimationmethod dynamically adapts to the
signal’s characteristics, prioritizing regions of higher relevance while
maintaining or surpassing the efficiency of conventional methods.

The proposed method receives as input a one-dimensional,
time-evolving signal and the number of points required for
decimation. Instead of distributing points uniformly, it allocates
them proportionally based on a calculated “level of interest” for
different time intervals. This level of interest reflects the signal’s
complexity or variability, enabling the method to concentrate
decimation points in regions of higher informational richness. For
instance, intervals containing rapid changes, anomalies, or critical
events are assigned more points, while less dynamic regions are
downsampled to minimize redundancy.

An example application of this method to a TJ-II bolometry
signal is shown in Figure 1. The figure compares the results of

the smart decimation method with those of the classical “1 of N″

approach.The first plot illustrates the original signal, which includes
noise. The second plot shows the uniform decimation produced
by the “1 of N″ method, where points are evenly spaced across
the signal, leading to a loss of detail in key regions. The third plot
presents the computed “level of interest” function, highlighting two
high-interest intervals around timestamps 66,510 m and 66,585 m.
Finally, the fourth plot displays the decimation produced by the
smart method. Unlike the uniform approach, the smart decimation
method concentrates points in the high-interest regions, resulting
in a visualization that closely resembles the original signal and
effectively emphasizes its critical features.

By dynamically adapting to the signal’s characteristics, the
smart decimation method achieves a significant improvement in
visualization quality.

3 Smart-decimation for real-time
signals monitoring

The primary objective of this work is to demonstrate the
application of the smart decimation method in the context of
real-time signal monitoring. To achieve this, the implementation
must address several critical requirements. The first requirement
is related to the display resolution. Although display resolutions
have improved significantly with 4K resolutions becoming more
common, there is a real limitation on the number of pixels the
display window can be wide, so it is a waste of resources to plot
many more samples than this limit, as the graph traces end up
overlapping. Therefore, the decimation method must optimize data
representation within this constraint, ensuring that critical signal
details are preserved.

The second requirement is real-time operability. The method
must be capable of processing incoming signals at the rate they are
acquired, enabling immediate visualization. This requires efficient
algorithms that operate with minimal latency, even for high-
frequency signals commonly found in fusion experiments.

The smart decimation system processes signals continuously,
dividing them into manageable segments or “monitoring steps.” For
each segment, the system employs a two-module architecture to
optimize decimation. The first module, the Interest Level Analyzer,
divides the signal segment in regular intervals and evaluates
the complexity and relevance of the signal within each interval,
producing two outputs: the number of decimation points to allocate
and a quantitative measure of the “level of interest” for the intervals
of the analyzed segment. The second module, the Sample Selection
Module, utilizes this information to perform the actual decimation.
By selecting points that maximize informational content, this
module ensures that the resulting visualization is both accurate and
efficient.

The two-module design is depicted in Figure 2, which highlights
the sequential flow of operations. The Interest Level Analyzer is
responsible for detecting high-interest regions in the signal through
techniques such as the Standard Deviation of Fourier Spectrum
(SDFS) method. This approach identifies regions of complexity or
variability, which are prioritized during decimation. The Sample
SelectionModule then uses this prioritization to allocate decimation
points dynamically, ensuring that high-interest regions are densely
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FIGURE 1
Visual comparative of 1-of-n and smart decimation method in a portion of BOL1 signal. The included graphs are (from top to down): original signal,
1-of-n decimated signal, levels of interest, smart decimated signal.

FIGURE 2
Implementation design diagram of the smart decimation method applied to real-time signal monitoring.

sampled while less critical regions are sparsely represented. This
adaptive approach ensures fidelity to the original signal while
adhering to computational and display constraints.

By integrating these modules into a real-time processing
framework, the smart decimation system ensures low-latency
performance (as it is presented in Table 1), enabling accurate and
timely visualization of complex experimental signals. By addressing
the challenges posed by limited resolution and high acquisition
speeds, it provides a robust solution for visualizing complex data
with high fidelity.

3.1 Interest Level Analyzer

The Interest Level Analyzer is a key component of the smart
decimation system, responsible for quantifying the relevance of
different intervals of a time-evolving signal. By leveraging advanced

signal processing techniques, this module identifies regions of
high informational content or complexity, which are subsequently
prioritized during the decimation process. The foundation of this
analysis lies in calculating the “level of interest” for each interval of
the signal, ensuring that the decimation preserves the most critical
portions of the data while discarding less relevant information.

3.1.1 Standard Deviation of Fourier Spectrum
The basis of Interest Level Analyzer implementation is the

measurement of the level of interest by intervals of the time evolution
signal to monitor. For this purpose, it uses the core function of an
anomaly detention algorithm that has been successfully applied in
the JET disruption detector named APODIS [2, 3] which is based
on the “Standard Deviation of Fourier Spectrum” function [4]. Its
formula is illustrated in Figure 3. This technique processes a signal
or segment of a signal, by dividing it into regular intervals and
calculating the anomaly level for each interval. By analyzing the

Frontiers in Physics 03 frontiersin.org

https://doi.org/10.3389/fphy.2025.1541060
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


Castro and Vega 10.3389/fphy.2025.1541060

TABLE 1 Results of decimation comparation between 1-of-n and smart decimation method.

Signal Description Sampling
rate

Similarity
(avg. xcorr)
1-Of-n

Similarity
(avg. xcorr)
Smart Dec.

N° samples
1-Of-n

N° samples
smart Dec.

Max latency
for
processing
a second of
data (secs)

BOL1 Bolometer signal 100 KHz 0.0487 0.082 19,975 17,190 0.0195

DENCM0 Electron density 1 MHz 2.636 4.329 92,820 91,817 0.0701

ECE10 Electron
Cyclotron
Emission

100 KHz 1.131 2.4797 18,670 17,288 0.0128

RX105 Soft Ray-X 78 KHz 0.72 3.23 12,450 12,116 0.0104

FIGURE 3
Description of the “Level of Interest” function that is used by the
Smart-Decimation method.

spectral characteristics of the signal, the method identifies regions
of high interest, which are then prioritized during decimation. The
process consists of the following sequential steps:

1. Fourier Spectrum Calculation: each interval of the signal
undergoes Fourier transformation to obtain its spectral
components. This step decomposes the signal into its
constituent frequencies, providing a detailed frequency-
domain representation essential for identifying variations in
signal behavior.

2. Removal of the Continuous Component: the continuous (DC)
component of the Fourier spectrum, which corresponds to the
zero-frequency term, is eliminated. This step ensures that only
the dynamic aspects of the signal, which reflect meaningful
changes and anomalies, are considered during the analysis.

3. Exclusion of Negative Components: negative frequency
components, which are typically redundant in real-valued
signals due to symmetry in the Fourier transform, are
removed. This further refines the spectrum and reduces
computational overhead.

4. Standard Deviation Calculation: the standard deviation of
the remaining spectral components is computed. This metric
quantifies the variability or “richness” of the frequency content
in each interval. High standard deviation values indicate
complex or anomalous regions of the signal, making them
more relevant for visualization.

The output of this process is a list of interest levels, one for each
interval of the signal. These levels serve as a quantitative measure of
the signal’s importance over time, enabling the adaptive decimation
process. The interval size is a configurable parameter and it must be
power of 2. In the work presented, we have used intervals of 16,384
samples in size.

3.1.2 Number of decimation values
The Interest Level Analyzer determines the informational

relevance of signal segments (monitoing steps) and dynamically
calculates the number of decimation points to allocate for each
segment. Segment size is a configurable parameter and depends
on desired monitor step size. This adaptive allocation is critical
to ensuring that regions with higher complexity or variability are
represented with greater fidelity, while less dynamic segments are
sampled more sparsely to reduce data redundancy. The calculation
of decimation values is governed by a formula designed to balance
computational efficiency with the need for accurate visualization:

decNvalues =min[max(decNvaluespri

∗ intLevelsmax,decNvaluesmin),decNvaluesmax]

Where:

• “decNvalues”: The number of decimation points to be used
for the current signal segment. This value is calculated by
the formula.

• “decNvalues pri”: The a priori number of points allocated to a
segment based on general expectations.This parameter is set by
configuration and it defines the decimation factor to be applied
by the algorithm.

• “decNvalues max”: The maximum number of points permitted
for a single segment, maintaining computational and
visualization constraints.This parameter is set by configuration.
By increasing this value it is possible to regulate the behaviour
of the algorithm for very complex segments. For this work the
parameter was set = (valuespri ∗ 2)

• “decNvalues min”: The minimum number of points allowed for
any segment to ensure baseline representation. This parameter
is set by configuration. For this work the parameter was set = 3
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• “intLevels max”: The maximum “level of interest”
value calculated for the current signal segment. This
value is obtained from the “list of levels of interest”
discussed in Section 3.1.1 above.

This formula dynamically adjusts the number of decimation
points based on the segment’s complexity, as reflected in its “level
of interest.” If a segment exhibits high variability or significant
anomalies (i.e., a high intLevels_max), more points are allocated
to preserve its details. Conversely, segments with low complexity
are assigned fewer points, maintaining efficiency while avoiding
unnecessary data overload.

This adaptive approach provides two critical benefits. First, it
ensures that the decimation process maintains a high level of fidelity
for complex and information-rich regions of the signal. Second, it
optimizes resource allocation, ensuring computational and storage
requirements remain manageable, even for high-frequency signals
in real-time monitoring scenarios.

By dynamically adjusting the number of decimation points, the
smart decimation system addresses the limitations of traditional
uniform decimation methods. This capability enables the system
to prioritize meaningful data while adhering to the practical
constraints of real-time visualization and signal monitoring.

3.2 Sample selection module

TheSample SelectionModule is a crucial component of the smart
decimation system, responsible for translating the prioritized “levels
of interest” from the Interest Level Analyzer into an optimized set
of decimation points. By intelligently selecting which data points to
retain, thismodule ensures that high-information regions of the signal
are preservedwith greater fidelity, while less relevant areas are sparsely
sampled.This approach not only improves visualization accuracy but
also significantly reduces data redundancy.

The module operates in a two-step process. First, it dynamically
allocates the number of decimation points based on the previously
calculated number. This adaptive allocation is guided by the
formula described in the “Number of Decimation Values” section,
which ensures a balance between computational constraints
and fidelity requirements.

Once the number of points in a segment has been determined,
the second step is to select specific points within each interval
of the segment. The points are distributed proportionally among
the intervals [1]. For intervals of high interest, the algorithm
concentrates the points around key features, such as peaks,
transitions, or anomalies. For segments of low interest, it samples
the data sparsely, while maintaining enough points to preserve the
overall signal structure. This dual strategy effectively captures both
details and general trends.

3.3 Real time implementation

The successful application of the smart decimation system
in real-time scenarios depends on its ability to process high-
frequency signals efficiently and produce decimated outputs with
minimal latency. Real-time implementation requires not only a

robust algorithmic foundation but also optimized computational
techniques to handle the stringent demands of data-intensive
environments, such as fusion experiments.

Experimental validation of the system’s real-time capabilities
was performed using data from the TJ-II stellarator. Table 1 presents
latency measurements for processing 1-s segments of signals with
different sampling rates, including high-frequency signals up to
1 MHz. The results demonstrate that the system achieves latencies
significantly below 1 s, even in themost demanding scenarios.These
latencies are well within the typical control loop period, confirming
the system’s suitability for real-time monitoring applications.

The ability to maintain low latency without compromising
signal fidelity is a cornerstone of the smart decimation system.
This capability enables researchers to visualize critical features of
high-data-rate signals in real-time, supporting informed decision-
making during experiments. By addressing the dual challenges of
computational efficiency and data accuracy, the system represents
a significant advancement in real-time signal processing for fusion
energy research and other data-intensive fields.

4 Results

The effectiveness of the smart decimationmethod was evaluated
using experimental data from the TJ-II stellarator, a flexible
Heliac device located at CIEMAT. The performance of the smart
decimation method was compared to the conventional “1-of-
N″ decimation. The comparison has been performed on a set
of commonly used signals (included in Table 1) from different
diagnostics and with different sampling frequency and noise
characteristics. Due to the ordered length of the TJ-II pulses (0.5 s),
long signals have been constructed by concatenating data from a set
of pulses. Specifically, experimental data from pulse 46,000 to pulse
47,000 have been considered.

Table 1 summarizes the results of the comparative analysis. The
smart decimation method demonstrated significant improvements
in cross-correlation values for all tested signals compared to the “1-
of-N″ approach. These improvements reflect the superior fidelity
of the smart decimation method in preserving the informational
richness of the original signals. For instance, in high-frequency
signals such as electron density diagnostics, the cross-correlation
value more than doubled, highlighting the method’s effectiveness in
capturing complex signal dynamics. The table also shows that these
improvements in similarity were achieved without increasing, and
in some cases even reducing, the total number of decimation points.
This underscores the efficiency of the smart decimation method,
which selectively allocates points to regions of higher interest while
minimizing redundancy in less relevant areas.

Apart from the test result numbers, the differences between
the two compared decimation methods are more evident from a
visual point of view. Figure 4 presents visual comparatives of the two
decimation methods for monitoring the signal BOL1. On the left
side of the figure, one can appreciate the significant improvement
in the similarity of the resulting signal with respect to the original
signal in the case of smart decimation. Likewise, the right side of the
figure shows a clear improvement in the total level of similarity for
the smart decimation case, without prejudice to the improvement in
the number of total values used.
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FIGURE 4
Application used for monitoring decimation methods comparative. Sowed plots from top to down and from left to right: original signal, 1-of-n
decimated signal, smart decimation signal, maximum level of interest, accumulative number of values (solid is 1-of-n, dashed is smart decimation),
accumulative cross-correlation (solid is 1-of-n, dased is smart decimation).

The visual comparison highlights the practical benefits of the
smart decimation method. By focusing on regions of greater
informational content, it provides a clearer and more accurate
representation of the signal, enabling researchers to extract
meaningful insights at a glance.

The real-time capability of the system was also validated during
the TJ-II experiments. Latency measurements, included in Table 1,
confirm that the smart decimation method processes 1-s segments
of signal data well within the control loop period, even for high-
frequency signals. These results demonstrate that the system is
capable of maintaining low latency without compromising on
fidelity, a critical requirement for real-timemonitoring applications.

5 Conclusion

The results demonstrate that the intelligent decimation method
outperforms traditional decimation approaches in both fidelity and
efficiency. By adaptively assigning decimation points based on signal
complexity, the method ensures that the most critical signal features
are preserved. This capability not only improves the interpretability
of the displays, but can also serve to reduce the amount of data that
needs to be transmitted for proper monitoring.

The success of the intelligent decimation method in
preserving signal fidelity and maintaining real-time performance
highlights its potential as a transformative tool for signal
monitoring in data-intensive environments such as fusion energy
research. These promising results pave the way for future work
demonstrating its utility for signalmonitoring in new fusion devices,
such as ITER.
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