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Due to the increase of data volumes expected for the LHC Run 3 and Run 4, the
ALICE Collaboration designed and deployed a new, energy efficient, computing
model to run Online and Offline O2 data processing within a single software
framework. The ALICE O2 Event Processing Nodes (EPN) project performs
online data reconstruction using GPUs (Graphic Processing Units) instead of
CPUs and applies an efficient, entropy-based, online data compression to
cope with Pb–Pb collision data at a 50 kHz hadronic interaction rate. Also,
the O2 EPN farm infrastructure features an energy efficient, environmentally
friendly, adiabatic cooling system which allows for operational and capital
cost savings.
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1 Introduction

The Large Hadron Collider (LHC) accelerator at CERN returned to full operation
on July 5th, 2022 when proton–proton (pp) collisions occurred at a record center-of-
mass energy of 13.6 TeV and data taking activities resumed. During the LHC shutdown
(2019–2021), the ALICE detector [1] underwent a substantial upgrade [2] providing
improved track reconstruction, and an increased interaction rate of up to 50 kHz for lead-
lead (Pb–Pb) collisions in continuous readout mode. These advancements facilitated the
collection of a pp data sample during the first year of Run 3 (2022), which is already
ten times larger than the combined data samples from Run 1 (2010–2013) and Run 2
(2015–2018).
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2 The upgraded ALICE detector

TheALICE detector comprises a central barrel (by far the largest
data producer in the system) and a forward muon arm. The central
barrel relies mainly on four sub-detectors for particle tracking:

1. The new Inner Tracking System (ITS) which is a 7-layer,
12.5 gigapixels monolithic silicon tracker

2. The upgraded Time Projection Chamber (TPC) with
GEM-based readout for continuous operation

3. The Transition Radiation Detector (TRD)
4. The Time-Of-Flight (TOF)

The muon arm is composed of three tracking devices:

1. A newly installed Muon Forward Tracker (a silicon tracker
based on the same monolithic active pixel sensors used for
the new ITS)

2. A revamped Muon Chambers system
3. AMuon Identifier (previously a trigger detector adapted to run

in continuous readout).

2.1 The O2 EPN (event processing nodes)
project

Themajor ALICE hardware upgrades for Run 3 necessitated the
development and implementation of a completely new computing
model: the O2 project. This project unifies online (synchronous)
and offline (asynchronous) data processing into a single software
framework, enabling the same code-base to be executed in both
contexts with appropriate selections and parameters. Naturally,
the O2 computing model necessitated a comprehensive overhaul
and significant scaling up of the experiment’s computing farms
to accommodate the demands of data readout and processing. To
address these challenges, the ALICE EPN farm consists of 350 high-
performance servers, each equipped with four boards for a total of
2,800 GPUs.

With compressed data rates already reaching 1–2 PB/day, the
dramatic increase in data volumes compared to Run 2 made storing
raw data entirely impractical, driving the need for efficient online
compression and the adoption of GPUs in place of CPUs to
accelerate reconstruction tasks. GPUs, with their superior compute
throughput enabled by intrinsic parallelism, offer both cost and
energy savings compared to CPU-based solutions. Without GPUs,
approximately eight times as many CPU-only servers of the same
type, along with additional resources, would be required for the
online processing of TPC data from Pb–Pb collisions at a 50 kHz
interaction rate (corresponding to an instantaneous LHC luminosity
of 6× 1027 cm−2 s−1) [3].

3 ALICE computing for run 3 and
beyond

TheALICECollaboration has been a pioneer in leveragingGPUs
for data compression and online processing since 2010, starting with
the High-Level Trigger (HLT) computing farm [4]. The HLT had
direct access to detector readout hardware and raw data, playing a

critical role in Run 2 by enabling data compression for heavy-ion
collisions. Its software framework was already advanced enough to
perform online data reconstruction using GPUs. The operational
experience gained with the HLT farm during Run 1 and Run 2 was
instrumental in shaping the design and development of the current
O2 software and hardware systems.

3.1 Computing infrastructure

Figure 1 illustrates the ALICE data readout and processing
workflow in Run 3. The detectors’ front-end electronics boards
are connected to custom Field-Programmable Gate Array (FPGA)
boards, capable of continuous readout and Zero Suppression (ZS),
which are hosted on the First Level Processor (FLP) farm nodes
located near the experimental cavern.The connecting links are based
on the GBT (GigaBit Transceiver) architecture, a versatile and high-
performance communication framework developed by CERN for
use in high-energy physics experiments. GBT is designed to handle
the stringent data transmission requirements of particle detectors,
providing robust, low-latency, and high-throughput (4.8 Gb/s) links
between the detector front-end and readout electronics.

The TPC outputs a prohibitive raw data rate of 3.3 TB/s at the
front end, so ZS in the FPGA is crucial for data rate reduction,
providing manageable rates, especially for high interaction rate
Pb—Pb collisions. The FLP and EPN farms handle the high
data throughput using an InfiniBand (IB) network fabric and a
custom software suite (detailed later in the text). The compressed,
reconstructed data produced by online processing are transferred to
the central CERN Information Technology (IT) data center, located
a few kilometers from the ALICE experimental site, via dedicated
links employing standard TCP/IP over Ethernet. A seamless and
balanced exchange between the EPN farm’s IB fabric and CERN
IT is facilitated by four IB-to-Ethernet gateways positioned near
the EPN farm’s five core 200 Gb/s IB managed switches. The CERN
data center provides approximately 150 PB of storage, managed by
sophisticated storage policies (see Section 4.1) to ensure efficient use
of buffer space during different phases of experiment data taking.

3.2 The ALICE O2 EPN farm

The EPN farm data center was built on the surface at the LHC
Point 2 experimental site, was designed using a modular approach
(hence it is located farther from the ALICE cavern than the FLP
farm). The concept was implemented using IT containers so that
the data center could easily scale to meet any potential need for
additional IT equipment.

The ALICE data center comprises four containers designed to
house IT equipment. Currently, three of these containers are used to
host the EPN farmworker nodes, infrastructure nodes, and network
equipment, while the fourth serves as a utility container for the time
being. The layout is depicted in the top-right corner of Figure 1. In
addition to the IT containers, the figure also shows the two service
containers that supply the necessary power and purified water to
operate and cool the IT infrastructure.

As for any modern high-performance computing (HPC)
workload, hardware and software co-design is an important
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FIGURE 1
Schematic overview of the O2 data flow and the ALICE computing infrastructure. See Section 3.1. Additional information in [14].

factor of the design phase in order to reduce costs and manage
environmental resources appropriately. The compute requirements
for ALICE are not expected to change drastically during the
lifetime of the experiment, so the data center was tailored for
the needs of Run 3 and 4, including the upcoming EPN farm
refurbishment foreseen for the LHC Long Shutdown 3 (mid
2026–2029).

3.3 Technical choices

The IT containers’ operating environment (temperature and
humidity) is regulated using airflowmanaged by amodular adiabatic
cooling system, consisting of four independent air handling units
(AHUs) per container. These AHUs are powered by a single
power line, with an automated transfer switch (ATS) automatically
switching them to a secondary line in case of a primary line
failure. This transition results in a brief interruption of cooling,
as the process effectively mimics a power outage. All AHUs
are connected to a single ATS, meaning they operate on the
same power line and will collectively shut down if the primary
line fails.

During routine maintenance, individual AHUs are taken offline
for inspection, cleaning, or air filter replacement. However, farm
operations remain unaffected, as the remaining AHUs maintain
adequate cooling during these interventions. If one AHU in a
container goes offline, the remaining three activate a “boost mode”
to compensate for the reduced ventilation capacity.

Adiabatic cooling has become an increasingly popular choice
for IT data-centers as it offers several advantages over traditional
cooling such as better energy efficiency and reduced power usage.

Adiabatic cooling is significantly more energy-efficient compared
to conventional cooling as it exploits the process of evaporation
to cool air, which requires less electricity than mechanical
refrigeration. Also, unlike traditional chillers and compressors,
adiabatic cooling systems use fans and water, which consume less
power so data centers using adiabatic cooling can achieve a lower
power usage effectiveness (PUE) rating, indicating higher energy
efficiency.

The PUE [5] can be defined as the ratio between the total
power consumed by the IT facility (including cooling, water
purification, etc.) over the IT-related power. Keeping the PUE close
to 1 improves the overall data-center energy efficiency, directly
impacting on the operational and capital cost savings since lower
electric energy consumption reduces cost and maintenance needs.
In terms of environmental benefits, adiabatic cooling can be
considered environmentally friendly with respect to mechanical
cooling as its lower energy consumption means less greenhouse gas
emissions and less water consumption. In a real-world scenario the
PUE can deviate temporarily from one depending on the amount
of IT load.

The EPN farm’s total power consumption peaks at 550 kW at
the start of a Pb–Pb physics fill, when the hadronic interaction
rate reaches 50 kHz which represents the highest challenge in terms
of data rates. In fact, what matters here is actual track load on
the detectors which is much higher for non-elementary collision
systems such as Pb208 nuclei. Hence track loads generated in
Pb–Pb collisions are a factor ∼80 higher than those originating
from pp and 50 kHz Pb–Pb equals to ∼ 4 MHz of elementary pp
rate. During this period, cooling power typically averages around
26 kW. Since Pb–Pb collisions occur in cooler months, adiabatic
cooling is not required, and the AHUs operate using air-to-air
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FIGURE 2
Correlation between the adiabatic mode of one Air Handling Unit (AHU) and the outside ambient temperature (red markers). Each time the supply air
temperature (blue markers) exceeds the value Tstart the pumps are activated (green markers, expressing the pump speed in opening grade from 0 to
100) and the supply air to the racks is cooled down until the value Tstart −H is reached, where Tstart = Tset +ΔT with Tset = 27 C and ΔT = 1 C. The quantity
H, also expressed in degrees C, represents the pumps hysteresis and is related to the heat load generated in the container: for the EPN adiabatic
cooling system H = 2.2 C. See Section 3.3.

heat exchange only. Under these conditions, the farm achieves an
PUE of 1.05.

PUE values increase slightly under different operational
scenarios. For instance, during proton collisions at lower rates
(650 kHz), which typically occur in spring/summer, hence
with the adiabatic cooling operational, the PUE can rise to a
maximum of 1.16.

The ALICE EPN IT infrastructure operational range allows
a good cooling performance for different climatic conditions.
At the ALICE geographical location, the pumps run water and
a nozzle system sprays aerosol on the heat exchangers only
when the outside air temperature is higher than Tstart (adiabatic
system in “summer” mode, see Figure 2). Roughly speaking,
when the ambient temperature is few degrees below the set-
point the cooling units exchange heat with the outside air
without the need of vaporizing water. Adiabatic cooling also
improves the data-center air quality by using air filter sets and
by fully decoupling the internal and external air circuits. In
addition, humidity is controlled to help prevent electrostatic
discharge.

One of the ALICE technical requirements was a cooling capacity
of up to 1 kW per rack height unit [6] to allow for servers with as
many GPUs as possible. However, the average cooling power per
rack in the final setup turned out to be significantly below 1 kW, only

around 600 W/U (where U = 1.75 inches represents the standard
unit of measurement for the height of equipment designed to fit in
an IT rack). However, given the available rack space and the good
peak cooling power per rack height unit, the required flexibility is
granted by the chosen setup. The difference between average and
peak cooling capacity was validated with intense testing, to ensure
the cooling system could reliably remove up to 1 kW/U, without
creating any hot spots.

The ALICE IT infrastructure is designed to accommodate
denser server units in the future. Ongoing studies aim to determine
the most suitable hardware accelerator technology for upgrading
the EPN farm during the LHC’s Long Shutdown 3. In Run 4, data
rates are expected to increase by an additional ∼20%, driven by the
upgrade of ALICE’s inner layers of the ITS pixel tracker and the
installation of a new electromagnetic calorimeter. Furthermore, the
consolidation of the FLP farm will result in higher data throughput
to the EPNs, potentially reaching a theoreticalmaximumof 600 Gb/s
per InfiniBand (IB) link. Given current market trends in HPC GPU
computing, it is anticipated that the upgraded farm could fit within
a single container. This setup would allow the operation of two
farms in parallel: the new hardware could handle synchronous and
prompt asynchronous processing, while the existing farm could be
repurposed as a GPU-enabled LHC world-wide computing grid
(GRID) node.
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3.4 IT installation

The first container units were delivered in late 2018, and the
complete data center was finalized at the end of 2019, becoming
fully operational. The key milestones for the installation and
commissioning of the O2 system are detailed in [7], with the first
prototype system available as early as July 2019. The first Run 3
servers, equipped with final hardware configurations, were shipped
at the end of 2020 and became operational in early 2021.

The EPN farm employs taller 48U racks, which provide the
advantage of closer proximity between servers and the top-of-
rack (TOR) switches, enabling more efficient network integration.
High-speed networks operating at speeds exceeding 100 Gb/s are
constrained by the limited range of passive direct attached copper
(DAC) cables [8]. These limitations arise due to the high-frequency
electrical signals, which experience increased losses, such as higher
insertion loss and attenuation caused by the cable’s greater resistance
(skin effect) [9].

As a result, DAC cable lengths are restricted: for a 200 Gb/s
IB network, HDR cables are limited to a maximum of 2 m, while
100 Gb/s EDR DAC cables can extend up to 3 m. For connections
at 200 Gb/s and above, DACs can only link the TOR switch to
servers within the rack or adjacent racks, particularly when wider
racks (over 60 cm) are used, and cables are routed above or below
the racks. Connectivity to the core IB switches is achieved via
ten 200 Gb/s HDR links, optimized through a patch panel that
minimizes the length of patch cables required for connecting each
TOR. To streamline control of the cooling system, IT loads were
distributed as evenly as possible across the containers.

To optimize cooling efficiency, the building blocks (sets of three
consecutive racks containing servers connected to the same IB
switch) within the containers are positioned directly beneath one
of the cooling units. However, this arrangement introduced gaps
between the building blocks, necessitating the rearrangement of
some racks during the farm expansion and the addition of new
building blocks (details on the farm extension are in Section 4).

In addition to compute servers, the containers house the
majority of the infrastructure equipment required to operate all
services.This includes core network switches, as well as connectivity
components linking the EPN farm to the readout farm (FLP) and
CERN IT storage systems (EOS), as illustrated in Figure 1.

4 Operation of the O2 EPN farm

In 2022, data flow stress tests were conducted using proton-
proton (pp) collisions to simulate high-multiplicity track loads
similar to those in Pb–Pb events. Although the track characteristics
in high-rate pp collisions differ from Pb–Pb collisions, such tests
aimed to replicate a comparable load on the detectors. Notably,
Pb–Pb events exhibit higher charge fluctuation compared to pp
collisions, which can generate more detector hits due to secondary
particles and interactions with detector material. Initial tests
revealed that the available computing resourcesmight be insufficient
for real-time data processing, prompting the addition of 30 MI-50
worker nodes to the computing farm to extend processing capacity.

Toward the end of 2022, further analysis of the pp data
uncovered a 30% increase in TPC data size, characterized by larger

and more numerous clusters than anticipated from Monte Carlo
simulations. To maintain the compute margin required to handle
the foreseen 50 kHz Pb–Pb collision rate, an expansion of the EPN
farm was approved, with plans to add 70 more powerful MI-100
servers in 2023. However, in 2022, the geopolitical situation in
2022 led to energy shortages, resulting in an early shutdown of
CERN’s accelerator operations. Reduced run time, coupled with
commissioning delays, postponed the first high-rate Pb–Pb run
to late 2023.

Since the 2022 high-rate Pb–Pb run was canceled, EPN
synchronous processing validation was performed using pp
collisions. Calculations indicated that, under a 50 kHz Pb–Pb
collision rate, the EPN farmwould need to manage at least 800 GB/s
of data post-TPC ZS. The final TPC firmware was still unavailable
and the validation was conducted using an intermediate firmware
version. A rate scan was conducted to determine the performance
limits of the synchronous processing chain. Results demonstrated
that online processing machinery could sustain data rates up
to 1.24 TB/s, nearly double the original nominal design rate of
600 GB/s planned for Pb–Pb collisions.

It is important to note that the 2 MHz pp collisions dataset is
not intended for physics analysis; its sole purpose was to validate
the mechanics of synchronous processing. Furthermore, the zero
suppressed data format used in 2022 differs from the final format,
meaning the rates are not directly comparable with those achieved
during the Pb–Pb data in 2023 (800 GB/s peak).

Additional adjustments were performed on the basic data
structure for continuous readout, the time frame (TF). In this
approach, processing is not triggered by specific detector signal
patterns. Instead, all data is read out and stored within a predefined
time window. The TF length is adjustable, typically set as a multiple
of one LHCorbit, and the entire TF is processed in a single operation,
necessitating that it fits within the GPU’s memory. As a result, GPU
memory reuse across processing steps became essential. However,
due to variations in event centrality and luminosity, the number of
TPC hits fluctuates slightly, requiring a safety margin in memory
allocation. For most cases, a 24 GB GPU is sufficient, with only
0.1% of TFs exceeding this capacity. Since the current EPN farm is
equipped with 32 GB GPUs, memory limitations are not a concern.

During the initial 2022 validations, the TF length was
configured to 128 LHC orbits (11.5 ms), with tests confirming
stable performance of the EPN GPU setup up to 256 orbits.
However, further analysis revealed advantages in reducing the
TF length to 32 LHC orbits (2.8 ms). This shorter TF length
boosted compute performance by 10%–14% on MI-50 GPUs and,
due to a reduced memory footprint, also enabled more efficient
asynchronous processing on CPU-only remote GRID sites with
lower performance.

The EPN software module, data distribution (DD), manages the
generation of sub time frames (STFs), which are partial time frames
containing data from only one detector, directly at the readout farm
level. This module also handles the scheduling and aggregation of
STFs into complete TFs at the EPN level. Each EPN node receives
and processes a full TF in sequence, combining data from all
detectors, but only over the span of a single TF.

Calibration tasks for the detectors may run either on the readout
nodes or on the EPNs, depending on the specific calibration type.
For instance, online calibrations are confined to the EPNs and run
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on dedicated, CPU-only nodes. In general, any calibration task that
requires access to global data and operates on entire TFs is executed
on the EPN farm, whereas detector-specific calibrations that do not
require such global information may be processed locally on the
readout nodes.

4.1 Compact encoding

The TF data from each sub-detector is independently reduced
and compressed using algorithms specific to the sub-systems. Lossy
methods remove or replace data for size reduction while lossless
techniques restate the information in a more space efficient form.
For each sub-detector, the resulting data is a flat structure of
integer arrays. Each of the arrays is then compressed individually
via a custom compression scheme based on range Asymmetric
Numeral Systems (rANS [10]) entropy coding. Entropy coding
leverages the probability distribution of the source data to transform
each source symbol into part of a bit stream. Frequent symbols
contribute fewer bits, while rarer symbols require more, optimizing
the expected bit-stream length. The lower bound of this expected
length is determined by the entropy rate, a theoretical limit derived
from information theory. The achievable compression is therefore
inherently tied to the distribution of its source symbols. For
(compressed time frame) CTF data, the entropy limit suggests a
maximum compression ratio of factor 2–3. Thanks to its capability
to represent skewed probability distributions of 32-bit symbols
with high fidelity, rANS achieves compression of TF data close
to the entropy limit with negligible overhead. When compared
to Huffman [11] coding, CTF sizes are, on average, 3% smaller.
Relative to traditional compression libraries such as gzip or zlib,
rANS achieves up to 15% smaller sizes, as these libraries are less
efficient with alphabets larger than 8 bits per symbol. The ALICE
implementation of rANS is vectorized using AVX2 (Advanced
Vector Extensions 2) [12] instructions, enabling up to 16 encoders
to work in parallel on a single stream.This implementation achieves
compression speeds of up to 109 symbols per second, equivalent to
3200 MB/s for 32-bit symbols, a 2× speedup state-of-the-art CPU
implementations. The metadata which is required for decoding the
bit-stream is also efficiently compressed to reduce storage overhead.
These performance gains free up computational resources, making
it feasible to compute symbol distributions dynamically for each
TF, rather than relying on pre-trained distributions.This guarantees
that CTFs are consistently compressed with the minimum overhead
relative to their entropy.

The implementation of CTFs is crucial for ALICE’s continuous
data-taking operations, which face the challenge of managing the
vast amounts of high-rate pp data (up to 1 MHz) while preparing for
the Pb–Pb datasets. Key statistics of the collected data for different
collision systems from 2022 to present are given below:

• 2022: 52 PB of pp data collected (no Pb–Pb running)
• 2023: 38 PB of pp data and 42 PB of Pb–Pb data collected
• 2024: 180 PB of pp data and 39 PB of Pb–Pb data collected.

To address this challenge, a strategy was developed that involves
selecting offline only the most relevant events (in terms of beam
bunch crossing) and skimming the CTFs to retain only between 3%

and 4.5% of the original data on disk (see Section 3.1).This approach
is indispensable to avoid filling the disk buffers at CERN IT and to
prevent interruptions in data taking, ensuring the sustainability of
ALICE’s operations.

4.2 Processing and calibration

The Run 3 computing model performs data reconstruction
while data taking is ongoing (synchronous processing). In order to
accomplish this task the first pass of detector calibration must also
happen online in contrast with Run 1 andRun 2, were the calibration
would start days after the end of data takings. The full overview
of the synchronous process is illustrated in detail in Figure 3. Raw
STFs originating from the detector front-end electronics undergo
initial local processing on the FLP farm nodes (left block) before
being transferred to the EPN farm via native RDMA (remote direct
memory access) over IB.

In the EPN farm, additional local processing, including raw
data decoding (lower-left block), is carried out and the full TFs
are built. During synchronous operation the TPC reconstruction
fully loads the GPUs with the farm providing 90% of its compute
performance via GPUs, (central block). Online calibrations are
performed on dedicated CPU-only nodes within the EPN farm.
During data taking, the most compute-intensive task is the TPC
space-charge distortion evaluation, which requires matching and
refitting of ITS, TPC, TRD, and TOF tracks, and therefore requires
global track reconstruction for several detectors. At the increased
Run 3 interaction rate, processing of the order of 1% of the events is
sufficient to carry out the first calibration pass. Online calibrations
also depend on the detector physical states which are available into
the condition and calibration data base (CCDB, top-right block)
used in Run 3 to store calibration and alignment data. Finally,
event selection is applied, and the resulting CTFs are transferred to
permanent storage.

During the asynchronous phase the relative contribution of
the central barrel (TPC) processing to the overall workload is
much smaller so the GPU idle times are higher and processing is
mostly CPU-limited. To leverage the full potential of the GPUs, also
the non-TPC part of central-barrel asynchronous reconstruction
software will require an implementation with native GPU support.
Currently, around 60% of the asynchronous workload can run on
a GPU, yielding roughly a speedup factor of 2.5 on the EPN farm,
compared to CPU-only processing ([3]).

Once the remaining central barrel tracking software is fully
adapted for GPU processing (with the primary bottleneck currently
stemming from the ITS and TRD, which still operate in a single-
threaded manner on CPUs), it is estimated that up to 80% of the
reconstruction workload will be executed on GPUs, even during the
asynchronous phase.

With respect to synchronous processing, asynchronous
processing includes the reconstruction of data from all
detectors, and all events instead of only a subset; also
physics-analysis ready objects produced from asynchronous
processing are then made available on the GRID. Therefore,
the processing workload for detectors other than the TPC
is significantly higher in the asynchronous phase since TPC
clustering and the data compression are not necessary and
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FIGURE 3
Block diagram of the O2 synchronous processing and online calibrations. Details are given in Section 4.2.

the tracking runs on a smaller input data set since a subset
of the detector hits were already removed during the data
compression.

Asynchronous reconstruction performs efficiently on the
EPN farm, leveraging its GPU computing capabilities: in 2024
the EPN farm contributed for 37% of the whole CERN-based
ALICE asynchronous GRID computing (in wall time) and
16.7% of the world-wide ALICE GRID computing. However,
despite the large contribution, EPN farm alone is insufficient to
process the entire dataset generated during ALICE operations
and a substantial portion of the asynchronous reconstruction
workload is offloaded to remote CPU-only GRID sites. The
workload distribution between synchronous and asynchronous
reconstructions on the EPN farm is dynamically managed based on
ALICE’s operational mode.

During periods of Pb–Pb collisions, nearly all EPN resources
are allocated to synchronous reconstruction. Conversely, during
LHC shutdowns (including technical stops, winter breaks, and
long shutdowns), the majority of the EPN farm is utilized
for asynchronous reconstruction. For pp collision periods,
ALICE operates at lower interaction rates compared to Pb–Pb,
approximately one-third of the EPN farm is dedicated to data-taking
activities, with the remaining capacity allocated to asynchronous
processing tasks.

4.3 Performance of the O2 EPN system

After the mechanics of synchronous processing were fully
validated with pp collisions, a brief period of Pb–Pb collisions at

top center-of-mass energy (5.36 TeV) but with low beam intensity
occurred at the end of 2022. Due to the very low interaction
rates, the data input rate to the EPN farm was approximately
96 GB/s. Despite these modest rates, collecting the first Pb–Pb
data at the new center-of-mass energy provided an opportunity
to validate the synchronous processing workflow in terms of data
quality, laying the groundwork for future operation at higher
interaction rates.

During 2023 and more extensively in 2024, the O2

synchronous processing on the EPN farm was fully deployed
and successfully utilized to collect high-luminosity Pb–Pb
data. Notably, in 2024, the LHC achieved higher bunch
intensities and sustained the 50 kHz interaction rate for longer
periods (30–40 min) before luminosity burn-off began to
take effect.

A few performance metrics of the EPN farm are
depicted in Figure 4.

The top graph illustrates memory utilization across the farm
during data-taking. A clear performance differential is visible
between the slower EPN MI-50 nodes (equipped with 2 AMD
EPYC 7452 32-core CPUs and 512 GB of DDR4 3,200 MHz RAM)
and the faster MI-100 nodes (featuring 2 AMD EPYC 7552 48-
core CPUs and 1 TB of DDR4 3,200 MHz RAM). The slower
nodes are equipped with less memory and require more time
to process the assigned raw TFs, resulting in higher buffers
utilization due to the accumulation of raw TFs waiting to be
processed, especially at peak luminosities. In contrast, the faster
nodes maintain nearly constant memory utilization under similar
conditions. The increasing buffer utilization does not represent an
issue for the processing: the initial peak is usually reabsorbed by
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FIGURE 4
O2 EPN synchronous processing performance during the 50 kHz (sustained) Pb–Pb 2024 running as a function of the run wall time (hours). The
legends in the top and middle graphs are limited to displaying only a subset of 350 EPN nodes. The numbering of these nodes corresponds to the
farm’s installation and expansion phases: nodes numbered from 000 to 279 are MI-50 ”slow” nodes, while nodes numbered from 280 to 349 are
MI-100 ”fast” nodes. Further details can be found in Section 4.3.

the round-robin load balancing in DD. In addition, even if the
buffers of the slow nodes would saturate the faster nodes would
start to pick up more TF for processing, re-balancing the system
resource usage.

The center graph shows the input TF rate per EPN node,
while the bottom distribution presents the aggregated rate
from the TF Scheduler (per node). These plots reflect the
natural decay of luminosity. Importantly, in the bottom plot,
the rejected TF rate is zero, indicating that the system handles

raw input rates effectively, with no data loss during synchronous
reconstruction.

5 Conclusion

TheALICE experiment has been pioneering the use of GPUs for
online data reconstruction and compression in high-energy physics
for over a decade. The current ALICE setup for Run 3 and beyond
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leverages server-grade GPUs to accelerate both synchronous and
asynchronous processing.

Synchronous processing occurs during data-taking and
involves tasks such as online calibrations, tracking, and efficient
entropy-based lossless compression. The ALICE TPC, the primary
contributor to the data size, utilizes 99% of the EPN farm’s GPU
compute power during this phase.

In contrast, approximately 60% of asynchronous processing for
650 kHz pp collisions is GPU-accelerated. This limitation arises
because reconstruction for some ALICE detectors has not yet been
ported toGPUs. Efforts are underway to increaseGPUusage, aiming
for 80% GPU-accelerated code coverage for full barrel tracking.The
current time savings achieved through GPU-based asynchronous
processing is 2.5× for pp collisions and 2× for Pb–Pb collisions,
with a future goal of reaching 5× for both scenarios [13].

The allocation of resources between synchronous and
asynchronous reconstruction is dynamically managed, adapting
to ALICE’s operational needs, interaction rates, and collision
system types.

GPUs offer exceptional processing efficiency, delivering high
compute performance and data quality at a lower cost compared
to CPU-only processing [14]. Their effectiveness, compactness, and
favorable cost-benefit ratio are increasingly drawing interest from
the high-energy physics community, including other major LHC
experiments as ATLAS, CMS and LHCb, see [15–17].

The ALICE EPN IT infrastructure hosts 350 servers equipped
with 2,800 GPUs and employs energy-efficient techniques, such as
adiabatic cooling, to reduce its carbon footprint and enhance power
usage effectiveness.

In conclusion, GPU-based HPC computing coupled with an
energetically efficient data center infrastructure appears to be the
most economically viable and low environmental impact solution
for meeting the computational demands of high-energy physics
experiments.
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