
TYPE Review
PUBLISHED 28 April 2025
DOI 10.3389/fphy.2025.1542474

OPEN ACCESS

EDITED BY

Andreas Redelbach,
Frankfurt Institute for Advanced
Studies, Germany

REVIEWED BY

Dongwook Lee,
University of California, Santa Cruz,
United States
Jürgen Knödlseder,
UMR5277 Institut de Recherche en
Astrophysique et Planétologie (IRAP), France

*CORRESPONDENCE

Estela Suarez ,
e.suarez@fz-juelich.de

RECEIVED 09 December 2024
ACCEPTED 19 February 2025
PUBLISHED 28 April 2025

CITATION

Suarez E, Amaya J, Frank M, Freyermuth O,
Girone M, Kostrzewa B and Pfalzner S (2025)
Energy efficiency trends in HPC: what
high-energy and astrophysicists need to
know.
Front. Phys. 13:1542474.
doi: 10.3389/fphy.2025.1542474

COPYRIGHT

© 2025 Suarez, Amaya, Frank, Freyermuth,
Girone, Kostrzewa and Pfalzner. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with
these terms.

Energy efficiency trends in HPC:
what high-energy and
astrophysicists need to know

Estela Suarez1,2,3*, Jorge Amaya4, Martin Frank5,
Oliver Freyermuth6, Maria Girone7, Bartosz Kostrzewa8 and
Susanne Pfalzner1

1Jülich Supercomputing Centre, Forschungszentrum Juelich GmbH, Jülich, Germany, 2SiPEARL,
Maisons-Laffitte, France, 3Institute of Computer Science, Rheinische Friedrich-Wilhelms-Universität
Bonn, Bonn, Germany, 4European Space Agency, Space Weather Office, Space Safety Programme,
ESA/ESOC, Darmstadt, Germany, 5Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany,
6Physikalisches Institut, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany, 7CERN
Openlab, CERN, Geneva, Switzerland, 8Helmholtz-Institut für Strahlen- und Kernphysik (Theorie),
Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany

The growing energy demands of High Performance Computing (HPC) systems
have made energy efficiency a critical concern for system developers and
operators. However, HPC users are generally less aware of how these energy
concerns influence the design, deployment, and operation of supercomputers
even though they experience the consequences. This paper examines the
implications of HPC’s energy consumption, providing an overview of current
trends aimed at improving energy efficiency. We describe how hardware
innovations such as energy-efficient processors, novel system architectures,
power management techniques, and advanced scheduling policies do have a
direct impact on how applications need to be programmed and executed on
HPC systems. For application developers, understanding how these new systems
work and how to analyse and report the performances of their own software is
critical in the dialog with HPC system designers and administrators. The paper
aims to raise awareness about energy efficiency among users, particularly in
the high energy physics and astrophysics domains, offering practical advice on
how to analyse and optimise applications to reduce their energy consumption
without compromising on performance.

KEYWORDS

high performance computing, HPC, energy efficiency, monitoring, programming,
application optimisation

1 Introduction

Computational methods are considered the third pillar of science, together with
theory and experiments [1, 2]. As science advances, problem complexity grows and
the volumes of data necessary to extract scientific conclusions as well, increasing the
demand for computing and data management capabilities. In consequence, nowadays
all scientific fields, and especially Astrophysics and High Energy Physics (HEP), heavily
rely on the use of supercomputers. High Performance Computing (HPC) infrastructures
are absolutely necessary to run computer simulations that test theories explaining the

Frontiers in Physics 01 frontiersin.org

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2025.1542474
https://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2025.1542474&domain=pdf&date_stamp=2025-04-25
mailto:e.suarez@fz-juelich.de
mailto:e.suarez@fz-juelich.de
https://doi.org/10.3389/fphy.2025.1542474
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fphy.2025.1542474/full
https://www.frontiersin.org/articles/10.3389/fphy.2025.1542474/full
https://www.frontiersin.org/articles/10.3389/fphy.2025.1542474/full
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org

Suarez et al. 10.3389/fphy.2025.1542474

fundamental nature of matter and the forces that rule its behavior
– all the way from femtometer scales up to the size of the Universe
–, as well as to analyse the data generated by physical experiments
and observations. This makes HPC infrastructures as important
for the physical sciences as experimental instrumentation, such
as telescopes, satellites, or particle accelerators. While relatively
few of the latter kind of instruments are deployed worldwide,
the number of HPC systems and their sizes are steadily growing,
driven by the increasing computational demands from all
research and engineering fields, further enhanced by the relatively
recent exponential growth in training Artificial Intelligence
(AI) models [3]. Therefore, even if all science infrastructures have
a high energy consumption and in consequence a large carbon
footprint, increasing energy efficiency in HPC bears the highest
potential to reduce the environmental impact of science overall.
Therefore, many scientific communities have started to report on
energy consumption in scientific work, and some journals start
demanding this information.

Considering one individual run of an application on an HPC
system, if its energy consumption diminishes, also its carbon
or environmental footprint become smaller. However, it shall
be mentioned that the gain is often overcompensated by either
executing more runs of the same application, running more
applications, or even installing larger HPC systems for the same
costs, so that the overall environmental impact is not reduced.
This is generally referred to as the Jevons paradox [4] or rebound
effect, which can only be solved by decision makers (i.e., funding
agencies or governments) setting up strict upper limits on the overall
consumption. Therefore, we focus in this paper strictly on energy
efficiency and refrain from discussing carbon or environmental
impact. However, this caveat does neither diminish the importance
of striving for the maximum energy efficiency in HPC, nor the
need of HPC users to be aware of and contribute to these efforts.
Because while the gain in energy efficiency of individual jobs do
not necessarily materialise in overall producing less CO2, it does
lead to a higher scientific throughput: more scientific results are
produced using the HPC system for the same amount of time and
energy.

HPC providers and operators are applying a variety of measures
to maximise the energy efficiency of HPC infrastructures [212].
Energy savings can be achieved by selecting energy efficient
hardware in the first place, by operating it with system software
that ensure maximum utilisation of resources, and by running
optimised applications. While HPC sites can directly impact the
former aspects, the latter is in the hands of application developers
alone. Strategies such as reporting the energy consumption per job
back to users, or awarding more compute time to applications that
are more energy efficient, are envisioned. This makes it therefore
very important for domain scientists (i.e., researchers in specific
scientific areas, such as biology, material science, astrophysics, high
energy physics, etc.) to be aware of the main factors contributing
to the energy consumption of their codes. Furthermore, it is
important that HPC users understand the impact that some of the
energy-saving measures applied by hardware developers and system
operators have on the way supercomputers are exposed to the end
users.

Astrophysics and HEP are amongst the strongest consumers of
compute time (core and node-hours) on public HPC systems (see

Figure 1 and, e.g., [5–8]), and therefore also in terms of energy. It is
therefore especially important that application developers and users
in these areas know about the techniques and strategies that they
can apply to minimise the energy footprint of their HPC workloads.
This paper gives an overview of what is done inHPC at the hardware
and software level, with specific recommendations for application
developers and users. It aims at raising their awareness, motivating
them to work on improving not only the performance of their
applications but also the scientific output per Watt they are able
to produce.

Contributions of this paper are:

• Summarise the energy-saving techniques applied in HPC,
describing them from the user perspective and highlighting
their impact on the user-space. Section 2 also reports general
recommendations for users and application developers, which
apply in principle to any scientific domain.
• Review the historical evolution and specific concerns of

applications in computational astrophysics, particularly
focusing in the areas of planetary and solar astrophysics, space
weather, and space physics. Section 3 gives specific advice for
the astrophysics users and application developers, which go
beyond the general comments stated in Section 2.
• Review the historical evolution and specific concerns of

computational high-energy physics, particularly in the
subareas of experimental collider physics (Section 4) and
lattice quantum field theory (Section 5). These two sections
focus on aspects particularly relevant for high-energy
physicists.
• Summarise the main observations or recommendations

to application developers and users to facilitate readers
identifying the take-away messages.

2 Energy efficiency trends in high
performance computing

Energy efficiency is a major factor in the design and operation
of today’s HPC systems. Hosting sites build up data centres – the
building and physical infrastructure in which the HPC systems are
physically located – so that the energy used for cooling andoperation
of a supercomputer is minimised, and the unavoidable waste heat
can be reused. Because water can absorb more heat than air, water
cooling systems are more efficient than air cooling ones. Compute
nodes are integrated in blades and chassis that include Direct Liquid
Cooling (DLC) pipes, in direct contact with the hottest electronic
components on themotherboard (Central Processing Units (CPUs),
Graphics Processing Units (GPUs), and memory). Water circulates
from one blade to the next, absorbing the heat in the process, and
creating an internal water loop that reaches all elements within one
computer rack. The entry temperature of water in this internal loop
is in the range of 35-45 °C, gaining ∼5°C during its pass through
the computer. A heat exchanger transfers the gained heat from
the internal water loop into a secondary one, which runs across
the whole data centre. At most HPC sites, particularly in central
and northern Europe where the outside air temperature is all year
round well below the aforementioned values, the secondary water
loop simply runs out of the building and is cooled down via dry

Frontiers in Physics 02 frontiersin.org

https://doi.org/10.3389/fphy.2025.1542474
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org

Suarez et al. 10.3389/fphy.2025.1542474

FIGURE 1
Statistics of allocated compute time per scientific domain in the period November 2024 to April 2025, on the JUWELS supercomputer [15]. Left shows
the CPU module, aka JUWELS Cluster. Right shows the GPU module, aka JUWELS Booster. Astrophysics and HEP (the latter being to a large extent
LQCD applications) account together for between 1/4 and 1/3 of the available compute time. Data Source: GCS/JSC. Data available in [210].

coolers (basically ventilators in contact with outside air). A further
optimisation is to utilise the warm water from the secondary loop
to heat neighboring buildings, e.g., offices or living spaces, saving
money and energy on other heating infrastructures, and therefore
maximising energy efficiency.

While HPC centres are already applying energy efficiency
measures voluntarily, policies mandating efficient use of
computational resources are being put into place. For example, the
EuropeanUnion regulates data centres through its Energy Efficiency
Directive [9], last updated in 2023. The directive contains energy
efficiency targets, energy savings obligations, requirements for the
establishment of energy management systems and reporting duties
specifically for data centres.

2.1 System hardware

Thanks tominiaturisation inmicroelectronics, historicallymore
and more transistors have been included in the same area of
silicon. Smaller structures also mean that electrical signals travel
shorter distances across the chip, which implies lower energy
consumption. This phenomenon has allowed processors in the last
decades to become more computationally powerful and energy
efficient from generation to generation. The exponential increase
of computing power over time has been formulated in Moore’s
law [10]. Until around 2004 miniaturisation was accompanied by
a steady increase of operational frequency, following the Dennard
scaling : faster CPUclocksmean faster operations and thereforemore
computing performance. But miniaturisation and high frequency
have as consequence higher power density (more power per area)
due to leakage currents, and more generated heat, to a point where
electronics would get damaged. The end of Dennard scaling marked
the end of single-core CPUs. After that moment in time more
compute power could only be added by increasing the number of
cores in the CPU, and parallelising tasks across them (see Figure 2).

When endless miniaturisation of CPUs is impossible and
operational frequency cannot grow any further, specialisation might
at least bring some added performance. While CPUs are general
purpose processors aiming at solving all possible tasks, compute
accelerators are devices designed to solve a limited class of tasks
in the most efficient way possible. Some accelerators used in HPC
are GPUs, many-core processors, Field Programmable Gate Arrays
(FPGAs), and AI-accelerators. While CPUs are still needed to
perform some tasks, one can obtain the computational results faster
and consuming less energy by employing accelerators to execute
exactly the operations at which they excel.

The principle behind heterogeneous architectures is to
combine CPUs with accelerators (most frequently GPUs) to build
supercomputers and deliver the highest performance in an energy
efficient way. The high-level architecture differences between CPUs
and GPUs are schematically described in Figure 3. GPUs are
equipped with a very large number of execution units for different
types of arithmetic operations. Lacking advanced CPU features
such as out-of-order execution, GPUs have higher latency for each
individual operation, but they enable very high throughput through
massive parallelism. Because their operating clock frequency is
lower, the overall power consumption per operation (Watt per
Floating Point Operation (FLOP)) is lower (better) on GPUs
than on CPUs.

Typically, one, two or more GPUs are connected to a CPU
via a network interface called Peripheral Component Interconnect
Express (PCIe). Historically, the CPU had to actively participate
in inter-device and inter-network data transfers, resulting in a
communications bottleneck across PCIe as its bandwidth is one or
more orders of magnitude lower than CPU-to-memory or GPU-
to-memory links. Inter-GPU network links such as NVlink and
advanced communication features such as GPU-aware Message
Passing Interface (MPI) have strongly improved the situation. The
current trend goes even further (see Figure 2), integrating CPU
and GPU chips in the same package, or even as chiplets on the

Frontiers in Physics 03 frontiersin.org

https://doi.org/10.3389/fphy.2025.1542474
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org

Suarez et al. 10.3389/fphy.2025.1542474

FIGURE 2
Evolution of processor architectures over time: from single-core CPUs, to many-core CPUs, to heterogeneous compute nodes with CPU and GPUs.
The most recent trend goes towards specialised chip designs that are internally heterogeneous, combining different processing technologies in the
form of chiplets.

FIGURE 3
Schematic description of the architectures of a CPU (left) and a GPU (right). CPUs typically contain a limited amount of large, complex, highly capable
processing cores, while GPUs contain thousands of simple arithmetic execution units (increasingly for low-precision operations). CPUs are therefore
good for latency limited applications, while GPUs serve best highly parallel workloads.

same substrate [11, 12], improving CPU-GPU communication and
enabling cache coherency between the two.

It is worth noting that at the same time as heterogeneity
is increasing at the package level, the trend at the system level
is towards resource disaggregation or modularity: clusters with
different node configurations (CPU-only, CPU + GPU, accelerator-
only, quantum processors, etc.) are connected to each other via
a common high-speed network. The resource scheduler allows

users to simultaneously allocate resources on different partitions. In
cases where the MPI library has been adapted, an application can
even communicate across module boundaries via MPI. This system
design, sometimes called Modular Supercomputing Architecture
(MSA) [13, 14], is used in several systems around the world (e.g.,
[15–19]). All these systems couple CPU-only modules with GPU-
accelerated modules or partitions. The concept itself allows for
further heterogeneity, using different interconnect technologies,

Frontiers in Physics 04 frontiersin.org

https://doi.org/10.3389/fphy.2025.1542474
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org

Suarez et al. 10.3389/fphy.2025.1542474

FIGURE 4
High-level view of the software stack running on HPC systems. The product names given as example are merely illustrative, with no intention of giving
a comprehensive list of all possible solutions.

acceleration devices, and even connecting disruptive modules such
as quantum computers to classic HPC modules. For users, this
modularity requires thinking about their application in a coarse-
granular way.1 If the code simulates multi-physics or multi-scale
problems, which are often tackled by coupling different physical
models, it is worth considering whether they could benefit from
running on different hardware, i.e., across modules. If the code is
monolithic (e.g., a densematrix-matrix operation), it is better to run
the whole application on a single module.

Observation 1: HPC systems are becoming more heterogeneous,
combining CPUs with GPUs and other accelerators. Monolithic
system architectures combine these devices within massively
heterogeneous nodes, but keeping all nodes equal, which
requires a fine-granular partition of application codes. Modular
architectures create partitions or modules each with a different
node configuration, which requires a coarse-granular partition
of application codes, suitable for, e.g., multiphysics or multi-scale
applications.

2.2 System software

A deep software stack is installed on HPC systems to
operate them and provide all functionalities needed by the
users (see Figure 4). Energy efficiency must be addressed at every
layer of the stack, ensuring that all hardware resources are employed
as efficiently as possible.

1 If the code is partitioned between two modules, the cut should be

done so that most communication happens within the modules, and not

in between.

From the administrator perspective, several approaches can
be used to optimise power consumption in HPC environments.
Over-provisioned systems, which have peak power consumption
exceeding infrastructure limits, can benefit from dynamic power
capping. HPE PowerSched [20], for example, assigns dynamic
power limits to individual jobs to maximise system utilisation. The
framework EAR [21], among other things, adapts frequency to
runtime application characteristics and a pre-defined energy policy.
Idle power consumption is also a significant factor, especially in
modern CPUs with varying idle power states [22–24].

Modern CPUs and GPUs offer software interfaces to control
power consumption through Dynamic Voltage and Frequency
Scaling (DVFS) [25]. While higher processor frequencies generally
improve performance, they can negatively impact energy efficiency.
Memory-bound workloads can operate more efficiently at lower
frequencies, as their time-to-solution depends more on the speed
at which data is retrieved from memory, than the speed at which
the processor computes operations, so that their performance does
not suffer as much when the processor clock is slowed down
[26]. Compute-bound workloads, however, may benefit from higher
frequencies, as shorter runtimes can compensate for increased
power consumption. Some HPC sites offer energy efficiency knobs,
which users can employ to define per-job system configurations
with lower operational frequency [27]. Often, incentives are given in
terms of higher queue priority or additional compute time to users
that run their jobs at lower energy consumption [28, 29]. But even if
users do not employ such knobs, both the hardware itself and the
system operators might change the operation mode of individual
compute nodes by applying power control techniques (e.g., DVFS
or power capping) without prior notification, which make it
challenging for users to reproduce the same performance numbers
across equivalent job runs executed at different points in time.

HPC systems run comprehensive monitoring tools to optimise
energy efficiency. This involves collecting metrics from various

Frontiers in Physics 05 frontiersin.org

https://doi.org/10.3389/fphy.2025.1542474
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org

Suarez et al. 10.3389/fphy.2025.1542474

components, including compute nodes, infrastructure components,
and batch jobs. Data collection is typically handled by node
collectors that gather metrics and send them to a central
communication component, such as a message broker. The
monitoring system must integrate with the batch job scheduler
to track resource usage and performance. At many sites, web
interfaces provide access to monitoring data, with different levels
of access for various user groups [30, 31]. In this way, users can
read from their job reports how much energy they consumed,
as well as the amount of resources that they employ. This helps
identifying potential improvements for more efficient energy and
hardware use. Goal in this optimisation is maximising the scientific
throughput.

Most jobs use far less resources than available in the node
[32, 33], and minimising idle resources is one of the main
objectives ofmodern scheduling software. HPC sites are considering
co-scheduling jobs within the same node, especially on HPC
systems with fat nodes, i.e., those containing large numbers of
cores and accelerators. Research trends in resource management
go also towards dynamic scheduling mechanisms able to react
at runtime to variations on both application requirements or
overall system workload, or even further, to changes on the
electricity network. HPC users should be therefore prepared for
an HPC environment in which scheduling decisions might not
only depend on their own choices at job submission, but also
on energy optimisation strategies applied by the HPC centre.
Adapting application codes so that they become malleable, i.e.,
able to grow or shrink its hardware needs at runtime, shall bring
them the advantage of higher queue priorities [34]. Furthermore,
compute time allocations might start soon to be measured in
terms of energy consumed, and not merely core-hours, making
it crucial for users to optimise their workloads for maximum
efficiency.

Observation 2: The rising energy demands and cost of energy
leads vendors and HPC operators to apply numerous techniques to
minimise the energy consumption and maximise scientific throughput
of HPC systems. Some of them are exposed to the users, but not
all. Users should be aware that the operational mode of an HPC
system is not under their control and operational frequencies of
processors are now more volatile. For benchmarking runs in which
performance reproducibility is crucial, users are advised to consult
job reports and contact the support teams from HPC sites to ensure
their jobs always run under the same conditions. Furthermore, the
allocation of compute resources per job might soon become much
more dynamic and be measured in terms of energy consumed than
of core-hours. Users are therefore advised to use monitoring data
to determine the energy consumption of their jobs and identify the
most energy-efficient run configurations before starting production
jobs.

2.3 Programming models

The programming environment in HPC abstracts the
hardware complexity from the user through general Application
Programming Interfaces (APIs), helping existing code to run on
rapidly evolving compute hardware. The following subsections

describe state of the art, challenges and recommendations at each of
the layers in the programming environment.

2.3.1 Programming languages
Many, if not a majority of codes running on HPC systems,

have been developed over many years with their basic architectures
designed decades ago relying on relatively low-level approaches
(mostly Fortran or C) conceived to run on CPUs (e.g., [35–39]).
The reasons for these codes to still exist, despite newly available
hardware and software solutions, is evident: their goal is to produce
data of scientific interest, in a very short time, for a limited number
of users. This leads in general to codes that are very difficult
to use, not well documented, and not widely distributed. Even
codes used to publish results in high impact journals are still
considered complex to use and unavailable to the public [40]. In
particular, users at the end of the analysis chain employ tools as
black boxes to extract scientific insight of their interest. These tools
are developed within smaller groups of developers who are often
inexperienced with the programming concepts, data structures and
performance tuning. For such legacy codes, it cannot be assumed
that more performance can be gained automatically on modern
heterogeneous HPC systems without significant intervention of
researchers.

With the growth in popularity of data analytics and Machine
Learning (ML), there has been a slow shift in the use of programming
languages, moving from the traditional Fortran andC/C++, to high-
productivity alternatives like Matlab, Python or Julia [41], which
offer a simple syntax, a large number of easily accessible libraries,
and fast application prototyping. This has lowered the entrance
barrier to new computer programmers, at the expense of computing
efficiency.

Still, codes optimised for HPC, taking advantage of the latest
hardware technology, need to be written in traditional languages
that are closer to the hardware itself. Unfortunately, new generations
of scientists rarely learn these (see also Section 2.5.1). Students
in many scientific domains lack formal training in software
engineering in general, and in HPC in particular. Also education
in advanced C++ and modern Fortran is extremely rare. Without
such prior knowledge, potential new contributors to state-of-the-
art software frameworks face a very steep learning curve, often
incompatible with their limited time budgets as they begin to
establish themselves as domain experts in their academic career
paths.

2.3.2 Hardware heterogeneity and portability
The increasing heterogeneity of HPC systems

described in Section 2.1 and the consequent system complexity
make software development more challenging. Transitioning
application workflows to energy-efficient platforms, such as
GPUs or FPGAs, involves more than rewriting codes. It requires
fundamental redesigns of algorithms to accommodate the distinct
memory hierarchies and parallel processing capabilities of these
architectures. Each kind of compute device requires different
optimisation approaches, e.g., while spatial and temporal locality
play a role in the optimisation of access patterns and data layouts
on both CPUs and GPUs, good performance on GPUs can only be
reached if threads within a thread team access data in a coalesced
fashion and if thread divergence is avoided. Although these efforts

Frontiers in Physics 06 frontiersin.org

https://doi.org/10.3389/fphy.2025.1542474
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org

Suarez et al. 10.3389/fphy.2025.1542474

promise substantial energy savings, the initial development is
effort-intensive, demanding both time and specialised expertise.

New hardware also comes with new programming models and
libraries that need to be adopted into the software ecosystem.
Compilers need to include in their standards additional ways to
translate codes into machine binaries and for a new hardware
component it can take years before full adoption by the end users.
Vendor-specific programmingmodels promote vendor lock-in (e.g.,
to get optimal performance, NVIDIA GPUs had to be programmed
using CUDA [42], and AMD GPUs with HIP [43]), which can
backfire on application developers as it happened with the Intel
Xeon Phi many-core processor launched in 2010: while many
research groups saw this as an opportunity to accelerate their codes
without having to deal with complex parallelisation using CUDA
on GPUs, the processor ended up being discontinued in 2020 [44]
and developments that took years to implement became suddenly
dependent on an obsolete technology. Scientists learned that it is
important to write codes so that they are portable to different
architectures.

Observation 3: Modern compilers are a great source of information
to identify low hanging fruit opportunities for improvements in
performance. They often provide flags to detect misplaced data
accesses, to unroll nested loops, or to replace known inefficient
instructions. However, it is our experience that recent compilers
remain very unstable, and it is preferable to use reliable older
versions of the compilers and miss out on the opportunity to test
the newest features in the most recent version. It takes from 2 to
5 years for known compiler versions to be fully tested by developers
worldwide.

As hardware becomes more heterogeneous, performance-
portability across platforms is harder to attain. Using libraries,
especially I/O and numerical linear algebra (e.g., the BLAS
APIs), does help because processor vendors provide their own
hardware-optimised implementations, reaching highest efficiency.
The performance, energy efficiency, and the level of code portability
that HPC users can achieve depend on the APIs and programming
models they choose. Generally, low-level programming models give
more control to the users, at the price of lower portability. High-
level abstractions (e.g., Python [45], OpenMP [46], SYCL [47],
Kokkos [48], ALPAKA [49], RAJA [50], Mamba [51], Julia [41],
DaCe [52], and many others not named here), on the other hand,
are portable and achieve good performances [41, 53–55] by relying
on backend optimisations to generate executable codes adapted to
different hardware devices. However, for these languages to deliver
performance in an energy-efficient manner, it is important to call
their optimised packages, such as numerical libraries and backends,
typically written in C. Otherwise applications written in Python can
be very power-hungry [56].

Observation 4: To cope with increasing hardware heterogeneity,
application development teams are advised to modularise their codes,
decoupling the optimisations for different hardware platforms from the
scientific core of the application, e.g., by calling appropriate numerical
libraries. Failure to do this can lead to much lower energy and resource
usage efficiency. Teams lacking specialised personnelwith the necessary
expertise and effort to optimise code for different hardware devices
are advised to employ portable programming models and frameworks

that isolate their scientific implementation from the hardware-
specific features, which shall be addressed by optimised libraries and
backends.

2.3.3 Domain specific languages
Domain Specific Languages (DSLs) separate user-facing

interfaces and performance-critical code altogether. The prime
example are ML frameworks such as PyTorch and TensorFlow.
Examples in high-energy physics are, in increasing order of
abstraction, Grid [57, 58], Chroma [59] and ROOT [60] as well
as Lyncs [61], PyQUDA [62], and Grid Python Toolkit (GPT)
[63], where the latter three provide Python interfaces to the highly
optimised algorithms implemented in QUDA [64–66] and Grid,
respectively. In the domain of space physics, problems that can be
approximated by the large-scale approach, where a plasma can be
considered as a fluid, can use one of the existing frameworks (e.g.,
[67–69]) that decouple numerics, parallelisation, and mathematical
equations from each other. This approach allows scientists to focus
on the equations to be solved, leaving the software heavy-lifting to
the underlying code programmed by specialists.

It is to be seen in what way tools from generative AI will impact
code generation for HPC systems. While using Large Language
Models (LLMs)/chatbots or GitHub Copilot to generate code for
routine tasks is by now common, using generative AI also shows
promise for HPC code generation [70, 71].

2.3.4 Parallelisation over multiple compute nodes
Any code or application developer that wants to take advantage

of modern HPC systems shall start by making sure that: (i) their
code runs as optimal as possible in a single node, (ii) their code
is well structured and documented, and (iii) it presents an easy to
use interface that does not require to recompile the source code
for different use cases. Among the applications using the biggest
supercomputers in the world it is not uncommon to miss points
(ii) and (iii).

While the high-level programming models described in
Section 2.3.2 allow for portability between individual nodes with
different hardware configurations, parallel applications need to run
across many nodes. The de facto standard multi-node parallelism
framework in HPC is MPI [72]. It requires explicit transfer of
messages between nodes, but is in principle agnostic to the type
of node underneath, as long as an MPI library is installed and
supported.While this is true inmost cases, various implementations
of the MPI standard exist, and performance differences are often
observed between implementations running on the same hardware.
Therefore, users are advised to test their applications against different
MPI implementations, verify correctness, and identify the most
efficient one in each system.

An alternative to message-passing is given by the Partitioned
Global Address Space (PGAS) paradigm in which a global memory
space is logically partitioned over many processes and where the
various portions of this shared space have an affinity for particular
processes. In contrast to message-passing, individual processes may
access remote memory directly with the necessary communication
taking place either explicitly or implicitly as part of the semantics.
Examples of such PGAS systems are Coarray Fortran [73], Unified
Parallel C [74] or Global Arrays [75].

Frontiers in Physics 07 frontiersin.org

https://doi.org/10.3389/fphy.2025.1542474
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org

Suarez et al. 10.3389/fphy.2025.1542474

FIGURE 5
Measured and extrapolated parallel efficiency of a kinetic space plasma code using DIMEMAS [85], reproduced from Figure 26.a (page 63) in [87]. The
parallel efficiency, representing the time spent on computation (useful work), is composed of the load balance, the serialisation, and the transfer
efficiencies, as defined in Section 4.1 of [87] and the DIMEMAS [85] documentation. In this example three measuring points at 1, 24, and 96 processes,
were used to extrapolate the parallel efficiency of the code up to one million processes.

For problems subject to load-imbalance, a proliferation of
small subtasks, formulations on irregular grids or implementations,
which aim to make use of highly heterogeneous computational
resources, Asynchronous Many-Task (AMT) systems may provide
a more appropriate programming model with the potential of
increasing scalability and resource utilisation. Examples of such
AMT systems are Uintah [76], Charm++ [77], ParSEC [78], Legion
[79] and HPX [80, 81]. A more complete comparison can be
found in reference [82], but in general it can be said that these
solutions are either compilers and run-time systems, separate
libraries and run-time systems, or systems in which the run-time
is linked directly into the application. Generally, AMT systems
provide some form of dependency resolution mechanism and
a data-flow model based on a Directed Acyclic Graph (DAG)
together with some form of Asynchronous PGAS (APGAS) model
for representing distributed data. It is also possible to benefit
from the performance-portability of Kokkos and the task-based
parallelism of an AMT system like HPX to move away from
the more traditional fork-join model with good results [83, 84]
by making use of futures to launch and synchronise Kokkos
kernels.

We have observed that computer applications developed to run
in parallel architectures with a small number (< 1000) of cores
sometimes struggle with the porting to larger systems, and in
particular to Exascale supercomputers. In Figure 5 we present the
measured and extrapolated efficiency of a parallel kinetic plasma
physics code. Based on three measurement points of the code
efficiency, the tool DIMEMAS [85] can predict the performance
of the code on very large systems using Amdahl’s law [86]. Such
analysis is an essential step to discover what are the scalability

limitations of any software. As the number of processes increase
serial sections of the code and parallel transfers become dominant.

Observation 5: The secret to a good parallel application ready for
the next generation of supercomputers rely on an early and thorough
analysis of single node peak performance, and parallel strategies that
reduce data transfers to the minimum. Once this is done, the developer
should test as early as possible the scalability of their parallel strategy
using performance extrapolation tools. A parallel algorithm is difficult
to change when a code is mature with multiple years of development.
To develop and test a scalable parallel algorithm it is possible today to
use tools like DIMEMAS [85] that project the potential scalability of
a code on any existing or idealised supercomputer using performance
traces from experiments run in a few hundred cores.

2.4 Data management

When discussing energy efficient trends in HPC, it is important
to include data management and storage. While storage systems
may not directly consume as much electricity as the processors
during peak loads, they can significantly impact overall efficiency.
Moreover, storage systems can become persistent power consumers,
with data often requiring preservation for decades, leading to
high integrated energy costs over time. Fields such as HEP
and radio astronomy exemplify these challenges. Constrained by
budget and technological limitations, they cannot store all the
raw data generated. Instead, they rely on real-time processing
and filtering to reduce storage needs and concentrate on valuable
insights. However, this approach introduces its own energy-
intensive demands. Advancements in ML algorithms offer the

Frontiers in Physics 08 frontiersin.org

https://doi.org/10.3389/fphy.2025.1542474
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org

Suarez et al. 10.3389/fphy.2025.1542474

potential to enhance data selection accuracy and speed, but
their training and optimisation processes come with additional
storage and computational requirements, further complicating the
energy equation.

High performance datamanagement is an increasingly important
consideration as the demand for HPC grows across scientific and
industrial domains. One major source of energy inefficiency is the
movement of data within computing systems. This issue does not
stem primarily from the storage or file systems themselves, which are
relatively energy-efficient, but from the impact on processing units.
HPCprocessors,designedforhighthroughput,arepower-hungryeven
when idle, consuming almost asmuch energy as during full operation.
These processors often remain underutilised, idling as they wait for
data transfers or caching to complete. This mismatch between data
availability and processing demands highlights the need for improved
data transfer and caching infrastructure. Byminimising idle time and
ensuring that processors operate at high utilisation rates, significant
energy savings canbeachieved.Users are therefore advised to consider
overlapping communicationwith computation, to keep theprocessors
busy while they wait for new data. It is also important that they
employ optimised I/O libraries (e.g., HDF5 [88], SIONlib [89]), which
ensure that data is aggregated in a reduced amount of files to avoid
saturating the file system. When data transfers between nodes are
impossible to avoid, creating a regular pattern for the data transfer
is a key factor. Reducing the number of communication steps, and
taking advantage of algorithm optimisations by the parallel libraries
can increase the scalability of a code.

Observation 6: Data movement is an important contributor to energy
consumption, due to idling processors while they wait for data to be
loaded from either disk, memory, or cache. Application developers are
advised to employ optimised I/O libraries and overlap computationwith
communication when possible, to minimise waiting times and idling
resources.

Storing data, whether for active use or long-term archival, also
contributes substantially to energy consumption. Active storage
media must consume power continuously to keep data accessible
and to serve it efficiently across distributed systems. This often
necessitates maintaining multiple data copies to ensure reliability
and availability. Even archival storage, which might seem like
a low-energy alternative, requires sophisticated infrastructure to
prevent data loss or corruption, such as climate-controlled facilities.
Promising advancements in archival technologies aim to create
dense, stable media that can preserve data for centuries under
normal conditions without requiring power [90]. These innovations
could drastically reduce the integrated energy footprint of long-term
data storage.

Another critical challenge lies in managing the massive
volumes of data generated by instruments and experiments in
fields such as physics and astronomy. Projects like the Large
Hadron Collider (LHC) and the Square Kilometer Array (SKA)
produce data at such scale that it becomes infeasible to store
and load all of it. Instead, much of this data must be processed
on the fly. However, streaming data directly into HPC systems
is not a traditional use case and poses significant logistical
and technical challenges. HPC workflows typically rely on pre-
scheduled tasks, but the irregular operation of data-generating

instruments—affected by maintenance schedules, weather, and
other factors—complicates integration. The synchronisation of
real-time and scheduled workflows demands innovative solutions,
including new scheduling mechanisms and potentially dedicated
HPC systems optimised for streamingworkflows. Nevertheless, gaps
in instrument operation could present opportunities for resource
sharing, further enhancing efficiency.

The demand for energy-efficient solutions grows even greater
in all scientific areas, as they increasingly rely on AI and ML
techniques.2 AI and ML require large datasets for training models,
which in turn demand significant computational power. This adds
another layer of complexity to the energy equation, underscoring
the importance of developing efficient algorithms and hardware
optimised for AI/MLworkloads. Innovations in this area can reduce
the energy costs of model training and inference, making AI-driven
data processing more efficient.

Efficiency also means two things: ensuring that scientific results
are reliable, and avoiding unnecessary repetition of the same work
over and over again. This is why open data and the Findable,
Accessible, Interoperable, Reusable (FAIR) principles [91] start to
play an increasing role. Open data is the essential first step to make
simulations reproducible and therefore trustworthy, by providing
access to usable software and to raw data from the numerical
experiments.

Observation 7: Every user should strive to make their simulation
results FAIR [90], which includesmaking them reusable.This way, other
researchers can avoid running the same simulation again, use the results
as input for their own work, and re-analyse the data from a different
research perspective. For simulations producing only small statistical
samples, reusable data can be accumulated to increase the sample size
by pooling the results from different researchers.

The challenges of energy-efficient data management demand
a holistic approach that integrates improvements across data
movement, storage, and processing. Advancements in transfer
and caching infrastructure, archival solutions, and HPC systems
designed for real-time workflows are critical.

2.5 Applications and benchmarks

Computational sciences create digital representations of
scientific problems and in doing so are constantly confronted by a
limitation on the available human and computational resources: (i)
the available budget for a project, the number of people assigned
to the development of the code, the availability of the relevant
experts, and (ii) the available memory, the available disk space,
and the available compute time. These constraints are different for
different research institutions, and while it is still possible (and
elegant) to produce groundbreaking research results on a single
desktop computer, exploiting the biggest supercomputers can lead
to high impact results [92–97]. This is the motivation for most
computational scientists to approach HPC.

2 For instance, when analysing the user statistics of the JUWELS Booster

(right side of Figure 1), we found out that 47% of the total compute time

is used by AI-related jobs.

Frontiers in Physics 09 frontiersin.org

https://doi.org/10.3389/fphy.2025.1542474
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org

Suarez et al. 10.3389/fphy.2025.1542474

We give in this section the general recommendations for any
developer or user of applications in HPC. The following three
sections go into more detail on how scientists specifically in the
areas of astrophysics (Section 3), HEP (Section 4), and Lattice
Field Theory (LFT) (Section 5) can address energy efficiency and
performance.

2.5.1 Skills
Up to about the year 2000, in most scientific fields primarily

the same researcher developed the code, ran the simulations, and
analysed and visualised the results. These researchers knew every
line of their codes and understood the numerical challenges. The
severe limitations in computing time forced the researchers of this
era to spend much effort optimising every aspect of the code for
efficiency.

Nowadays, scientists starting to use HPC typically take their
first steps with legacy code inherited from their predecessors,
or with large analysis frameworks used as a black box. Their
tasks often incorporate writing small extensions to study a new
aspect of a scientific problem, but there is rarely an immediate
motivation or an offer for the necessary education to get accustomed
to the existing code base. Both time and software engineering
training are lacking to perform tasks such as porting code
to new environments, refactoring, or performance engineering.
Furthermore, they implicitly assume that the used code has already
been optimised for efficiency, but this assumption is often wrong
because the code optimisation, if done at all, happened on an entirely
different computer infrastructure. As a result, the code produced
may not fit today’s compute hardware, or may perform significantly
worse than it could, due to wrong data layouts, inadequate
programming models, or outdated libraries and environments. The
long term success of a scientific code rely purely on the motivation,
training, and acquired expertise of a few experts associated to the
institution developing the software, but too few permanent software
developer positions are available.

Observation 8: Application developers benefit from working hand in
hand with experts in HPC software development, usually employed at
HPC centres. There are multiple means for developers to have access to
this expertise (e.g., training courses and direct mail contact with support
teams), learning in a very short time how to extract the maximum
potential of their codes. However, the best approach for continuous code
improvement and adaptation to emerging technology is to include in
the development team Research Software Engineer (RSE) experts with
knowledge on the physical domain of interest and on theHPC ecosystem.
It is expected that the research teams using the latest HPC systems to
their full potential have in their ranks expert RSEs, who are commonly
postdoctoral researcherswith additional specialised training inHPCand
advanced programming.

In particular, there is a growing risk of losing, over time,
the expertise required by research institutions to produce high
performance codes, as new generations of researchers are not
trained in traditional scientific computing languages (e.g., C/C++
or Fortran). Today, the few research engineers trained with detailed
knowledge of traditional programming languages, have a clear
advantage in the job market not only in the scientific domain but
also in any industry requiring coding (see, for example, the banking
and the video game industries).

Application developers can find it difficult to keep up with the
very rapid evolution of hardware, and only well-funded research
groups with the necessary HPC expertise and specialised support
can take advantage of emerging new technologies. Given the
growing use of HPC in science and industry, building the knowledge
of the next generations of computational and computer scientists
through dedicated courses at universities and training programs
becomes crucial. These courses should cover all aspects of HPC,
including low-level programming languages, performance analysis
and engineering, parallelisation and scaling, code optimisation and
tuning, and data management.

Observation9: Students and early career researchers in computational
sciences should seek and receive training on numerical algorithms, data
access patterns, and the frameworks used in their community, as well as
on general HPC topics such as performance analysis, optimisation, and
software engineering. Specific education on energy-efficient simulation
techniques is required, including concepts such as the energy footprint
of different hardware devices, software tools, and programming models.
Similarly, beyond familiarity with a high-level language such as Python
or R for data analysis, students should know that some Python packages
are more energy efficient than others, and establish a good foundation
in modern C++, which is a prerequisite to contribute to the continued
development of efficient application software.

2.5.2 Performance analysis
Generally speaking making an application code more energy

efficient is equivalent to ensuring that it reaches the maximum
performance on a given compute device, which itself is running
at the most energy efficient operational configuration. Or said
otherwise, the application should not waste the capabilities of the
hardware on which it runs. In practice, it means: (i) understanding
which is the maximum theoretical performance that the target
computer is capable of, (ii) measuring the performance that
the own code currently attains on this computer, and (iii)
knowing how to close the gap between (i) and (ii). This can
be studied in first approximation with tools like the roofline
model [98], which relates the performance (in FLOP/s) with the
arithmetic intensity (in FLOP/Byte, aka operational intensity) of
an application with the peak performance of a given computing
device, classifying applications into memory and compute bound.
Numerous profilers and performance analysis tools integrate the
roofline model and provide further bottleneck analysis mechanisms
for parallel applications (e.g., Vampir [99], Paraver [100], Scalasca
[101], Vtune [102]).

Using these tools, developers have to invest on the analysis
of the performances of their code prior to seeking the best
technological solutions to remove bottlenecks. Common blocking
points include inadequate parallel communications, uneven data
transfers, blocking I/O tasks, slow data ingestion, irregular memory
access, idling computing resources, and unrealised compiler
optimisations. Addressing all these requires access to tutorials,
literature, and tools that simplify the analysis of computer software
ported to HPC systems is needed [103].

Observation 10: The first step to improve the energy efficiency of
an application is reducing its time-to-solution by investing effort on
performance engineering. Performance analysis tools and profilers help
identifying communication and computation bottlenecks and sources

Frontiers in Physics 10 frontiersin.org

https://doi.org/10.3389/fphy.2025.1542474
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org

Suarez et al. 10.3389/fphy.2025.1542474

of performance loss. Small changes in bottlenecks can rapidly provide
great gains in performance. Typical code optimisations include early
detection of memory leaks, good alignment of data in memory to take
advantage of cache access, use of existing compiler optimisations taking
advantage of hardware characteristics, and smart use ofmulti-threading
in all cores in a node.

2.5.3 Artificial intelligence and low precision
arithmetics

GPUs have been successfully adopted in HPC, but even
more so in the AI market. Model training requires very large
amounts of computation, which can be done very efficiently
with GPUs. Unlike most HPC applications, AI training makes
heavy use of reduced precision arithmetic (e.g., [104]). The large
size of the AI market motivates GPU vendors to devote more
silicon area to these arithmetic units at the expense of double
precision support. Applications using low-precision arithmetic
can achieve higher performance with less power consumption.
HPC application developers are therefore strongly encouraged
to consider whether some of the operations in their codes
could be performed in single (or lower) precision. However,
it remains to be seen how well the diverse portfolio of HPC
applications can be successfully ported, taking into account the
resulting losses in numerical stability and reproducibility. Intense
algorithmic research is being done to enable more HPC applications
the transition from double precision, or 64-bit floating point
performance (FP64) to reduced-precision arithmetic (e.g., FP32,
BF16). If the AI market continues to grow at its current rate,
we can expect to see new accelerators entering the market,
particularly for inference operations (e.g., TPU [105], Graphcore
[106], Groq [107], etc.), which are likely to support mostly
low precision arithmetic, but potentially also new programming
models. This again, might require additional adaptations of HPC
application codes.

Observation 11: Opportunities to work with reduced arithmetic
precision should be exploited, as this translates into a higher
performance and energy efficiency of the application when running on
the same hardware.

2.5.4 Benchmarks
Application-based benchmarks are included in the procurement

and acceptance of HPC systems to represent the main consumers
of computing time [108]. This allows for choosing a system
design and a selection of hardware and software components
appropriate for the site’s application portfolio, which is critical to
maximising energy efficiency in real-world operations. The main
difficulty is to accurately predict how the application portfolio at
the time of acquisition will evolve over the operational lifetime
of the supercomputer. Application developers can contribute
to this effort by creating mini-apps and application use cases
representative of their operational workloads, making their source
code and input data publicly available, and keeping them up-to-
date with the latest code releases. Benchmarking campaigns are also
important for the application developers themselves, as they serve
to analyse how changes in a given code (or environment) affect
performance. Equally important is applying professional software
development strategies, with curated code repositories, version

control, Continuous Integration and Continuous Deployment
(CI/CD) pipelines, automated testing, code documentation, and
regular software releases.

Observation 12: Benchmarking studies should be performed before
running production jobs to identify the most energy-efficient job
and system configuration for the given application, looking for the
lowest possible operational frequency of the hardware without strongly
increasing the time-to-solution (e.g., in memory bound applications).

3 Computational astrophysics

Studying the movement of galaxies at the cosmological scale
or the motion of a single electron around a magnetic field line,
the domain of astrophysics covers a very wide range of scales
in time and space. While the equations that govern all the
dynamics of the universe are well known, it is still impossible to
reproduce in a computer all the different processes at once. Scientists
need to make assumptions, neglect terms in equations, reduce
the complexity of the environment under study, eliminate non-
linearities, and translate mathematical equations into numerical
algorithms solved on discrete machines working with ones and
zeros. Each one of these simplifications introduce an uncertainty
to the final result. The role of the application developers in
computational astrophysics is to minimise such uncertainties and to
describe as accurately as possible the real universe into a matrix of
discrete values.

Many computer models in the domain of astrophysics have
emerged from the work done by scientists over multiple years,
even decades. In a traditional academic life-cycle new numerical
techniques are typically introduced by senior researchers, which are
then extended and refined by their research teams (postdocs, PhDs,
master students). Very rarely an academic software is developed
by a professional software engineer. Over the past two decades the
hardware used to execute such software has become increasingly
more complex (see Section 2). Memory strategies, data traffic, data
structures, I/O, accelerators, scalability, interconnections, are some
of the terms that have come to the attention of research software
developers. A new type of expert is emerging from this environment:
the RSE, who is both an expert in physics and computer sciences.

Making simulation results reusable for others is an essential
contribution to making astrophysics simulations more energy
efficient. In observational astronomy, a large proportion of the data
are published. There, the Flexible Image Transport System (FITS)
format [109] is a widely accepted standard for data publication. It is
used for the transport, analysis, and archival storage of scientific data
sets. By contrast, open access is much less common in astrophysics
simulations, especially if it does not only concern sharing code but
also the resulting data. Here, general agreements on used formats
and metadata standards are still lacking. A few large collaborations
set good examples of sharing the results data, i.e., the Illustris
project [110], the TNG project [111], the Eagle project [112], and
the Horizon simulations [113]. In the context of astronomy and
astrophysics, reproduction usually requires re-evaluation of large
datasets and the discussion about FAIR research data management
has just started for astrophysics simulations.

Frontiers in Physics 11 frontiersin.org

https://doi.org/10.3389/fphy.2025.1542474
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org

Suarez et al. 10.3389/fphy.2025.1542474

It is our goal in this section to present the trends in energy
efficient HPC to research leaders and research engineers working on
astrophysics codes.

3.1 Stellar and planetary physics

Codes in stellar and planetary physics were initially developed
to describe specific physical process, for which a distinct numerical
method was used. For example, the dynamics of particles were
calculated using N-body methods and hydrodynamic flows
employed numerical fluid dynamics methods. Over the decades,
these codes have developed and nowadays they usually include
multiple physical processes simultaneously. Often, they also allow
one to choose which numerical scheme to employ. For example,
the newest version of the GADGET code (GADGET 4) [114]
also contains a simple model for radiative cooling and star
formation, a high dynamic range power spectrum estimator, and
an initial conditions generator based on second-order Lagrangian
perturbation theory. Besides, it gives several choices of gravity
solvers and smooth particle hydrodynamic options.

Other approaches are frameworks that allow combining
different codes to provide for various physical processes.
One example is the Astronomical Multipurpose Software
Environment (AMUSE) [115], which allows to combine multiple
solvers to build new applications, used to study gradually
more complex situations. This procedure enables the growth of
multi-physics and multi-scale application software hierarchically.
Generally, the complexity of the software continues to increase.

Most simulation runs are a single realisation of an ensemble
of possible states of a system. Thus, it is necessary to perform an
entire suite of simulations to increase the statistical significance of
the inferred result. However, multi-physics codes, especially, often
require such extensive computational resources that only a single
simulation run can be performed. The statistical significance of a
single realisation of a statistical approach is rather limited. Examples
of such simulations that went to the limits at the then available
computational resources are the Millenium simulation [116] or
the simulation of clustered star formation [117]. In principle, this
problem should have solved itself with computational performance
increasing by a factor of several thousands to several ten thousands
during the last 20 years. However, this is often not the case.
Rather than increasing statistical significance, researchers often
prefer to use the increasing resources to boost resolution or include
additional physics.

Due to the modular nature of many physics aspects included
in a single code, testing the code to its entire extent becomes
increasingly challenging.The researcher can evaluate only individual
components against a set code test. However, few to no tests exist of
how the different parts work together.

Making use of GPU-based HPC systems can increase energy
efficiency in astrophysics considerably. For example, the GPU-based
version of Nbody6 is approximately 10× faster than its CPU-
based version [118]. The degree of transition to GPU-ready codes
is mixed in the star and planet formation field. Popular codes for
simulating like FLASH [119], GADGET4 [114] or REBOUND [120]
were not intended for GPU-based machines. The user community
has become aware, and parts of the codes are gradually changing

the algorithms to use GPU-based structures. For N-body codes,
the situation is better. Codes like Nbody6GPU++ already saw the
advantages of using GPUs about 15 years ago. Other GPU-ready
N-body codes are, for example, BONSAI [121], GENGA [122]
and PETAR [123]. In summary, the star and planet formation
community is currently in the transition phase to GPU-ready codes.

Making open access of results and data, and ideally fulfilling
the FAIR principles [91] would make simulations also more energy
efficient. However, the community is only starting to evaluate how
to adopt FAIR principles when dealing with simulation results and
data management. Codes are increasingly shared on GitHub or
the Astrophysics Source Code Library [124]. However, the shared
code versions often differ from those used to obtain the results
reported in publications, because the codes are proprietary or the
team simply lacks the resources to properly document new code
parts. Benchmark tests are performed for the publicly available code
version but are less often performed for the codes with non-public
add-ons.Thus, the user is sometimes unaware that these add-ons are
less efficient than the main code.

In the past, many codes with similar applications existed in
parallel, and there was a constant stream of newly developed codes.
While new codes are still being created from scratch, this happens to
a lesser degree due to the growing code complexity. Nowadays,much
of the development effort goes into adapting legacy codes written
in Fortran, C or C++ to new computing structures and extending
themby adding newmodules oftendeveloped in Python. Frequently,
simulation codes are written by students who are unaware of the
energy efficiency issue or lack the knowledge of more energy-
efficient programming languages.

Especially for simulations reaching the limits of computing,
replacing part of the code with AI-generated information is
implemented in some codes. So far, this transformation code
approach has only been adopted by a relatively small part of the
community. While promising to make the codes more energy-
efficient, one loses some of the causal information. Furthermore, the
compute and energy cost of training the AI-models should not be
neglected.

Observation 13: When an application framework allows switching on
and off different physical processes, it should be ensured that only those
necessary to answer the investigated scientific question are activated.
Additionally, during the planning of the simulation approach, one
should put emphasis on allocating the minimum necessary amount of
computational resources (nodes), while maximising the use of those
that are reserved. Users should check after completion whether the
code performance stayed high throughout the runs, and learn how to
minimise idling resources.

3.2 Space weather and space physics

Scientific codes in the area of space physics show very similar
characteristics as those described in the previous section. However,
the domain of space weather is one step closer to real-time
operations and require high availability of computer resources,
and high reliability on the outcomes of the computations. To
forecast the impact of the solar activity on the Earth, several
advanced computer models benefit from HPC systems. Multiple

Frontiers in Physics 12 frontiersin.org

https://doi.org/10.3389/fphy.2025.1542474
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org

Suarez et al. 10.3389/fphy.2025.1542474

FIGURE 6
Number of publications in scientific journals over the past 20 years, containing the keyword space weather, which include in the text references to
supercomputer or high performance computing. Data gathered using the OpenAlex database [130]. The median number of these publications over the
past 20 years is seven.

models exist still in their research phase while a few have already
transitioned to an operational phase and are used to inform
the public and industry. The process of transforming academic
codes into consolidated operational software is called Research-to-
Operations (R2O). Historically, the domain of space weather has
been a continuous user of HPC resources. Figure 6 shows that over
the past 20 years the number of publications in the domain of space
weather thatmakes explicit use ofHPC systemshas been constant. In
general the domain of space physics (including solar physics, space
weather, heliospheric physics, planetology, and plasma physics)
is known to exploit the latest computing technology, including
new generations of processors, accelerators, memory, storage, and
network interconnection [125–129].

The physics of the space environment cover a large range of
scales in time and space. It is common practice to study the
phenomena observed at each characteristic scale by independent
models. This translates in general into computer models that
calculate numerical approximations, covering different segments
of the full space environment. To capture as much detail as
possible, these numerical models can take advantage of very large
computer resources to extend their applicability to a large range
of characteristic scales. Figure 7 shows a very small selection of
individual computermodels studying different segments of the space
weather domain that connects the solar activity with its effects on
Earth. While most of the physics in these codes are very similar, the
numerical methods and characteristic scales processed by each code
are different.

In the domain of space physics and space weather the three
most common approximations to model the corresponding physics
are: (i) the particle kinetic scale [131–134], (ii) the fluid continuous
scale [68, 135, 136], and (iii) the hybrid scale, where particles and
fluids coexist [137–140]. The equations solved by these numerical
approximations can be very diverse, and different computer
hardwaremight be better adapted to each of them. It is reasonable to
solve the dynamics of billions of particles in a group of accelerators,
while solving thememory intensive resolution of a continuum using
a network of general purpose CPUs [141]. To make a selection,

a careful knowledge of the algorithms, the hardware, and how to
connect the two of them is necessary.

HPC is used in space applications to produce data. With
high value data, scientific discoveries can be published, and
mitigating actions can take place to reduce the impacts of the
space environment on our technology. As the HPC systems become
larger, models grow to use them, generating much more data per
run. This makes it more challenging to process and translate the
outputs of these models into information that can be used in the
daily operations of the end-users of space weather forecasts. High
precision numerical models producing data at a high cadence can
lead to gigabyte or even terabyte of data in a single execution.
Therefore, there is a growing need to process and visualise data in
the same location where it is produced, on the fly, at the same time as
the code is executed. InmodernHPC systemsGPUand visualisation
nodes are also available to the end user. This allows to perform data
gathering, analysis, processing, and visualisation in the same system
where the execution of the code took place.This also requires the end
user to provide all the data pipelines necessary to extract valuable
data from the raw outputs, which will then be discarded by the end
of the execution.

We encourage application developers to also evaluate the
potential use of high-order numerical methods. It is a common
misconception to think that high-order numerical methods are
more resource intensive. It is clear that if a problem uses the same
time and space discretisation, high-order methods will take much
longer to converge. However, this is an inadequate way to measure
performance [142]. To obtain the same error low-order methods
require much finer discretisation and longer convergence times.
The use of high-order methods is then critical for applications that
require fine precision in their resolution, as, for example, in the
case of sharp shocks, energy dissipation, or multi-scale effects. In an
optimal code, the order of the methods shall be adaptive to optimise
the use of resources.

Application developers should also consider implementing
high-order methods in cases where performance analysis show that
the software is memory bound.This approachmay help the software

Frontiers in Physics 13 frontiersin.org

https://doi.org/10.3389/fphy.2025.1542474
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org

Suarez et al. 10.3389/fphy.2025.1542474

FIGURE 7
Three computer models used in the space weather domain to connect solar energetic events on the Sun with its impacts on Earth. COCONUT:
modelling the state of the lower solar corona, image reproduced from [211]. EUHFORIA: transports solar plasma towards the planets of the Solar
System, image courtesy of KU Leuven. Gorgon-Space:calculates the geomagnetic environment around our planet, images courtesy of Imperial
College London..

to switch the balance towards higher computing intensity. This is
of course dependent on the specific numerical method used, as
memory stencilsmight also increase to accommodate the larger data
size required by these methods. The application developer should
keep in mind how the different cache and memory levels are used in
the computationally intensive segments of their software [143–145].
Reducing the data movement among the different memory levels,
and performing vector operations, can further help transforming
memory bound into compute bound codes.

4 Data processing in experimental
high-energy physics

Energy efficiency has become a pressing challenge in HEP
computing as the field grapples with the ever-growing demand
to manage and process massive datasets. With experiments at the
LHC already having generated over an exabyte of data, and the
forthcoming High Luminosity LHC (HL-LHC) expected to add
another exabyte per experiment annually, the infrastructure is facing
unprecedented challenges. This rapid expansion underscores the
need for innovative approaches to improve energy efficiency across
data processing, storage, and distribution.

HEP computing relies on highly complex workflows,
particularly for reconstructing and simulating particle collisions.
Many of these workflows have been developed over decades, with
vast, intricate code-bases optimised for traditional computing
architectures. However, this reliance on legacy poses significant
challenges for modernisation.

Distributed computing, exemplified by the Worldwide LHC
Computing Grid (WLCG), has been instrumental in enabling HEP’s
global research efforts. This extensive network connects hundreds
of computing centres worldwide and has successfully supported
the immense computational needs of the field for years. However,

adapting such a vast and distributed infrastructure to modern,
energy-efficient architectures presents another layer of complexity.
The extensive volume of legacy code, coupled with the need for
algorithmic and structural redesigns, complicates the process of
integrating new hardware technologies.

Recognising the urgency of these challenges, the HEP
community has launched robust research and development
initiatives to enhance energy efficiency and modernise its
computational ecosystem. These efforts include optimising
workflows, reducing unnecessary data movement, and developing
software tailored to more efficient hardware platforms. CERN
Openlab [146], a collaborative partnership between HEP scientists
and industry leaders, has helped drive this progress. Over two
decades, it has guided the transition to modern computing
paradigms, from x86 commodity clusters to accelerated hardware
architectures like GPUs.More recently, it has facilitated explorations
of tools such as SYCL [47], Intel OneAPI [147], and other portability
libraries, which facilitate the migration of legacy applications
to heterogeneous systems. These innovations have not only
improved efficiency but have also increased the adaptability and
maintainability of HEP software, ensuring its compatibility with
future hardware advancements.

Experimental HEP computing is increasingly challenged by the
need to manage and process vast and ever-growing datasets while
improving energy efficiency. As the field pushes the limits of data-
intensive science with experiments at the LHC and prepares for
the High Luminosity upgrade, innovative solutions are needed to
address the very large energy demands.

Observation 14: The field of HEP faces a significant challenge in
achieving energy efficiency due to its reliance on legacy code and
traditional architectures. The transition to modern, energy-efficient
platforms such as GPUs and FPGAs demands not only rewriting
code but also fundamentally redesigning algorithms to align with the
parallel processing andmemory hierarchies of these platforms. Adopting

Frontiers in Physics 14 frontiersin.org

https://doi.org/10.3389/fphy.2025.1542474
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org

Suarez et al. 10.3389/fphy.2025.1542474

FIGURE 8
Stages in the analysis in High Energy Physics for the example of the ATLAS experiment. Both simulation and real data processing produce different
levels of data files, which are stored in the common ROOT [60] file format. The DAOD files containing structured object data are commonly used as
input for end user analysis [151].

programming models such as SYCL [47], OneAPI [147], and other
portability libraries increases the adaptability and maintainability of
HEP software, facilitating compatibility with novel energy efficient
hardware technologies and meeting future computational demands.

4.1 Data analysis in collider physics

The computing model in HEP involves several different
approaches on how code is developed and how resources are
used. The core part of pre-processing all the data collected at
the experiments and generating Monte Carlo simulation data is
performed using the main analysis frameworks of the experiments,
usually maintained by experienced developers as performance is
critical. Programming languages such as C++ remain prevalent and
in general changes undergo a review procedure before being put into
production. Examples for these core components are Athena [148]
for the ATLAS experiment, the CMS offline software (CMS-SW
[149]) for CMS, or the Belle II software basf2 [150]. At this point of
the analysis chain, rawdata is converted into highly structured object
data, and finally a reduced set can be derived as filtered structured
object data, see Figure 8.

These tasks are executed on the WLCG, which leverages both
dedicated resources and an increasing amount of resources that can
be used opportunistically. Dedicated workload managers operated
by the experiments such as PanDA [152], the CMS workload
manager [153] or DIRAC [154] are used on top of the resource’s own
workload managers such as Slurm [155] or HTCondor [156]. The
experiment-specific workload managers wrap the actual computing
payload within so-called pilots, which monitor the job execution
and report back on resource usage and potential problems to the
experiment-specific workload managers and monitoring systems
as illustrated in Figure 9. The highly different error conditions of
such a large, distributed systems require a significant amount of
manpower to hunt down any issues and to intervene if a drop in
efficiency is detected. Efforts to automate the most common cases
are continuously undertaken [157].

The physicists performing actual data analysis are commonly
leveraging such pre-processed data and pre-generated Monte Carlo
samples in their analysis tasks. They may be using the core
frameworks to further filter the data or develop extensions as part

of their work, and can also execute these on the WLCG. However,
they usually do not work with the raw data directly, but with data
filtering and histogramming tools operating on these pre-filtered
data samples stored in a columnar data format as shown in Figure 10.
Both the centrally organised production usage and the end user
analysis are subject to growing computing demands, due to an actual
increase in the amount and complexity of the data, and to more
complex algorithms employing ML techniques or interactive data
filtering with a short feedback loop.

Most production workflows churn through data event by
event, producing filtered and highly structured data and/or
statistically summing up the individual results. By design, there
is no interference between the individual events during analysis
(assuming effects such as pile-up have been accounted for). For
that reason, the workflows could adapt to dynamic availability of
resources if eviction of the jobs without loss of computation time
was possible. To accommodate this, frameworks need to be extended
to checkpoint either regularly or on demand, as only the current
event number and other status data (such as random seeds) and
the intermediate output need to be stored. This would allow to
suspend the execution without loss of computation time or migrate
the computation to a location with underutilised resources, ideally
close-by. In the current computing model, though, the processes are
executed within a pilot environment that monitors the execution,
reports back resource usage, and sends regular heartbeats to the
central experiment workload management and monitoring systems.
These, in turn, disallow the underlying schedulers of the compute
site to checkpoint and restore running jobs or migrate them to
another node as the meta-schedulers of the experiments would
declare such a job as failed. It should be noted that this can also
cause problems with DVFS due to the expected wallclock time
being calculated from a previously reported benchmarking value.
Removing this limitation would increase the overall efficiency due
to better usage of existing resources, for example, by backfilling
empty slots opportunistically, without blocking main users of these
resources by enabling eviction without loss of computation time.

It has become common in HEP to wrap both the production
workflows and the end user analysis in containers with a well-
defined environment and software packages maintained by the
corresponding communities.While this certainly helpswith analysis
reproducibility and eases the time spent until a new student can

Frontiers in Physics 15 frontiersin.org

https://doi.org/10.3389/fphy.2025.1542474
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org

Suarez et al. 10.3389/fphy.2025.1542474

FIGURE 9
Simplified and generalised schematic of job execution on the WLCG. Experiments operate their own workload managers, which submit pilot jobs to
compute elements at various resource centres. These in turn submit jobs to local schedulers such as Slurm or HTCondor, cloud resources, or even
overlay batch systems grouping various resources into another batch system. The pilots launch the actual payload job and report performance metrics
and heartbeats back to the experiments’ central monitoring infrastructure. Note that most workflows in HEP rather fit a HTC model as analyses are
event-based, i. e., focus is put on the overall throughput aiming to maximise the usage of available resources. Individual compute jobs are commonly
limited to single nodes and can use dedicated HTC resources, which might be built from very heterogeneous systems operated by members of the
community. The overall model of operation bundles together such dedicated resources, HPC resources and cloud resources into one overlay
batch system.

FIGURE 10
Data reduction for end user analysis for the example of the ATLAS
experiment. AOD files with structured object data after reconstruction
are still sizable and derived data sets are produced for end users. CP
relates to common calibration and object selections, and in the final
stage, columnar n-tuple files are produced for consumption by end
user analysis tools [151].

execute code for the first time, it is often also used as a reason not
to port the code to a newer base operating system or new releases of
the base libraries usedwithin the community.However, porting code
is preferred when possible, as it can have positive effects on analysis
correctness, performance, and energy efficiency.

An ongoing trend especially in end-user analysis is a large
push for interactive data analysis, i.e., fast access to columnar data
formats and dynamic filtering for statistical analysis. This requires
not only high bandwidth to the actual storage and access to compute
resources, which are either dedicated to the use case or can be
provisioned on-demand, but also a change to the underlying storage
formats for increased performance when changing access patterns
quickly between different analyses. RNTuple, which is effectively
developed to become the successor of the classic TTree columnar
data storage format for arbitrary C++ types and collections, has
proven to surpass the existing format in terms of performance and
space efficiency. It even outperforms industry standards such as

HDF5 and Apache Parquet in access patterns common to HEP
analyses [158].However, adoption of new formats proves to be a slow
process due to the plethora of different analysis frameworks built on
top of the common ROOT framework [60] and reliance of existing
code on specific behaviour of TTree, as backwards compatibility had
to be broken.

Some of the user and production workflows in HEP rely on
large local scratch space. This is the consequence of modular
tooling relying, e.g., on exchange data formats between event
generators and analysis tools, such as the verbose Les Houches
event file format [159]. In terms of performance and efficiency, it
would be worthwhile to investigate a more direct way to connect
event generators and analysis tools to each other, avoiding on-
disk data exchange formats. But this is hindered by large code
bases and barriers between different developer subcommunities and
programming languages.

Itmust be noted thatmost workflows operate in a data streaming
model, i.e., data is read and written out event-by-event with the
exception of smaller statistical summary output such as histograms.
While there is a requirement for high data throughput especially for
the input files, there is no actual requirement of POSIX semantics
such as locking, directory structures or parallel exclusive file access.
Data is accessed through the common base framework ROOT,
which can deal well with streaming mode or data access through
caches [160]. Still, the operational model usually implies data
replication to the site on which workflows are executed. Some of
the used tools, especially in end user analysis, also expect POSIX
semantics to be available. A stronger decoupling would allow to
switch to other storage systems such as object stores as already
operated in few large HEP resource centres [161], which would help
to reduce the complexity of the necessary storage systems and hence
also improve energy efficiency.

Observation 15: For production usage, the experiment’s workload
managers should be improved to grant checkpointability and eviction

Frontiers in Physics 16 frontiersin.org

https://doi.org/10.3389/fphy.2025.1542474
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org

Suarez et al. 10.3389/fphy.2025.1542474

functionality, as well as to better handle different operational
configurations of the compute resources (e.g., DVFS).

5 Lattice field theory and lattice
quantum chromodynamics

Over the past two decades the Standard Model (SM) of particle
physics has been largely confirmed as a correct effective description
of the interactions of all known fundamental particles.Thediscovery
of the Higgs boson [162, 163] can be argued to mark the transition
from an era of experimentally mapping the SM to the so-called
precision frontier [164] era. In the search for physics beyond the
SM, high-energy experiments at the LHC are complemented by B-
factories such as LHCb [165] and Belle-2 [166] and by high-intensity
experiments in Mainz [167], at Jefferson Lab [168] and at Fermilab
[169]. The latter also hosts the Muon g− 2 [170] experiment aiming
at a substantial improvement of the experimental determination
of the anomalous magnetic moment of the muon, aμ = (g− 2)μ, a
key quantity for which the present experimental value disagrees
with the data-driven theoretical determination based on dispersion
relations [171].

Many of these experimental efforts aim to identify very small
deviations from the SM at high energy scales through imprints at
much lower energy scales. Their expected smallness necessitates
experimental and theoretical precision at the sub-percent level
and below and the study of phenomena at low energies in turn
implies that hadronic and non-perturbative effects play a significant
role. As a result, the achievable theoretical precision depends
crucially on non-perturbative calculations using LFT methods,
chief of which is LQCD. Simulations in LFT in general and
LQCD in particular consume substantial fractions of the available
compute budgets on the largest supercomputers and thus contribute
significantly to the overall energy consumed by HPC systems
(see Figure 1).

The past 20 years have also witnessed first results of LQCD
simulations at physical light quark masses [172–175], removing one
of the largest sources of systematic uncertainty. In order to achieve
the required sub-percent precision with reliable uncertainties,
however, such calculations must fully account for strong and
electromagnetic isospin breaking effects and be performed in large
physical volumes, at fine lattice resolutions and employing very
high statistics. Based on current state-of-the-art algorithms, one can
easily estimate [176] that this necessitates several Exaflop-years of
computing time, showing not only thatmachines beyond the current
generation of Exascale supercomputers are required, but that LFT
practitioners must take special care to make efficient use of these
resources if the overall energy efficiency of HPC is to be improved.
This implies dedicated performance-engineering efforts to ensure
that all employed algorithms are implemented in such a way as
to achieve performance as close to optimal as possible, subject to
machine limitations and the arithmetic intensity of the algorithms
in question.

Members of the LFT community have been trail-blazers
in the HPC field, having contributed to the development of
various architectures over the past 40 years [177–182] as well as
the corresponding algorithms to make use of these machines.
LFT practitioners were also amongst the earliest adopters of

GPU acceleration [183, 184] for key kernels and today, most
state-of-the-art calculations would not be possible without GPU
offloading. Despite the relatively high level of expertise, the
maintenance, improvement and adaptation of the many software
frameworks used for LFT calculations in lock-step with current
hardware trends has become a substantial RSE challenge also for
this community.

Software frameworks in LFT span many hundreds of thousands
of lines of code and have accumulated substantial technical
debt through their evolution. At the same time many of the
algorithms used for LFT calculations have become relatively
complex and the hardware landscape has been subject to significant
technological diversification and an increased pace of change
compared to even just a decade ago (see Section 2.1). As a
consequence, LFT software frameworks now have to target multiple
memory and execution spaces, multiple communication APIs, and
various programming models in order to ensure efficiency and
performance-portability.

While historically large parts of these frameworks were written
by doctoral students or early-career postdoctoral researchers
addressing particular research questions, it is very likely that
current challenges can only be met by more dedicated long-term
investment into software engineering efforts. This is demonstrated
most prominently by the Grid [57, 58] and QUDA [64–66]
libraries, which use abstraction through C++ features and, in
the case of QUDA, autotuning of kernel launch parameters and
communication policies, to provide portable and highly optimised
implementations of efficient data structures, computational kernels
and algorithms for LFT.

More generally, performance-portability approaches such as
Kokkos and SYCL have been explored [185, 186] by the LQCD
community and could serve as a relatively easy-to-learn basis for
the design of mostly performance-portable frameworks to be linked
against libraries like Grid or QUDA for particularly demanding
kernels or algorithms. Programmer-productivity layers such as Grid
Python Toolkit (GPT) [63], Lyncs [61] or PyQUDA [62], which
provide Python interfaces to Grid and QUDA, respectively, can
instead be used by less experienced students or for exploratory work.

Observation 16: Optimised performance-portable libraries such as
Grid and QUDA give access to highly efficient implementations of
various kernels and algorithms and should be used, if possible, to benefit
from the many years of development and performance-engineering
invested in them. They can be combined with programmer-productivity
interfaces like Grid Python Toolkit, Lyncs or PyQUDA to make Grid
and QUDA accessible to those without the necessary background to use
them directly.

A calculation in LFT usually proceeds through two stages
requiring HPC resources. Generally, the first stage consists in the
generation of sets of ensembles of representative field configurations
sampled from a probability distribution given by the action of
the underlying theory using Markov Chain Monte Carlo (MCMC)
methods, usually variants of the Hamiltonian/Hybrid Monte Carlo
(HMC) algorithm [187]. By their nature, the samples in a Markov
chain have a sequential dependency and the ensemble generation
stage in LFT is thus a capability-class computational problem run at
the edge of the strong scaling window in order to minimise the real

Frontiers in Physics 17 frontiersin.org

https://doi.org/10.3389/fphy.2025.1542474
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org

Suarez et al. 10.3389/fphy.2025.1542474

time required for generating independent samples. Energy efficiency
improvements at this stage thus correspond to either significantly
improving or even replacing the HMC as a sampling algorithm
or improving the efficiency of the various kernels and iterative
algorithms that are used in such a simulation.

At the second stage the path integral for observables of interest
is evaluated using the representative field configurations generated
in the first stage. Most observables in LFT are n-point correlation
functions, usually in the time-momentum representation, between
operators carrying different quantum numbers as relevant for the
problem in question. These give access to the masses and other
properties of hadrons as well as matrix elements of operators
of interest between these hadronic states. The evaluation of
these correlation functions involves the computation of fermion
propagators and their combination with projection tensors through
so-called Wick contractions as well as the injection of momentum
through Fourier transforms. These calculations straddle the
boundary between capability and capacity problem classes and are
generally run on as few compute nodes as possible based on their
memory footprint.

Generally speaking both stages are dominated by the repeated
solution of linear systems of the type Dx = b, where D is
a very large, very regular and very sparse and potentially
very poorly-conditioned complex-valued matrix called the Dirac
operator. In state-of-the-art calculations with 1283 ⋅ 256 lattice
points, the vector x represents close to 1010 unknowns with
near-term future calculations set to increase this by at least
one order of magnitude. Depending on the type of fermion
discretisation, the application of D can have an arithmetic
intensity as low as 0.3 in double precision and is thus strongly
memory-bandwidth-bound.

The development of HPC systems since the beginning of
the millennium has been marked by a substantial increase in
the available peak FP64, a commensurate but slower increase
in peak memory bandwidth, and a very slow increase in peak
interconnect bandwidth [188, 189]. This is illustrated in Figure 11
which shows per-node ratios of these three metrics for a
selection of representative systems employed for LFT calculations
(data from [176]). The first two iterations of the BlueGene line
of supercomputers, for example, had memory and interconnect
bandwidths thatwerewell-balanced for sparse stencil type problems,
such that LQCD kernels could achieve in excess of 50% of the peak
FP64 rate even when running on many nodes. By contrast, systems
which rely on GPUs for their raw computational power can only
exploit this potential for problems with high arithmetic intensity
such as dense matrix multiplication.

Even more challenging is the fact that interconnect bandwidth
has not increased to the same extent as memory bandwidth and
floating point performance as it is easily the most significant
bottleneck to scalability on current machines. This is somewhat
offset by the fact that in order to efficiently use the GPUs on
these systems, per-node computational volumes need to be rather
large, resulting in surface-to-volume ratios that allow at least for
some overlap of communication and computation. Even so, these
imbalances negatively affect efficiency such that, on a machine like
JUWELSBooster [15], highly optimised kernels only achieve around
10% of the peak FP64 rate on a single node, dropping quickly as the

problem is strong-scaled. This is shown in Figure 12 for a double-
precision Wilson-clover twisted mass Dirac operator using different
lattice volumes V = 2 ⋅ L4 as implemented in the QUDA [64–66]
library. As a result, even though full system peak performance has
increased by about a factor of 100 betweenBlueGene/L and JUWELS
Booster, for example, the effective improvement for LFT calculations
has been quite a bit lower.

The moderate growth in the computational power effectively
available to LFT calculations has been accompanied by the
development of highly algorithmically efficient solvers based on
the adaptive multigrid (MG) preconditioning of flexible algorithms
such as Flexible Generalised Minimal Residual (FGMRES) or
Generalised Conjugate Residual (GCR), at least for a subset of
lattice formulations employing Wilson and Wilson-clover [190,
191] or twisted mass [192] fermions. By design, MG algorithms
exhibit a low degree of data parallelism at the coarsest level of the
aggregation hierarchy. As a result, the efficient implementation of
these algorithms on GPUs is only possible through fine-grained
optimisations [66] of the underlying computational kernels.
Once optimised in this way, the coarsest-grid kernels become
dominated by a combination of communication API and network
latency, as a result of which the fastest implementations have
moved away from MPI and instead make use of proprietary
solutions such as NVSHMEM for significantly improved
strong-scaling.

The efficiency of MG algorithms is demonstrated in Figure 13,
which shows the time required to invert the Wilson-clover twisted
mass Dirac operator on a 643 ⋅ 128 lattice on 8 JUWELS Booster
nodes in the calculation of the fermion derivative in the HMC
as a function of the quark mass. The comparison is between two
solvers implemented in the QUDA library [64–66], the fastest
available mixed-precision Conjugate Gradient (CG) performing a
single inversion and MG-preconditioned GCR doing two inversions
due to the nature of the problem in question. Even though the MG
solver is running with too small a local computational volume, it
outperforms API by around a factor of 100 at the physical light
quark mass.

Because it is unlikely that the computational imbalance of
HPC systems will improve, it is important for the LFT community
to invest in a broad spectrum of algorithmic research, even
premising that the situation will worsen further. This implies that
the target should be to increase arithmetic intensity and reduce
interconnect requirements whenever possible. Beyond making
use of mixed and adaptive fixed-bit-width [193] representations,
arithmetic intensity can also be increased by modifying solvers
to operate on multiple right-hand-sides where possible [176, 194],
also enabling the usage of vendor library routines for efficient
batched matrix-multiplication in certain cases. Techniques for
communication-avoidance can be applied both at the level of solvers
[195, 196] as well as in sampling algorithms, for instance through
domain-decomposition [197].

At the level of sampling algorithms, the issue of critical slowing
down [198] requires further urgent research to reduce the cost
of generating independent samples at fine lattice resolutions.
Promising directions of study include flow-based sampling
[199], approaches to Fourier acceleration [200–202] and parallel
tempering [203]. As a complement to improved sampling, variance-
reduction techniques for particularly noisy observables, most

Frontiers in Physics 18 frontiersin.org

https://doi.org/10.3389/fphy.2025.1542474
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org

Suarez et al. 10.3389/fphy.2025.1542474

FIGURE 11
Per-node ratios of peak FP64, peak memory bandwidth (MBW) and peak bidirectional interconnect bandwidth (IBW) for representative HPC systems
used for calculations in lattice field theory. Data from [176], and available in [210].

notably those with quark-line disconnected contributions, can
also be effective for improving the overall energy efficiency of
calculations in LFT. A recent example is multigrid multilevel Monte
Carlo [204, 205].

In the calculation of correlation functions, if the number of
particles in the considered state is larger than two, if the number
of required momentum combinations is large, or if the number
of insertion points, n, grows beyond three, overall computational
cost may be dominated by tensor contractions rather than linear
system solves. Sub-expression elimination and the caching of
common intermediate results can thus lead to significant efficiency
improvements compared to the naïve sequential calculation of a
large collection of such correlation functions. It has been shown
[206] that very good use can be made of accelerators once
memory management [207], as well as dependency management
and scheduling [208] have been addressed, and once themany small-
matrix-multiplications are streamed in batches [209] to profit from
GPU stream parallelism.

In conclusion it can be said that in LFT in general and
LQCD in particular energy efficiency is almost synonymous
with performance optimisation and algorithmic research. In light
of current hardware trends, this implies on the one hand that
performance-portability and dedicated performance-engineering
are central pillars that allow to maximise machine utilisation
and therefore energy efficiency. On the other hand, the problem
of critical slowing down and the expected further growth of
the imbalance between computational power and memory, as
well as interconnect bandwidth, necessitate a broad spectrum
of algorithmic study aimed at improved sampling algorithms,
variance reduction techniques, and communication-avoiding
linear solvers.

Observation 17: Continued algorithmic research is essential to tackle
variance reduction for noisy observables as well as the issue of
critical slowing down through improved or accelerated sampling. In
addition, the growing imbalance between computational power and
memory as well as interconnect bandwidth must be addressed through
communication-avoidance approaches.

FIGURE 12
Strong scaling study of the double-precision Wilson-clover twisted
mass Dirac operator as implemented in the QUDA [64–66] library for
different lattice volumes V = 2 ⋅ L4 on JUWELS Booster [15]. The points
indicate the performance per GPU in GFLOP/s (higher is better) for the
different cases with lines added to guide the eye. The right-hand axis
indicates the performance relative to the fastest case in percent. The
L = 64 problem size does not fit on less than 4 GPUs. NVIDIA specifies
a peak FP64 rate of 9.7 TFLOP/s for the A100 GPU. Data
available in [210].

6 Conclusion

HPC systems are amongst the scientific instruments with the
highest energy consumption. To improve their energy efficiency,
a combined effort from technology providers, system operators,
software developers, and users is required. In particular, application
developers and users need to be conscious of energy efficiency from
two perspectives: (i) they need to know that energy optimisation
techniques applied at hardware and system management levels do
have an impact on how they experience HPC systems, and (ii) they
need to learn how to optimise their codes and execution scripts to
minimise the energy consumed by their own jobs. This is especially
important in the fields of astrophysics, high-energy physics, and

Frontiers in Physics 19 frontiersin.org

https://doi.org/10.3389/fphy.2025.1542474
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org

Suarez et al. 10.3389/fphy.2025.1542474

FIGURE 13
Comparison of time-to-solution (lower is better) for the inversion of
the Wilson-clover twisted mass Dirac operator in the calculation of
the fermion derivative on a 643 ⋅ 128 lattice on 8 JUWELS Booster [15]
nodes as a function of the quark mass, μ using the fastest
mixed-precision conjugate gradient algorithm available performing a
single solve (red), and multigrid-preconditioned GCR performing two
solves and including unavoidable overheads (blue). The dashed
vertical lines indicate the physical bare average up/down (light),
strange and charm quark masses in lattice units. Both algorithms are
implemented in the QUDA library [64–66]. Data available in [210].

lattice field theory, which consume large volumes of compute hours
on HPC resources.

From the system design and operations, the growing hardware
heterogeneity (CPUs, GPUs and other accelerators) observed in the
recent years is a direct consequence of trying to improve performance
perWattonHPCsystems.Heterogeneouscomputersaremoredifficult
to program, which hinders application portability across systems.
High-level programming models, frameworks, and domain-specific
languages can help to alleviate the burden, but users should enploy the
correct backends and libraries on each platform. Data management
is also a main concern for energy efficiency and HPC users should
strive to keep their data as local as possible, hide communication
behind computation tasks, and employ I/O optimised libraries to
optimally use the file system. HPC users must also be aware that they
may easily experience performance variability even on the same HPC
machine across equal runs, since system management automatically
adjusts voltage and frequency of compute devices during operations,
and may even reallocate jobs to maximise system throughput for a
given energy.Therefore, understanding performancemetrics requires
consultation of monitoring information and direct contact with
HPC user support teams.

What is solely in the hands of the application developers and
users is making the application codes themselves more energy
efficient, and running them in optimal configurations. Based on our
experience, we assume in this paper that nowadays most application
developers start their work building on an existing code, which is
already parallelised.3 Their task is then to either add somenewaspect

3 If the start point would be a serial code that the developer is parallelising,

it is important to conduct regression tests to guarantee consistency

between the results of serial and parallel versions.

to the code, making the simulation more realistic, or improving
the performance and scaling of the existing implementation. This
means first analysing the code with performance analysis tools,
detecting inefficiencies, and making the necessary modifications
to maximise the single-node performance (considering also using
reduced or mixed arithmetic precision), to then improve its scaling
when running in parallel on a growing number of nodes. Once
this is done, it should be explored whether the application is
tolerant to reductions in the operational frequency of the hardware.
Furthermore, application configuration and job settings should
always be verified before starting long production runs. The
most efficient configuration is likely to be different between HPC
systems with diverse architectures, and one cannot rely on pre-
tuned configurations. Energy is also saved by ensuring long-
term sustainability and availability of any code development, since
this avoids iterating past efforts and errors over and over again.
Professional software development strategies, including version
control, automated testing, CI/CD pipelines, and applying FAIR
principles for code and data management are therefore crucial.

It must be stressed that the most important asset in any
field is its people. The long-term future of HPC depends on the
ability of the community to attract, train and keep the engagement
of talents from the younger generations. Therefore, it must be
invested in training future HPC experts and providing them with
the necessary support and a tolerant and open environment that
enable minority groups to enter the field and motivate all to stay.
Training courses focused on algorithms, performance analysis and
optimisations, data access patterns and frameworks must exist for
each user community. It is also crucial to establish career paths for
HPC experts, in particular for research software engineers (RSE),
who are necessary to optimise code, both from the energy and
performance perspective. Unfortunately, the traditional view in the
domain sciences determines the academic merits of its members
based only on their publication record in the highest impact journals
from their fields. This must change, so that application software
releases and publications about code improvements are equally
valued, recognising their crucial contributions to the advancement
of science.

Author contributions

ES: Conceptualization,Writing – original draft,Writing – review
and editing. JA: Writing – original draft, Writing – review and
editing. MF: Writing – original draft, Writing – review and editing.
OF: Writing – original draft, Writing – review and editing. MG:
Writing – original draft, Writing – review and editing. BK: Writing
– original draft, Writing – review and editing. SP: Writing – original
draft, Writing – review and editing.

Funding

The author(s) declare that financial support was received for the
research and/or publication of this article. This work was funded
in part by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) as part of the CRC 1639/1 NuMeriQS –
511713970. SP acknowledges funding by the DFG as part of the

Frontiers in Physics 20 frontiersin.org

https://doi.org/10.3389/fphy.2025.1542474
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org

Suarez et al. 10.3389/fphy.2025.1542474

PUNCH4NFDI project (project number 460248186) and by the
project “NRW-Cluster for data intensive radio astronomy: Big Bang
to Big Data (B3D)” funded through the programme “Profilbildung
2020”, an initiative of theMinistry of Culture and Science of the State
of North Rhine-Westphalia.

Acknowledgments

The authors thank Florian Janetzko (JSC) for providing access to
the user statistics represented in Figure 1.

Conflict of interest

Author ES was employed by the company SiPEARL.
The remaining authors declare that the research was

conducted in the absence of any commercial or financial
relationships that could be construed as a potential conflict
of interest.

The author(s) declared that theywere an editorial boardmember
of Frontiers, at the time of submission. This had no impact on the
peer review process and the final decision.

Generative AI statement

Theauthor(s) declare thatGenerativeAIwas used in the creation
of this manuscript. The tool deepl was used in just a few paragraphs,
exclusively to perform grammar corrections. No content has been
generated with any GenerativeAI tools.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations,
or those of the publisher, the editors and the reviewers. Any product
that may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

References

1. Skuse B. The third pillar. Phys World (2019) 32:40–3. doi:10.1088/2058-
7058/32/3/33

2. Weinzierl T. The pillars of science. Cham: Springer International Publishing (2021).
p. 3–9. doi:10.1007/978-3-030-76194-3_1

3. Sevilla J, Heim L, Ho A, Besiroglu T, Hobbhahn M, Villalobos P. Compute trends
across three eras of machine learning. In: 2022 international joint conference on neural
networks (IJCNN) (2022). p. 1–8. doi:10.1109/IJCNN55064.2022.9891914

4. Jevons W. The coal question: an enquiry concerning the progress of the nation, and
the probable exhaustion of our coal-mines. In: making of the modern world. Part, 2.
Macmillan (1865).

5. CSCS. Annual report 2023 from the Swiss national supercomputing centre (2023).
Available online at: https://report2023.cscs.ch/facts-and-figures (Accessed January 23,
2025).

6. EuroHPC Joint Undertaking (2022). EuroHPC JU 2022 consolidated annual
activity report. Available online at: https://eurohpc-ju.europa.eu/document/download/
c7a5fc77-4236-41d8-979d-56af07607c25_en?filename=Annex%20to%20Decision%2012.
2023-EuroHPC%20JU%20Consolidated%20Annual%20Activity%20Report%202022_0.
pdf (Accessed 2025 January 23)

7. HLRS. HLRS annual report 2023 (2023). Available online at: https://www.hlrs.
de/about/profile/annual-report (Accessed January 23, 2025).

8. NERSC. National energy research scientific computing CenterTable of contents,
2023 annual report (2023). Available online at: https://www.nersc.gov/assets/Annual-
Reports/2023-NERSC-Annual-Report-compressed.pdf (Accessed January 23, 2025).

9. European Commission. EU energy efficiency directive (2024). Available online
at: https://energy.ec.europa.eu/topics/energy-efficiency/energy-efficiency-targets-
directive-and-rules/energy-efficiency-directive_en (Accessed October 14, 2024).

10. Moore GE. Cramming more components onto integrated circuits. In: IEEE solid-
state circuits society newsletter [reprinted from electronics (1965)] (2006). p. 33–5DOI.
doi:10.1109/N-SSC.2006.4785860

11. AMD. AMD CDNA 3 architecture (2024). Available online at: https://www.amd.
com/content/dam/amd/en/documents/instinct-tech-docs/white-papers/amd-cdna-3-
white-paper.pdf (Accessed 2024 12 August).

12. NVIDIA (2024). Grace-Hopper architecture. Available online at: https://
resources.nvidia.com/en-us-grace-cpu/nvidia-grace-hopper (Accessed 2024 12
August)

13. Suarez E, Eicker N, Lippert T. Modular supercomputing architecture: from idea
to production; 3rd. CRC Press (2019) 3(chap. 9):223–51. doi:10.1201/9781351036863

14. Suarez E, Eicker N, Moschny T, Pickartz S, Clauss C, Plugaru V, et al. (2022).
Modular supercomputing architecture. doi:10.5281/zenodo.6508394

15. Alvarez D. JUWELS cluster and booster: exascale pathfinder with modular
supercomputing architecture at juelich supercomputing centre. J large-scale Res Facil
(2021) 7:A183. doi:10.17815/jlsrf-7-183

16. CINECA (2024). Leonardo: pre-exascale supercomputer. Available online at:
https://leonardo-supercomputer.cineca.eu/ (Accessed 2024 12 August)

17. Jülich SupercomputingCentre (2024). JUPITER: the arrival of exascale in Europe.
Available online at: https://www.fz-juelich.de/en/ias/jsc/jupiter (Accessed 2024 12
August)

18. LuxProvide (2024). MeluXina. Available online at: https://www.luxprovide.
lu/meluxina/ (Accessed 2024 12 August)

19. The University of Tokyo (2024). Wisteria/BDEC. Available online at: https://
www.cc.u-tokyo.ac.jp/en/supercomputer/wisteria/service/ (Accessed 2024 12 August)

20. Simmendinger C, Marquardt M, Mäder J, Schneider R. Powersched -
managing power consumption in overprovisioned systems. In: IEEE international
conference on cluster computing workshops (CLUSTER workshops) (2024).
doi:10.1109/CLUSTERWorkshops61563.2024.00012

21. Corbalán J, Brochard L (2018). Ear: energy management framework for
supercomputers. Link

22. Ilsche T, Schrader S, Schöne R. Optimizing idle power of hpc systems:
practical insights and methods. In: 2024 IEEE international conference
on cluster computing workshops (CLUSTER workshops) (2024). p. 19–25.
doi:10.1109/CLUSTERWorkshops61563.2024.00014

23. Sundriyal V, Sosonkina M. Reducing idle power consumption in high
performance systems. In: 2017 international conference on computational science and
computational intelligence (CSCI) (2017). p. 1629–32. doi:10.1109/CSCI.2017.283

24. Tröpgen H, Schöne R, Ilsche T, Hackenberg D. 16 years of spec power: an
analysis of x86 energy efficiency trends. In: 2024 IEEE international Conference
on cluster computing workshops (CLUSTER workshops) (IEEE) (2024). p. 76–80.
doi:10.1109/clusterworkshops61563.2024.00020

25. Bhalachandra S, Porterfield A, Prins JF. Using dynamic duty cycle modulation
to improve energy efficiency in high performance computing. In: Proceedings
of the 2015 IEEE international parallel and distributed processing symposium
workshop (USA: IEEE computer society), 15. IPDPSW (2015). p. 911–8. doi:10.1109/
IPDPSW.2015.144

26. Bhalachandra S, Porterfield A, Olivier SL, Prins JF, Fowler RJ. Improving energy
efficiency in memory-constrained applications using core-specific power control.
In: Proceedings of the 5th international workshop on energy efficient supercomputing.
Association for Computing Machinery (2017). E2SC’17. doi:10.1145/3149412.
3149418

27. Kodama Y, Odajima T, Arima E, Sato M. Evaluation of power management
control on the supercomputer fugaku. In: 2020 IEEE international conference on cluster
computing (CLUSTER) (2020). p. 484–93. doi:10.1109/CLUSTER49012.2020.00069

28. Auweter A, Bode A, Brehm M, Brochard L, Hammer N, Huber H, et al. A
case study of energy aware scheduling on supermuc. In: JM Kunkel, T Ludwig, HW
Meuer, editors. Supercomputing. Springer International Publishing (2014). p. 394–409.
doi:10.1007/978-3-319-07518-1_25

Frontiers in Physics 21 frontiersin.org

https://doi.org/10.3389/fphy.2025.1542474
https://doi.org/10.1088/2058-7058/32/3/33
https://doi.org/10.1088/2058-7058/32/3/33
https://doi.org/10.1007/978-3-030-76194-3\string_1
https://doi.org/10.1109/IJCNN55064.2022.9891914
https://report2023.cscs.ch/facts-and-figures
https://eurohpc-ju.europa.eu/document/download/c7a5fc77-4236-41d8-979d-56af07607c25_en?filename=Annex%20to%20Decision%2012.2023-EuroHPC%20JU%20Consolidated%20Annual%20Activity%20Report%202022_0.pdf
https://eurohpc-ju.europa.eu/document/download/c7a5fc77-4236-41d8-979d-56af07607c25_en?filename=Annex%20to%20Decision%2012.2023-EuroHPC%20JU%20Consolidated%20Annual%20Activity%20Report%202022_0.pdf
https://eurohpc-ju.europa.eu/document/download/c7a5fc77-4236-41d8-979d-56af07607c25_en?filename=Annex%20to%20Decision%2012.2023-EuroHPC%20JU%20Consolidated%20Annual%20Activity%20Report%202022_0.pdf
https://eurohpc-ju.europa.eu/document/download/c7a5fc77-4236-41d8-979d-56af07607c25_en?filename=Annex%20to%20Decision%2012.2023-EuroHPC%20JU%20Consolidated%20Annual%20Activity%20Report%202022_0.pdf
https://www.hlrs.de/about/profile/annual-report
https://www.hlrs.de/about/profile/annual-report
https://www.nersc.gov/assets/Annual-Reports/2023-NERSC-Annual-Report-compressed.pdf
https://www.nersc.gov/assets/Annual-Reports/2023-NERSC-Annual-Report-compressed.pdf
https://energy.ec.europa.eu/topics/energy-efficiency/energy-efficiency-targets-directive-and-rules/energy-efficiency-directive_en
https://energy.ec.europa.eu/topics/energy-efficiency/energy-efficiency-targets-directive-and-rules/energy-efficiency-directive_en
https://doi.org/10.1109/N-SSC.2006.4785860
https://www.amd.com/content/dam/amd/en/documents/instinct-tech-docs/white-papers/amd-cdna-3-white-paper.pdf
https://www.amd.com/content/dam/amd/en/documents/instinct-tech-docs/white-papers/amd-cdna-3-white-paper.pdf
https://www.amd.com/content/dam/amd/en/documents/instinct-tech-docs/white-papers/amd-cdna-3-white-paper.pdf
https://resources.nvidia.com/en-us-grace-cpu/nvidia-grace-hopper
https://resources.nvidia.com/en-us-grace-cpu/nvidia-grace-hopper
https://doi.org/10.1201/9781351036863
https://doi.org/10.5281/zenodo.6508394
https://doi.org/10.17815/jlsrf-7-183
https://leonardo-supercomputer.cineca.eu/
https://leonardo-supercomputer.cineca.eu/
https://www.fz-juelich.de/en/ias/jsc/jupiter
https://www.luxprovide.lu/meluxina/
https://www.luxprovide.lu/meluxina/
https://www.cc.u-tokyo.ac.jp/en/supercomputer/wisteria/service/
https://www.cc.u-tokyo.ac.jp/en/supercomputer/wisteria/service/
https://doi.org/10.1109/CLUSTERWorkshops61563.2024.00012
https://doi.org/10.1109/CLUSTERWorkshops61563.2024.00014
https://doi.org/10.1109/CSCI.2017.283
https://doi.org/10.1109/clusterworkshops61563.2024.00020
https://doi.org/10.1109/IPDPSW.2015.144
https://doi.org/10.1109/IPDPSW.2015.144
https://doi.org/10.1145/3149412.3149418
https://doi.org/10.1145/3149412.3149418
https://doi.org/10.1109/CLUSTER49012.2020.00069
https://doi.org/10.1007/978-3-319-07518-1_25
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org

Suarez et al. 10.3389/fphy.2025.1542474

29. Solórzano ALV, Sato K, Yamamoto K, Shoji F, Brandt JM, Schwaller B,
et al. Toward sustainable HPC: in-production deployment of incentive-based power
efficiency mechanism on the fugaku supercomputer. In: 2024 SC24: international
conference for high performance computing, networking, storage and analysis SC. IEEE
Computer Society (2024). p. 342–57. doi:10.1109/SC41406.2024.00030

30. Jülich Supercomputing Centre. LLview job monitoring (2024). Available online
at: https://www.fz-juelich.de/en/ias/jsc/services/user-support/software-tools/llview
(Accessed October 20, 2024).

31. The ClusterCockpit Project. ClusterCockpit generic datastructure
specification (2024). Available online at: https://github.com/ClusterCockpit/cc-
specifications/tree/master/datastructures (Accessed October 25, 2024).

32. Li J, Michelogiannakis G, Cook B, Cooray D, Chen Y. Analyzing resource
utilization in an HPC system: a case study of NERSC’s perlmutter. In: International
conference on high performance computing (ISC) (2023). p. 297–316. doi:10.1007/978-
3-031-32041-5_16

33. Maloney S, Suarez E, Eicker N, Guimarães F, FringsW.Analyzing hpcmonitoring
data with a view towards efficient resource utilization. In: 2024 IEEE 36th international
symposium on computer architecture and high performance computing (SBAC-PAD)
(2024). p. 170–81. doi:10.1109/SBAC-PAD63648.2024.00023

34. Tarraf A, Schreiber M, Cascajo A, Besnard J-B, Vef M-A, Huber D,
et al. Malleability in modern hpc systems: current experiences, challenges,
and future opportunities. IEEE Trans Parallel Distrib Syst (2024) 35:1551–64.
doi:10.1109/TPDS.2024.3406764

35. Ishiyama T. Supercomputer simulations of structure formation in the universe.
Proc Int Astron Union (2016) 12:10–6. doi:10.1017/s174392131700045x

36. Nordlund Å, Ramsey JP, Popovas A, Küffmeier M. dispatch: a numerical
simulation framework for the exa-scale era – i. fundamentals. Mon Not R Astron Soc
(2018) 477:624–38. doi:10.1093/mnras/sty599

37. Tóth G, van der Holst B, Sokolov IV, De Zeeuw DL, Gombosi TI, Fang F, et al.
Adaptive numerical algorithms in space weather modeling. J Comput Phys (2012)
231:870–903. doi:10.1016/j.jcp.2011.02.006

38. Verbeke C, Baratashvili T, Poedts S. ICARUS, a new inner heliospheric
model with a flexible grid. Astron Astrophys (2022) 662:A50. doi:10.1051/0004-
6361/202141981

39. Xia C, Teunissen J, Mellah IE, Chané E, Keppens R. MPI-AMRVAC 2.0 for solar
and astrophysical applications. Astrophys J Suppl Ser (2018) 234:30. doi:10.3847/1538-
4365/aaa6c8

40. Hotta H, Kusano K. Solar differential rotation reproduced with high-resolution
simulation. Nat Astron (2021) 5:1100–2. doi:10.1038/s41550-021-01459-0

41. Teichgräber JMR. Julia: a competitive high-level choice for performance
portability in hpc? In: MPCDF seminar (performance) portable programming of HPC
applications. Link (2022).

42. NVIDIA. CUDA toolkit (2024). Available online at: https://developer.nvidia.
com/cuda-toolkit (Accessed October 10, 2024).

43. AMD. HIP (2024). Available online at: https://github.com/ROCm/HIP
(Accessed October 12, 2024).

44. Cutress I, Shilov A (2019). The larrabee chapter closes: intel’s final Xeon
Phi processors now in EOL. Available online at: https://www.anandtech.
com/show/14305/intel-xeon-phi-knights-mill-now-eol (Accessed 2024 12 August)

45. Python Software Foundation (2025). Python. Available online at: https://www.
python.org (Accessed 2025 02 August)

46. OpenMP Architecture Review Board. OpenMP (2024). Available online at:
https://www.openmp.org/(Accessed October 15, 2024).

47. Khronos. SYCL (2024). Available online at: https://www.khronos.
org/sycl/(Accessed October 10, 2024).

48. Trott CR, Lebrun-Grandié D, Arndt D, Ciesko J, Dang V, Ellingwood N, et al.
Kokkos 3: programming model extensions for the exascale era. IEEE Trans Parallel
Distributed Syst (2022) 33:805–17. doi:10.1109/TPDS.2021.3097283

49. Zenker E, Worpitz B, Widera R, Huebl A, Juckeland G, Knüpfer A,
et al. Alpaka – an abstraction library for parallel kernel acceleration. In: IEEE
international parallel and distributed processing symposium workshops (IPDPSW)
(2016). doi:10.1109/IPDPSW.2016.50

50. Beckingsale DA, Burmark J, Hornung R, Jones H, Killian W, Kunen AJ, et al.
(2019). Raja: portable performance for large-scale scientific applications. In 2019
IEEE/ACM international workshop on performance, portability and productivity in HPC
(P3HPC). 71–81. doi:10.1109/P3HPC49587.2019.00012

51. Dykes T, Foyer C, Richardson H, Svedin M, Podobas A, Jansson N, et al. Mamba:
portable array-based abstractions for heterogeneous high-performance systems. In:
2021 international workshop on performance, portability and productivity in HPC
(P3HPC) (2021). p. 10–21. doi:10.1109/P3HPC54578.2021.00005

52. Ben-Nun T, de Fine Licht J, Ziogas AN, Schneider T, Hoefler T. Stateful dataflow
multigraphs: a data-centric model for performance portability on heterogeneous
architectures. In: Proceedings of the international conference for high performance
computing, networking, storage and analysis. New York, NY, USA: Association for
Computing Machinery (2019). SC ’19. doi:10.1145/3295500.3356173

53. Godoy WF, Valero-Lara P, Dettling TE, Trefftz C, Jorquera I, Sheehy T,
et al. Evaluating performance and portability of high-level programming models:
julia, python/numba, and kokkos on exascale nodes. In: 2023 IEEE international
parallel and distributed processing symposium workshops (IPDPSW) (2023). p. 373–82.
doi:10.1109/IPDPSW59300.2023.00068

54. Hunold S, Steiner S. Benchmarking julia’s communication performance: is
julia hpc ready or full hpc? In: IEEE/ACM performance modeling, benchmarking
and simulation of high performance computer systems (PMBS) (2020).
doi:10.1109/PMBS51919.2020.00008

55. Vay J-L, Huebl A, AlmgrenA, Amorim LD, Bell J, Fedeli L, et al. (2021).Modeling
of a chain of three plasma accelerator stages with the warpx electromagnetic pic code
on gpus. Phys Plasmas 28. doi:10.1063/5.0028512

56. Pereira R, Couto M, Ribeiro F, Rua R, Cunha J, Fernandes Ja. P, et al. Energy
efficiency across programming languages: how do energy, time, and memory relate? In:
Proceedings of the 10th ACM SIGPLAN international conference on software language
engineering. New York, NY, USA: Association for Computing Machinery (2017). p.
256–67. SLE 2017. doi:10.1145/3136014.3136031

57. Boyle PA, Cossu G, Yamaguchi A, Portelli A. Grid: a next generation
data parallel C++ QCD library. PoS LATTICE2015 (2016) 023. doi:10.22323/
1.251.0023

58. Yamaguchi A, Boyle P, Cossu G, Filaci G, Lehner C, Portelli A. Grid: OneCode
and FourAPIs. PoS LATTICE2021 (2022) 035. doi:10.22323/1.396.0035

59. Edwards RG, Joo B. The Chroma software system for lattice QCD. Nucl Phys B
Proc Suppl (2005) 140:832–4. doi:10.1016/j.nuclphysbps.2004.11.254

60. Brun R, Rademakers F, Canal P, Naumann A, Couet O, Moneta L, et al. (2020).
root-project/root: v6.18/02. doi:10.5281/zenodo.3895860

61. Bacchio S, Finkenrath J, Stylianou C. Lyncs-API: a Python API for lattice QCD
applications. PoS LATTICE2021 (2022) 542:542. doi:10.22323/1.396.0542

62. Jiang X, Shi C, Chen Y, Gong M, Yang Y-B. Use quda for lattice qcd calculation
with python. arXiv:2411 (2024):08461. doi:10.48550/arXiv.2411.08461

63. Lehner C, et al. (2024). Grid Python toolkit (GPT). Available online at: https://
github.com/lehner/gpt (Accessed 2024 12 March)

64. Babich R, Clark MA, Joo B, Shi G, Brower RC, Gottlieb S (2011). Scaling
lattice QCD beyond 100 GPUs. In SC11 international conference for high performance
computing, networking, storage and analysis seattle, Washington, November 12-18, 2011.
doi:10.1145/2063384.2063478

65. ClarkMA, Babich R, Barros K, Brower RC, Rebbi C. Solving LatticeQCD systems
of equations using mixed precision solvers on GPUs. Comput Phys Commun (2010)
181:1517–28. doi:10.1016/j.cpc.2010.05.002

66. Clark MA, Joó B, Strelchenko A, Cheng M, Gambhir A, Brower RC (2016).
Accelerating lattice QCD multigrid on GPUs using fine-grained parallelization. In
SC ’16: proceedings of the international conference for high performance computing,
networking, storage and analysis. 795–806. doi:10.1109/SC.2016.67

67. Gombosi TI, Chen Y, Huang Z, Manchester WB, Sokolov I, Toth G, et al.
Adaptive global magnetohydrodynamic simulations. In: Space and astrophysical
plasma simulation. Cham: Springer International Publishing (2023). p. 211–25.
doi:10.1007/978-3-031-11870-8_7

68. Keppens R, Teunissen J, Xia C, Porth O. MPI-AMRVAC: a parallel, grid-
adaptive PDE toolkit. Comput Math Appl (2021) 81:316–33. doi:10.1016/j.camwa.
2020.03.023

69. Lani A, Villedie N, Bensassi K, Koloszar L, Vymazal M, Yalim SM, et al.
COOLFluiD: an open computational platform for multi-physics simulation and
research. In: 21st AIAA computational fluid dynamics conference. Reston, Virginia:
American Institute of Aeronautics and Astronautics (2013). doi:10.2514/6.2013-2589

70. Godoy W, Valero-Lara P, Teranishi K, Balaprakash P, Vetter J. Evaluation of
openai codex for hpc parallel programming models kernel generation. In: Proceedings
of the 52nd International Conference on Parallel Processing Workshops 23. New York,
NY, USA: Association for Computing Machinery, ICPP Workshops ’ (2023). p. 136–44.
doi:10.1145/3605731.3605886

71. Nichols D, Davis JH, Xie Z, Rajaram A, Bhatele A Can large language models
write parallel code?. New York, NY, USA: Association for Computing Machinery (2024)
281–94. doi:10.1145/3625549.3658689

72. Forum MPI. Message passing interface documentation (2024). Available online
at: https://www.mpi-forum.org/docs/(Accessed November 30, 2024).

73. Numrich RW, Reid J. Co-array fortran for parallel programming. SIGPLAN
Fortran Forum (1998) 17:1–31. doi:10.1145/289918.289920

74. Carlson WW, Draper JM, Culler DE, Yelick KA, Brooks ED, Warren KH.
Introduction to upc and language specification. CorpusID (2000):59868665.

75. Nieplocha J, Palmer B, Tipparaju V, Krishnan M, Trease H, Aprà E. Advances,
applications andperformance of the global arrays sharedmemory programming toolkit.
Int J High Perform Comput Appl (2006) 20:203–31. doi:10.1177/1094342006064503

76. Germain JDd. S, McCorquodale J, Parker SG, Johnson CR. Uintah: a
massively parallel problem solving environment. In: Proceedings the ninth international
symposium on high-performance distributed computing. IEEE (2000). p. 33–41.
doi:10.1109/HPDC.2000.868632

Frontiers in Physics 22 frontiersin.org

https://doi.org/10.3389/fphy.2025.1542474
https://doi.org/10.1109/SC41406.2024.00030
https://www.fz-juelich.de/en/ias/jsc/services/user-support/software-tools/llview
https://github.com/ClusterCockpit/cc-specifications/tree/master/datastructures
https://github.com/ClusterCockpit/cc-specifications/tree/master/datastructures
https://doi.org/10.1007/978-3-031-32041-5_16
https://doi.org/10.1007/978-3-031-32041-5_16
https://doi.org/10.1109/SBAC-PAD63648.2024.00023
https://doi.org/10.1109/TPDS.2024.3406764
https://doi.org/10.1017/s174392131700045x
https://doi.org/10.1093/mnras/sty599
https://doi.org/10.1016/j.jcp.2011.02.006
https://doi.org/10.1051/0004-6361/202141981
https://doi.org/10.1051/0004-6361/202141981
https://doi.org/10.3847/1538-4365/aaa6c8
https://doi.org/10.3847/1538-4365/aaa6c8
https://doi.org/10.1038/s41550-021-01459-0
https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cuda-toolkit
https://github.com/ROCm/HIP
https://www.anandtech.com/show/14305/intel-xeon-phi-knights-mill-now-eol
https://www.anandtech.com/show/14305/intel-xeon-phi-knights-mill-now-eol
https://www.python.org
https://www.python.org
https://www.openmp.org/
https://www.openmp.org/
https://www.khronos.org/sycl/
https://www.khronos.org/sycl/
https://doi.org/10.1109/TPDS.2021.3097283
https://doi.org/10.1109/IPDPSW.2016.50
https://doi.org/10.1109/P3HPC49587.2019.00012
https://doi.org/10.1109/P3HPC54578.2021.00005
https://doi.org/10.1145/3295500.3356173
https://doi.org/10.1109/IPDPSW59300.2023.00068
https://doi.org/10.1109/PMBS51919.2020.00008
https://doi.org/10.1063/5.0028512
https://doi.org/10.1145/3136014.3136031
https://doi.org/10.22323/1.251.0023
https://doi.org/10.22323/1.251.0023
https://doi.org/10.22323/1.396.0035
https://doi.org/10.1016/j.nuclphysbps.2004.11.254
https://doi.org/10.5281/zenodo.3895860
https://doi.org/10.22323/1.396.0542
https://doi.org/10.48550/arXiv.2411.08461
https://github.com/lehner/gpt
https://github.com/lehner/gpt
https://doi.org/10.1145/2063384.2063478
https://doi.org/10.1016/j.cpc.2010.05.002
https://doi.org/10.1109/SC.2016.67
https://doi.org/10.1007/978-3-031-11870-8_7
https://doi.org/10.1016/j.camwa.2020.03.023
https://doi.org/10.1016/j.camwa.2020.03.023
https://doi.org/10.2514/6.2013-2589
https://doi.org/10.1145/3605731.3605886
https://doi.org/10.1145/3625549.3658689
https://www.mpi-forum.org/docs/
https://doi.org/10.1145/289918.289920
https://doi.org/10.1177/1094342006064503
https://doi.org/10.1109/HPDC.2000.868632
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org

Suarez et al. 10.3389/fphy.2025.1542474

77. Kale LV, Krishnan S. Charm++: a portable concurrent object oriented system
based on c++. SIGPLAN Not. (1993) 28:91–108. doi:10.1145/167962.165874

78. Bosilca G, Bouteiller A, Danalis A, Faverge M, Hérault T, Dongarra JJ. Parsec:
exploiting heterogeneity to enhance scalability. Comput Sci and Eng (2013) 15:36–45.
doi:10.1109/MCSE.2013.98

79. Bauer M, Treichler S, Slaughter E, Aiken A. Legion: expressing locality and
independence with logical regions. In: SC’12: proceedings of the international conference
on high performance computing, networking, storage and analysis. IEEE (2012). p. 1–11.
doi:10.1109/SC.2012.71

80. Diehl P, Brandt SR, Kaiser H. Shared memory parallelism in modern c++ and
hpx. SN Computer Sci (2024) 5:459. doi:10.1007/s42979-024-02769-6

81. Kaiser H, Heller T, Adelstein-Lelbach B, Serio A, Fey D. Hpx: a task based
programming model in a global address space. In: Proceedings of the 8th international
conference on partitioned global address space programming models (2014). p. 1–11.
doi:10.1145/2676870.267688

82. Thoman P, Dichev K, Heller T, Iakymchuk R, Aguilar X, Hasanov K, et al.
A taxonomy of task-based parallel programming technologies for high-performance
computing. The J Supercomputing (2018) 74:1422–34. doi:10.1007/s11227-018-2238-4

83. Daiß G, Simberg M, Reverdell A, Biddiscombe J, Pollinger T, Kaiser H, et al.
Beyond fork-join: Integration of performance portable kokkos kernels with hpx.
In: 2021 IEEE international parallel and distributed processing symposium workshops
(IPDPSW) (2021). p. 377–86. doi:10.1109/IPDPSW52791.2021.00066

84. DaißG, Singanaboina SY,Diehl P, KaiserH, PflügerD. Frommerging frameworks
tomerging stars: experiences using hpx, kokkos and simd types. In: 2022 IEEE/ACM7th
international workshop on extreme scale programming models and middleware (ESPM2)
(2022). p. 10–9. doi:10.1109/ESPM256814.2022.00007

85. BSC. Dimemas: predict parallel performance using a single CPUmachine (2019).
Available online at: https://tools.bsc.es/dimemas (Accessed 2024 12 August).

86. Ene D, Anireh VI (2022). Performance evaluation of parallel algorithms. Int J
Computer Sci Eng 9, 10–4. doi:10.14445/23488387/ijcse-v9i6p102

87. Corbalan J, Smolenko A, Amico MD, Llort G, Mercadal E, Gimeenez J, et al.
Deliverable D2.3: Benchmarking, evaluation 1237 and prediction report (2019).
Available online at: https://deep-projects.eu/wp-content/uploads/2023/09/DEEP-
EST_D23_Benchmarking_evaluation_and_prediction_report_v10.pdf (Accessed
January 27, 2025).

88. The HDF Group (2025). Hierarchical data format, version 5

89. Juelich (2024). SIONLib. Available online at: https://apps.fz-juelich.
de/jsc/sionlib/docu/index.html. (Accessed 2024 12 January)

90. CERN openlab (2024). CERN openlab project with Cerabyte. Available online at:
https://openlab.cern/cerabyte (Accessed 2024 12 January)

91. Wilkinson MD, Dumontier M, Aalbersberg IJ, Appleton G, Axton M, Baak A,
et al. The FAIR guiding principles for scientific data management and stewardship.
Scientific Data (2016) 3:160018. doi:10.1038/sdata.2016.18

92. Kawazura Y, Kimura SS. Inertial range of magnetorotational turbulence. Sci Adv
(2024) 10:eadp4965. doi:10.1126/sciadv.adp4965

93. McAlpine S, Helly JC, Schaller M, Sawala T, Lavaux G, Jasche J, et al. SIBELIUS-
DARK: a galaxy catalogue of the local volume froma constrained realization simulation.
Mon Not R Astron Soc (2022) 512:5823–47. doi:10.1093/mnras/stac295

94. Riley P, Caplan RM, Downs C, Linker JA, Lionello R. Comparing and contrasting
the properties of the inner heliosphere for the threemost recent solarminima. J Geophys
Res Space Phys (2022) 127:e2022JA030261. doi:10.1029/2022JA030261

95. Schaye J, Kugel R, Schaller M, Helly JC, Braspenning J, Elbers W, et al.
The FLAMINGO project: cosmological hydrodynamical simulations for large-scale
structure and galaxy cluster surveys. Mon Not R Astron Soc (2023) 526:4978–5020.
doi:10.1093/mnras/stad2419

96. Vasil GM, Lecoanet D, Augustson K, Burns KJ, Oishi JS, Brown BP, et al. The
solar dynamo begins near the surface. Nature (2024) 629:769–72. doi:10.1038/s41586-
024-07315-1

97. Warnecke J, Korpi-Lagg MJ, Gent FA, Rheinhardt M. Numerical evidence for a
small-scale dynamo approaching solar magnetic Prandtl numbers. Nat Astron (2023)
7:662–8. doi:10.1038/s41550-023-01975-1

98. Williams S, Waterman A, Patterson D. Roofline: an insightful visual
performance model for multicore architectures. Commun ACM (2009) 52:65–76.
doi:10.1145/1498765.1498785

99. GWT-TUD GmbH (2024). Vampir - performance optimization. Available online
at: https://vampir.eu/. (Accessed 2024 12 August)

100. BSC. Paraver: a flexible performance analysis tool (2024). Available online at:
https://tools.bsc.es/paraver (Accessed 2024 12 August)

101. Geimer M, Wolf F, Wylie BJN, Ábrahám E, Becker D, Mohr B. The scalasca
performance toolset architecture. Concurrency Comput Pract Experience (2010)
22:702–19. doi:10.1002/cpe.1556

102. Intel (2024). VTune profiler: performance analysis for
applications and systems. Available online at: https://www.intel.

com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html (Accessed
2024 12 August)

103. Kreuzer A, Kreutz J, Steinbusch B, Huda ZU, Llort G, Corbalan J, et al.
Best practices guide (forschungszentrum jülich GmbH zentralbibliothek, verlag jülich).
Schriften des Forschungszentrums Jülich IAS Ser (2021) 48:187–232. FZJ Record:
905853.

104. Dörrich M, Fan M, Kist AM. Impact of mixed precision techniques on training
and inference efficiency of deep neural networks. IEEE Access (2023) 11:57627–34.
doi:10.1109/ACCESS.2023.3284388

105. Google. TPU (cloud) (2024). Available online at: https://cloud.google.
com/tpu/docs (Accessed October 15, 2024).

106. Graphcore. Graphcore (2024). Available online at: https://www.graphcore.
ai/(Accessed October 15, 2024).

107. Groq Inc. Groq (2024). Available online at: https://groq.com/ (ccessed October
15, 2024).

108. Herten A, Achilles S, Alvarez D, Badwaik J, Behle E, Bode M, et al. Application-
driven exascale: the jupiter benchmark suite. In: Proceedings of the international
conference for high performance computing, networking, storage, and analysis. IEEE Press
(2024). SC ’24. doi:10.1109/SC41406.2024.00038

109. Wells DC, Greisen EW, Harten RH. FITS - a flexible image transport system.
A&AS SAO/NASA Astrophysics Data Syst (1981).

110. The Illustris Collaboration (2024). The Illustris project. Available online at:
www.illustris-project.org (Accessed 2024 12 August)

111. The TNG Collaboration (2024). The Illustris TNG project. Available online at:
www.tng-project.org (Accessed 2024 12 August)

112. The Virgo Collaboration. The Eagle project (2024). Available online at: https://
icc.dur.ac.uk/Eagle/ (Accessed January August, 2024).

113. The Horizon Collaboration (2024). The Horizon simulation: modelling galaxy
formation in a cosmic framework. Available online at: www.horizon-simulation.org
(Accessed 2024 12 August)

114. Springel V, Pakmor R, Zier O, Reinecke M. Simulating cosmic
structure formation with the GADGET-4 code. MNRAS (2021) 506:2871–949.
doi:10.1093/mnras/stab1855

115. Portegies Zwart S, McMillan S. Astrophysical recipes; the art of AMUSE. IOP
Publishing (2018). doi:10.1088/978-0-7503-1320-9

116. Springel V, White SDM, Jenkins A, Frenk CS, Yoshida N, Gao L, et al.
Simulations of the formation, evolution and clustering of galaxies and quasars. Nature
(2005) 435:629–36. doi:10.1038/nature03597

117. Bate MR, Bonnell IA, Bromm V. The formation of a star cluster: predicting the
properties of stars and brown dwarfs. MNRAS (2003) 339:577–99. doi:10.1046/j.1365-
8711.2003.06210.x

118. Nitadori K, Aarseth SJ. Accelerating NBODY6 with graphics processing units.
MNRAS (2012) 424:545–52. doi:10.1111/j.1365-2966.2012.21227.x

119. Fryxell B, OlsonK, Ricker P, Timmes FX, ZingaleM, LambDQ, et al. FLASH: an
adaptive mesh hydrodynamics code for modeling astrophysical thermonuclear flashes.
ApJS (2000) 131:273–334. doi:10.1086/317361

120. Rein H, Liu SF. REBOUND: an open-source multi-purpose N-body
code for collisional dynamics. Astron Astrophys (2012) 537:A128. astro-ph 537.
doi:10.1051/0004-6361/201118085

121. Bedorf J, Portegies Zwart S. Bonsai-SPH: a GPU accelerated astrophysical
smoothed particle hydrodynamics code. SciPost Astron (2020) 1:001.
doi:10.21468/SciPostAstro.1.1.001

122. Grimm SL, Stadel JG. The GENGA code: gravitational encounters in N-body
simulations with GPU acceleration. Astrophysical J (2014) 796:23. doi:10.1088/0004-
637X/796/1/23

123. Wang L, Iwasawa M, Nitadori K, Makino J. PETAR: a high-performance N-
body code formodellingmassive collisional stellar systems.MNRAS (2020) 497:536–55.
doi:10.1093/mnras/staa1915

124. ASCL at Michigan Technological University. Astrophysics source code library
(2025). Available online at: https://ascl.net (Accessed January 28, 2025).

125. Deluzet F, Fubiani G, Garrigues L, Guillet C, Narski J (2023). Efficient
parallelization for 3d-3v sparse grid particle-in-cell: shared memory architectures. J
Comput Phys 480, 112022. doi:10.1016/j.jcp.2023.112022

126. Ren J, Luo J, Peng I, Wu K, Li D. Optimizing large-scale plasma simulations
on persistent memory-based heterogeneous memory with effective data placement across
memory hierarchy, 21. ICS ’ (2021). p. 203–14. New York, NY: Proceedings of the ACM
International Conference on Supercomputing ACM. doi:10.1145/3447818.3460356

127. Romein JW.The tensor-core correlator.Astron and Astrophysics (2021) 656:A52.
doi:10.1051/0004-6361/202141896

128. Ruzicka J, Asch C, Meneses E, Rampp M, Laure E (2024).
A study of performance portability in plasma physics simulations.
doi:10.48550/ARXIV.2411.05009

Frontiers in Physics 23 frontiersin.org

https://doi.org/10.3389/fphy.2025.1542474
https://doi.org/10.1145/167962.165874
https://doi.org/10.1109/MCSE.2013.98
https://doi.org/10.1109/SC.2012.71
https://doi.org/10.1007/s42979-024-02769-6
https://doi.org/10.1145/2676870.267688
https://doi.org/10.1007/s11227-018-2238-4
https://doi.org/10.1109/IPDPSW52791.2021.00066
https://doi.org/10.1109/ESPM256814.2022.00007
https://tools.bsc.es/dimemas
https://doi.org/10.14445/23488387/ijcse-v9i6p102
https://deep-projects.eu/wp-content/uploads/2023/09/DEEP-EST_D23_Benchmarking_evaluation_and_prediction_report_v10.pdf
https://deep-projects.eu/wp-content/uploads/2023/09/DEEP-EST_D23_Benchmarking_evaluation_and_prediction_report_v10.pdf
https://apps.fz-juelich.de/jsc/sionlib/docu/index.html
https://apps.fz-juelich.de/jsc/sionlib/docu/index.html
https://openlab.cern/cerabyte
https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.1126/sciadv.adp4965
https://doi.org/10.1093/mnras/stac295
https://doi.org/10.1029/2022JA030261
https://doi.org/10.1093/mnras/stad2419
https://doi.org/10.1038/s41586-024-07315-1
https://doi.org/10.1038/s41586-024-07315-1
https://doi.org/10.1038/s41550-023-01975-1
https://doi.org/10.1145/1498765.1498785
https://vampir.eu/
https://tools.bsc.es/paraver
https://tools.bsc.es/paraver
https://doi.org/10.1002/cpe.1556
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
https://doi.org/10.1109/ACCESS.2023.3284388
https://cloud.google.com/tpu/docs
https://cloud.google.com/tpu/docs
https://www.graphcore.ai/
https://www.graphcore.ai/
https://groq.com/
https://doi.org/10.1109/SC41406.2024.00038
http://www.illustris-project.org
http://www.illustris-project.org
http://www.tng-project.org
http://www.tng-project.org
https://icc.dur.ac.uk/Eagle/
https://icc.dur.ac.uk/Eagle/
http://www.horizon-simulation.org
https://doi.org/10.1093/mnras/stab1855
https://doi.org/10.1088/978-0-7503-1320-9
https://doi.org/10.1038/nature03597
https://doi.org/10.1046/j.1365-8711.2003.06210.x
https://doi.org/10.1046/j.1365-8711.2003.06210.x
https://doi.org/10.1111/j.1365-2966.2012.21227.x
https://doi.org/10.1086/317361
https://doi.org/10.1051/0004-6361/201118085
https://doi.org/10.21468/SciPostAstro.1.1.001
https://doi.org/10.1088/0004-637X/796/1/23
https://doi.org/10.1088/0004-637X/796/1/23
https://doi.org/10.1093/mnras/staa1915
https://ascl.net
https://doi.org/10.1016/j.jcp.2023.112022
https://doi.org/10.1145/3447818.3460356
https://doi.org/10.1051/0004-6361/202141896
https://doi.org/10.48550/ARXIV.2411.05009
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org

Suarez et al. 10.3389/fphy.2025.1542474

129. Zhang K, Gladman BJ (2022). Glisse: a gpu-optimized planetary system
integrator with application to orbital stability calculations. New Astron 90, 101659.
doi:10.1016/j.newast.2021.101659

130. OpenAlex. The open catalog to the global research system (2025). Available
online at: https://openalex.org/(Accessed January 28, 2025).

131. Bacchini F. RelSIM: a relativistic semi-implicit method for particle-in-cell
simulations. Astrophys J Suppl Ser (2023) 268:60. doi:10.3847/1538-4365/acefba

132. ChenG, Chacón L, Barnes DC. An efficientmixed-precision, hybrid CPU–GPU
implementation of a nonlinearly implicit one-dimensional particle-in-cell algorithm. J
Comput Phys (2012) 231:5374–88. doi:10.1016/j.jcp.2012.04.040

133. Chen Y, Tóth G. Gauss’s law satisfying Energy-Conserving Semi-
Implicit Particle-in-Cell method. J Comput Phys (2019) 386:632–52.
doi:10.1016/j.jcp.2019.02.032

134. Lapenta G. Exactly energy conserving semi-implicit particle in cell formulation.
J Comput Phys (2017) 334:349–66. doi:10.1016/j.jcp.2017.01.002

135. Eggington JWB, Mejnertsen L, Desai RT, Eastwood JP, Chittenden JP.
Forging links in earth’s plasma environment. Astron Geophys (2018) 59(6):6.26–8.
doi:10.1093/astrogeo/aty275

136. Hinterreiter J, Magdalenic J, Temmer M, Verbeke C, Jebaraj IC, Samara E, et al.
Assessing the performance of EUHFORIA modeling the background solar wind. Sol
Phys (2019) 294:170. doi:10.1007/s11207-019-1558-8

137. Le A, Daughton W, Karimabadi H, Egedal J. Hybrid simulations of magnetic
reconnection with kinetic ions and fluid electron pressure anisotropy. Phys Plasmas
(2016) 23:032114. doi:10.1063/1.4943893

138. Lottermoser R-F, Scholer M, Matthews AP. Ion kinetic effects in
magnetic reconnection: hybrid simulations. J Geophys Res (1998) 103:4547–59.
doi:10.1029/97JA01872

139. Shi F, Lin Y, Wang X, Wang B, Nishimura Y. 3-D global hybrid simulations of
magnetospheric response to foreshock processes. Earth Planets Space (2021) 73:138.
doi:10.1186/s40623-021-01469-2

140. Swift DW. Use of a hybrid code for global-scale plasma simulation. J Comput
Phys (1996) 126:109–21. doi:10.1006/jcph.1996.0124

141. Kreuzer A, Eicker N, Amaya J, Suarez E. Application performance on
a cluster-booster system. In: 2018 IEEE international parallel and distributed
processing symposium workshops (IPDPSW) (2018). p. 69–78. doi:10.1109/IPDPSW.
2018.00019

142. Wang ZJ, Fidkowski K, Abgrall R, Bassi F, Caraeni D, Cary A, et al. High-
order CFD methods: current status and perspective. Int J Numer Methods Fluids (2013)
72:811–45. doi:10.1002/fld.3767

143. Guillet C. Sparse approach to accelerate Particle-In-Cell method in 3D. Theses:
Université Paul Sabatier - Toulouse III (2023).

144. Williams JJ, Tskhakaya D, Costea S, Peng IB, Garcia-Gasulla M, Markidis S.
Leveraging HPC profiling and tracing tools to understand the performance of particle-
in-cell Monte Carlo simulations. Springer Nature Switzerland (2024). p. 123–34.
doi:10.1007/978-3-031-50684-0_10

145. Yotov K, Roeder T, Pingali K, Gunnels J, Gustavson F (2007). An experimental
comparison of cache-oblivious and cache-conscious programs. In Proceedings of the
nineteenth annual ACM symposium on Parallel algorithms and architectures (ACM),
SPAA07, 93–104. doi:10.1145/1248377.1248394

146. CERN. CERN openlab (2024). Available online at: https://openlab.cern
(Accessed November 27, 2024).

147. Intel. OneAPI (2024). Available online at: https://www.intel.
com/content/www/us/en/developer/tools/oneapi/overview.htm (Accessed November
27, 2024).

148. ATLAS Collaboration (2019). Athena. doi:10.5281/zenodo.2641997

149. CMS Collaboration. CMS physics: technical design report volume 1: detector
performance and software. Geneva: CERN: CERNCDSRecord (2006). Technical design
report. CMS.922757

150. Kuhr T, Pulvermacher C, Ritter M, Hauth T, Braun N. The belle II core
software: belle II framework software group. Comput Softw Big Sci (2018) 3:1.
doi:10.1007/s41781-018-0017-9

151. Elmsheuser J, Anastopoulos C, Boyd J, Catmore J, Gray H, Krasznahorkay A,
et al. Evolution of the atlas analysis 1382 model for run-3 and prospects for hl-lhc. EPJ
Web of Conferences (2020) 245:06014. doi:10.1051/epjconf/202024506014

152. Maeno T, Alekseev A, Barreiro Megino FH, De K, Guan W, Karavakis E, et al.
Panda: production and distributed analysis system. Comput Softw Big Sci (2024) 8:4.
doi:10.1007/s41781-024-00114-3

153. Cinquilli M, Evans D, Foulkes S, Hufnagel D, Mascheroni M, Norman M,
et al. The CMS workload management system. J Phys Conf Ser (2012) 396:032113.
doi:10.1088/1742-6596/396/3/032113

154. Casajus A, Graciani R, Paterson S, Tsaregorodtsev A, on behalf ofthe Lhcb Dirac
Team). Dirac pilot framework and the Dirac workloadmanagement system. J Phys Conf
Ser (2010) 219:062049. doi:10.1088/1742-6596/219/6/062049

155. SchedMD. Slurm scheduler (2024). Available online at: https://slurm.schedmd.
com/(Accessed September 12, 2024).

156. HTCondor Software Suite (2024). HTcondor collaboration. Available online at:
https://htcondor.org/ (Accessed 2024 12 August)

157. Di Girolamo A, Legger F, Paparrigopoulos P, Schovancová J, Beermann T,
Boehler M, et al. Preparing distributed computing operations for the hl-lhc era
with operational intelligence. Front Big Data (2022) 4:753409. doi:10.3389/fdata.2021.
753409

158. Lopez-Gomez J, Blomer J. RNTuple performance: status andoutlook. J PhysConf
Ser (2023) 2438:012118. doi:10.1088/1742-6596/2438/1/012118

159. Alwall J, Ballestrero A, Bartalini P, Belov S, Boos E, Buckley A, et al. A
standard format for les houches event files. Computer Phys Commun (2007) 176:300–4.
doi:10.1016/j.cpc.2006.11.010

160. Boccali T. Computingmodels in high energy physics. Rev Phys (2019) 4:100034.
doi:10.1016/j.revip.2019.100034

161. Ellis K, Brew C, Patargias G, Adye T, Appleyard R, Dewhurst A, et al.
Xrootd and object store: a new paradigm. EPJ Web of Conferences (2020) 245:04006.
doi:10.1051/epjconf/202024504006

162. Aad G, Abajyan T, Abbott B, Abdallah J, Abdel Khalek S, Abdelalim
A, et al. Observation of a new particle in the search for the Standard Model
Higgs boson with the ATLAS detector at the LHC. Phys Lett B (2012) 716:1–29.
doi:10.1016/j.physletb.2012.08.020

163. Chatrchyan S, Khachatryan V, Sirunyan A, Tumasyan A, Adam W, Aguilo E,
et al. Observation of a new boson at a mass of 125 GeV with the CMS experiment at the
LHC. Phys Lett B (2012) 716:30–61. doi:10.1016/j.physletb.2012.08.021

164. HeinrichG.Collider physics at the precision frontier.Phys Rept (2021) 922:1–69.
doi:10.1016/j.physrep.2021.03.006

165. LhcbCollaboration LE. Future physics potential of LHCb. CERN,Geneva (2022).
CERN Record.Tech. rep. 2806113

166. Bertacchi V. Recent results from belle ii. Nucl Part Phys Proc (2023) 324-
329:107–12. doi:10.1016/j.nuclphysbps.2023.01.022

167. Schlimme S, Aulenbacher K, Baunack S, Berger N, Denig A, Doria
L, et al. The MESA physics program. EPJ Web Conf (2024) 303:06002.
doi:10.1051/epjconf/202430306002

168. Arrington J, Benesch J, Camsonne A, Caylor J, Chen JP, Covrig Dusa S, et al.The
solenoidal large intensity device (SoLID) for JLab 12 GeV. J Phys G (2023) 50:110501.
doi:10.1088/1361-6471/acda21

169. Shiltsev V. Fermilab proton accelerator complex status and
improvement plans. Mod Phys Lett A (2017) 32:1730012. arXiv:1705.03075.
doi:10.1142/s0217732317300129

170. Keshavarzi A. The muon g − 2 experiment at fermilab. EPJ Web Conf (2019)
212:05003. doi:10.1051/epjconf/201921205003

171. Keshavarzi A, Khaw KS, Yoshioka T. Muon g − 2: a review. Nucl Phys (2022)
B:115675. doi:10.1016/j.nuclphysb.2022.115675

172. Abdel-Rehim A, Alexandrou C, Constantinou M, Dimopoulos P, Frezzotti
R, Hadjiyiannakou K, et al. Nucleon and pion structure with lattice QCD
simulations at physical value of the pion mass. Phys Rev D (2015) 92:114513.
doi:10.1103/PhysRevD.92.114513

173. Abdel-Rehim A, Alexandrou C, Burger F, Constantinou M, Dimopoulos P,
Frezzotti R, et al. First physics results at the physical pion mass from N f = 2
Wilson twisted mass fermions at maximal twist. Phys Rev D (2017) 95:094515.
doi:10.1103/PhysRevD.95.094515

174. Bazavov A, Bernard C, DeTar C, Foley J, Freeman W, Gottlieb S, et al. Leptonic
decay-constant ratio fK+/fΠ+ from lattice QCDwith physical light quarks. Phys Rev Lett
(2013) 110:172003. doi:10.1103/PhysRevLett.110.172003

175. Durr S, Fodor Z, Frison J, Hoelbling C, Hoffmann R, Katz SD, et al.
Ab-initio determination of light hadron masses. Science (2008) 322:1224–7.
doi:10.1126/science.1163233

176. Boyle P, Bollweg D, Brower R, Christ N, DeTar C, Edwards R,
et al. (2022). Lattice qcd and the computational frontier arXiv:2204.00039.
doi:10.48550/arXiv.2204.00039

177. Bodin F, Boucaud P, Cabibbo N, Di Carlo F, De Pietri R, Di Renzo F, et al.
apeNEXT: a Multi-TFlops computer for elementary particle physics. Adv Parallel
Comput (2004) 13:355–62. doi:10.1016/S0927-5452(04)80047-9

178. Cabibbo N. APE: a high performance processor for lattice qcd. In: Symposium
on old and new problems in fundamental physics, held in honor of G.C. Wick. inspireHEP
(1984). p. 137–44.

179. Chen D, Christ N, Cristian C, Dong Z, Gara A, Garg K, et al. QCDOC: a 10-
teraflops scale computer for lattice QCD. Nucl Phys B Proc Suppl (2001) 94:825–32.
doi:10.1016/S0920-5632(01)01014-3

180. Haring R, Ohmacht M, Fox T, Gschwind M, Satterfield D, Sugavanam
K, et al. The ibm blue gene/q compute chip. Ieee Micro (2011) 32:48–60.
doi:10.1109/MM.2011.108

Frontiers in Physics 24 frontiersin.org

https://doi.org/10.3389/fphy.2025.1542474
https://doi.org/10.1016/j.newast.2021.101659
https://openalex.org/
https://doi.org/10.3847/1538-4365/acefba
https://doi.org/10.1016/j.jcp.2012.04.040
https://doi.org/10.1016/j.jcp.2019.02.032
https://doi.org/10.1016/j.jcp.2017.01.002
https://doi.org/10.1093/astrogeo/aty275
https://doi.org/10.1007/s11207-019-1558-8
https://doi.org/10.1063/1.4943893
https://doi.org/10.1029/97JA01872
https://doi.org/10.1186/s40623-021-01469-2
https://doi.org/10.1006/jcph.1996.0124
https://doi.org/10.1109/IPDPSW.2018.00019
https://doi.org/10.1109/IPDPSW.2018.00019
https://doi.org/10.1002/fld.3767
https://doi.org/10.1007/978-3-031-50684-0_10
https://doi.org/10.1145/1248377.1248394
https://openlab.cern
https://www.intel.com/content/www/us/en/developer/tools/oneapi/overview.htm
https://www.intel.com/content/www/us/en/developer/tools/oneapi/overview.htm
https://doi.org/10.5281/zenodo.2641997
https://doi.org/10.1007/s41781-018-0017-9
https://doi.org/10.1051/epjconf/202024506014
https://doi.org/10.1007/s41781-024-00114-3
https://doi.org/10.1088/1742-6596/396/3/032113
https://doi.org/10.1088/1742-6596/219/6/062049
https://slurm.schedmd.com/
https://slurm.schedmd.com/
https://htcondor.org/
https://doi.org/10.3389/fdata.2021.753409
https://doi.org/10.3389/fdata.2021.753409
https://doi.org/10.1088/1742-6596/2438/1/012118
https://doi.org/10.1016/j.cpc.2006.11.010
https://doi.org/10.1016/j.revip.2019.100034
https://doi.org/10.1051/epjconf/202024504006
https://doi.org/10.1016/j.physletb.2012.08.020
https://doi.org/10.1016/j.physletb.2012.08.021
https://doi.org/10.1016/j.physrep.2021.03.006
https://doi.org/10.1016/j.nuclphysbps.2023.01.022
https://doi.org/10.1051/epjconf/202430306002
https://doi.org/10.1088/1361-6471/acda21
https://doi.org/10.1142/s0217732317300129
https://doi.org/10.1051/epjconf/201921205003
https://doi.org/10.1016/j.nuclphysb.2022.115675
https://doi.org/10.1103/PhysRevD.92.114513
https://doi.org/10.1103/PhysRevD.95.094515
https://doi.org/10.1103/PhysRevLett.110.172003
https://doi.org/10.1126/science.1163233
https://doi.org/10.48550/arXiv.2204.00039
https://doi.org/10.1016/S0927-5452(04)80047-9
https://doi.org/10.1016/S0920-5632(01)01014-3
https://doi.org/10.1109/MM.2011.108
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org

Suarez et al. 10.3389/fphy.2025.1542474

181. Mawhinney RD. The 1 Teraflops QCDSP computer. Parallel Comput (1999)
25:1281–96. doi:10.1016/S0167-8191(99)00051-4

182. Pleiter D, Maurer T. Qpace – a qcd parallel computer based on cell processors.
In: Proceedings of the XXVII international symposium on lattice field theory —
PoS(LAT2009). Sissa Medialab (2010). LAT2009, 001. doi:10.22323/1.091.0001

183. Barros K, Babich R, Brower R, Clark MA, Rebbi C. Blasting through lattice
calculations using CUDA. PoS LATTICE2008 (2008) 045. doi:10.22323/1.066.0045

184. Egri GI, Fodor Z, Hoelbling C, Katz SD, Nogradi D, Szabo KK. Lattice QCD as
a video game. Comput Phys Commun (2007) 177:631–9. doi:10.1016/j.cpc.2007.06.005

185. Joó B, Kurth T, Clark MA, Kim J, Trott CR, Ibanez D, et al. Performance
portability of a wilson dslash stencil operator mini-app using kokkos and sycl.
In: 2019 IEEE/ACM international workshop on performance, portability and
productivity in HPC (P3HPC). IEEE (2019). p. 14–25. doi:10.1109/P3HPC49587.
2019.00007

186. Schlepphorst S, Krieg S (2023). Benchmarking a portable lattice quantum
chromodynamics kernel written in kokkos andmpi. In proceedings of the SC ’23 workshops
of the international conference on high performance computing, network, storage, and
analysis (New York, NY, USA: Association for Computing Machinery, SC-W’ 23,
1027–37. doi:10.1145/3624062.3624179

187. Duane S, Kennedy AD, Pendleton BJ, Roweth D. Hybrid Monte Carlo. Phys Lett
B (1987) 195:216–22. doi:10.1016/0370-2693(87)91197-X

188. KhanA, SimH,Vazhkudai SS, Butt AR, KimY.An analysis of system balance and
architectural trends based on top500 supercomputers, 21. HPCAsia ’ (2021). p. 11–22.
doi:10.1145/3432261.3432263The International Conference on High Performance
Computing in Asia-Pacific Region (Association for Computing Machinery

189. McCalpin J (2022). Memory Bandwidth and system balance in HPC systems.
Available online at: https://sites.utexas.edu/jdm4372/2016/11/22/sc16-invited-talk-
memory-bandwidth-and-system-balance-in-hpc-systems/ (Accessed 2024 12 August)

190. Brannick J, Brower RC, Clark MA, Osborn JC, Rebbi C. Adaptive
multigrid algorithm for lattice QCD. Phys Rev Lett (2008) 100:041601.
doi:10.1103/PhysRevLett.100.041601

191. Frommer A, Kahl K, Krieg S, Leder B, Rottmann M. Adaptive aggregation-
based domain decomposition multigrid for the lattice wilson–Dirac operator. SIAM J
Sci Comput (2014) 36:A1581–608. doi:10.1137/130919507

192. Alexandrou C, Bacchio S, Finkenrath J, Frommer A, Kahl K, Rottmann
M. Adaptive aggregation-based domain decomposition multigrid for twisted mass
fermions. Phys Rev D (2016) 94:114509. doi:10.1103/PhysRevD.94.114509

193. Clark MA, Howarth D, Tu J, Wagner M, Weinberg E. Maximizing the Bang per
bit. PoS LATTICE2022 (2023) 338:338. doi:10.22323/1.430.0338

194. Boyle PA (2024). Multiple right hand side multigrid for domain wall fermions
with a multigrid preconditioned block conjugate gradient algorithm arXiv:2409.03904.
doi:10.48550/arXiv.2409.03904

195. Espinoza-Valverde J, Frommer A, Ramirez-Hidalgo G, Rottmann M. Coarsest-
level improvements inmultigrid for lattice qcd on large-scale computers.Computer Phys
Commun (2023) 292:108869. doi:10.1016/j.cpc.2023.108869

196. Lehner C, Wettig T. Gauge-equivariant neural networks as preconditioners
in lattice qcd. Phys Rev D (2023) 108:034503. doi:10.1103/PhysRevD.108.
034503

197. Boyle PA, Bollweg D, Kelly C, Yamaguchi A. Algorithms for domain wall
Fermions. PoS LATTICE2021 (2022) 470:470. doi:10.22323/1.396.0470

198. Schaefer S, Sommer R, Virotta F. Investigating the critical slowing down of QCD
simulations. PoS LAT2009 (2009) 032. doi:10.22323/1.091.0032

199 Kanwar G. Flow-based sampling for lattice field theories. In: 40th
international symposium on lattice field theory (2024) arXiv:2401.01297.
doi:10.48550/arXiv.2401.01297

200. Abbott R, Albergo MS, Boyda D, Cranmer K, Hackett DC, Kanwar
G, et al. Gauge-equivariant flow models for sampling in lattice field
theories with pseudofermions. Phys Rev D (2022) 106:074506. doi:10.1103/
PhysRevD.106.074506

201. Finkenrath J (2022). Tackling critical slowing down using global correction
steps with equivariant flows: the case of the Schwinger model arXiv:2201.02216.
doi:10.48550/arXiv.2201.02216

202. Jung C, Christ NH. Riemannian manifold HMC with fermions. PoS
LATTICE2023 (2024) 009. doi:10.22323/1.453.0009

203. Bonanno C, Clemente G, D’Elia M, Maio L, Parente L. Full
QCD with milder topological freezing. JHEP 08 (2024) 236. doi:10.1007/
JHEP08(2024)236

204. Frommer A, Khalil MN, Ramirez-Hidalgo G. A multilevel approach to variance
reduction in the stochastic estimation of the trace of a matrix. SIAM J Scientific Comput
(2022) 44:A2536–56. doi:10.1137/21M1441894

205. Whyte T, Stathopoulos A, Romero E, Orginos K. Optimizing shift
selection in multilevel Monte Carlo for disconnected diagrams in lattice
QCD. Comput Phys Commun (2024) 294:108928. doi:10.1016/j.cpc.2023.
108928

206. Chen J, Edwards RG, Mao W. Graph contractions for calculating correlation
functions in lattice QCD. In: Platform for advanced scientific computing (2023).
doi:10.1145/3592979.3593409

207. Wang Q, Peng Z, Ren B, Chen J, Edwards RG. Memhc: an
optimized gpu memory management framework for accelerating many-
body correlation. ACM Trans Archit Code Optim (2022) 19:1–26.
doi:10.1145/3506705

208. Wang Q, Ren B, Chen J, Edwards RG. Micco: an enhanced
multi-gpu scheduling framework for many-body correlation functions.
In: 2022 IEEE international parallel and distributed processing
symposium (IPDPS) (2022). p. 135–45. doi:10.1109/IPDPS53621.2022.
00022

209. Abdelfattah A, Haidar A, Tomov S, Dongarra J. Performance, design, and
autotuning of batched GEMM for GPUs. In: JM Kunkel, P Balaji, J Dongarra, editors.
High performance computing. Springer International Publishing (2016). p. 21–38.
doi:10.1007/978-3-319-41321-1_2

210. Janetzko F, Kostrzewa B, Suarez E (2025). Data, build and plot scripts
accompanying “energy efficiency trends in hpc: what high-energy and astrophycisists
need to know”. doi:10.5281/zenodo.14790357

211. Błażej K, Michaela B, Barbara P, Tinatin B, Fan Z, Andrea L, et al. COCONUT,
a Novel fast-converging MHD model for solar corona simulations. III. Impact of the
preprocessing of the magnetic map on the modeling of the solar cycle activity and
comparison with observations.The Astrophysical Journal (2023) 942. doi:10.3847/1538-
4357/aca483

212. Estela S, Hendryk B, Norbert E, Eitzinger J, Salem E, Thomas F, et al. Energy-
aware operation of HPC systems in Germany. Front High Perfor Comput (2025) 3.
doi:10.3389/fhpcp.2025.1520207

Frontiers in Physics 25 frontiersin.org

https://doi.org/10.3389/fphy.2025.1542474
https://doi.org/10.1016/S0167-8191(99)00051-4
https://doi.org/10.22323/1.091.0001
https://doi.org/10.22323/1.066.0045
https://doi.org/10.1016/j.cpc.2007.06.005
https://doi.org/10.1109/P3HPC49587.2019.00007
https://doi.org/10.1109/P3HPC49587.2019.00007
https://doi.org/10.1145/3624062.3624179
https://doi.org/10.1016/0370-2693(87)91197-X
https://doi.org/10.1145/3432261.3432263
https://sites.utexas.edu/jdm4372/2016/11/22/sc16-invited-talk-memory-bandwidth-and-system-balance-in-hpc-systems/
https://sites.utexas.edu/jdm4372/2016/11/22/sc16-invited-talk-memory-bandwidth-and-system-balance-in-hpc-systems/
https://doi.org/10.1103/PhysRevLett.100.041601
https://doi.org/10.1137/130919507
https://doi.org/10.1103/PhysRevD.94.114509
https://doi.org/10.22323/1.430.0338
https://doi.org/10.48550/arXiv.2409.03904
https://doi.org/10.1016/j.cpc.2023.108869
https://doi.org/10.1103/PhysRevD.108.034503
https://doi.org/10.1103/PhysRevD.108.034503
https://doi.org/10.22323/1.396.0470
https://doi.org/10.22323/1.091.0032
https://doi.org/10.48550/arXiv.2401.01297
https://doi.org/10.1103/PhysRevD.106.074506
https://doi.org/10.1103/PhysRevD.106.074506
https://doi.org/10.48550/arXiv.2201.02216
https://doi.org/10.22323/1.453.0009
https://doi.org/10.1007/JHEP08(2024)236
https://doi.org/10.1007/JHEP08(2024)236
https://doi.org/10.1137/21M1441894
https://doi.org/10.1016/j.cpc.2023.108928
https://doi.org/10.1016/j.cpc.2023.108928
https://doi.org/10.1145/3592979.3593409
https://doi.org/10.1145/3506705
https://doi.org/10.1109/IPDPS53621.2022.00022
https://doi.org/10.1109/IPDPS53621.2022.00022
https://doi.org/10.1007/978-3-319-41321-1_2
https://doi.org/10.5281/zenodo.14790357
https://doi.org/10.3847/1538-4357/aca483
https://doi.org/10.3847/1538-4357/aca483
https://doi.org/10.3389/fhpcp.2025.1520207
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org

	1 Introduction
	2 Energy efficiency trends in high performance computing
	2.1 System hardware
	2.2 System software
	2.3 Programming models
	2.3.1 Programming languages
	2.3.2 Hardware heterogeneity and portability
	2.3.3 Domain specific languages
	2.3.4 Parallelisation over multiple compute nodes

	2.4 Data management
	2.5 Applications and benchmarks
	2.5.1 Skills
	2.5.2 Performance analysis
	2.5.3 Artificial intelligence and low precision arithmetics
	2.5.4 Benchmarks

	3 Computational astrophysics
	3.1 Stellar and planetary physics
	3.2 Space weather and space physics

	4 Data processing in experimental high-energy physics
	4.1 Data analysis in collider physics

	5 Lattice field theory and lattice quantum chromodynamics
	6 Conclusion
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References

