
TYPE Original Research
PUBLISHED 22 April 2025
DOI 10.3389/fphy.2025.1544623

OPEN ACCESS

EDITED BY

Jaewoo Joo,
University of Portsmouth, United Kingdom

REVIEWED BY

Saravana Prakash Thirumuruganandham,
SIT Health, Ecuador
Xiao-Feng Shi,
Hainan University, China
Robson Christie,
University of Portsmouth, United Kingdom

*CORRESPONDENCE

Daniel Kyungdeock Park,
dkd.park@yonsei.ac.kr

RECEIVED 13 December 2024
ACCEPTED 28 February 2025
PUBLISHED 22 April 2025

CITATION

Seong M and Park DK (2025) Hamiltonian
formulations of centroid-based clustering.
Front. Phys. 13:1544623.
doi: 10.3389/fphy.2025.1544623

COPYRIGHT

© 2025 Seong and Park. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with
these terms.

Hamiltonian formulations of
centroid-based clustering

Myeonghwan Seong1 and Daniel Kyungdeock Park1,2*
1Department of Statistics and Data Science, Yonsei University, Seoul, Republic of Korea, 2Department
of Applied Statistics, Yonsei University, Seoul, Republic of Korea

Clustering is a fundamental task in data science that aims to group data based
on their similarities. However, defining similarity is often ambiguous, making it
challenging to determine the most appropriate objective function for a given
dataset. Traditional clustering methods, such as the k-means algorithm and
weighted maximum k-cut, focus on specific objectives—typically relying on
average or pairwise characteristics of the data—leading to performance that
is highly data-dependent. Moreover, incorporating practical constraints into
clustering objectives is not straightforward, and these problems are known
to be NP-hard. In this study, we formulate the clustering problem as a
search for the ground state of a Hamiltonian, providing greater flexibility in
defining clustering objectives and incorporating constraints. This approach
enables the application of various quantum simulation techniques, including
both circuit-based quantum computation and quantum annealing, thereby
opening a path toward quantum advantage in solving clustering problems. We
propose various Hamiltonians to accommodate different clustering objectives,
including the ability to combine multiple objectives and incorporate constraints.
We evaluate the clustering performance through numerical simulations and
implementations on the D-Wave quantum annealer. The results demonstrate
the broad applicability of our approach to a variety of clustering problems on
current quantum devices. Furthermore, we find that Hamiltonians designed for
specific clustering objectives and constraints impose different requirements for
qubit connectivity, indicating that certain clustering tasks are better suited to
specific quantumhardware. Our experimental results highlight this by identifying
the Hamiltonian that optimally utilizes the physical qubits available in the D-
Wave System.

KEYWORDS

clustering, quantum machine learning, quantum computing, combinatorial
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1 Introduction

Quantum machine learning (QML) offers new possibilities and approaches to address
various challenges in data science, pushing the boundaries of existing methods. Among its
potential applications, clustering is a widely used technique in numerous domains of pattern
recognition and data mining, such as image recognition, social network analysis, customer
segmentation, and anomaly detection [1–8]. In addition, clustering has found increasing
applications in drug discovery, aiding in the selection of potential leads, mapping protein
binding sites, and designing targeted therapies [9–11].

Despite its broad applicability and importance, clustering encounters several challenges
from an optimization perspective [12–14]. A primary issue is the ambiguity in defining
the objective function for clustering. As there is no ground truth, it is often unclear which
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criteria should be used to group the target dataset, requiring
the analyst to make subjective decisions about what constitutes
similarity. A common approach involves using distance measures
to quantify similarity. However, this approach still requires
determining whether to rely on local information, such as the
pairwise distance between individual data points, or global
information, such as the distance between a data point and the
centroid of a cluster. When using local information, clustering
can be formulated as combinatorial optimization and approached
by solving the maximum k-cut problem, which corresponds to
maximizing dissimilarity between clusters. On the other hand,
an example of using global information is the k-means clustering
algorithm, which is equivalent to minimizing the variance within
clusters by focusing on the distance to centroids. Yet, the challenge
remains in how to effectively incorporate both or potentially other
objectives for improved clustering. Another critical challenge is that
even if the analyst decides to use either local or global information
as described in constructing the objective function, finding the
global solution is intractable. This intractability arises because
the cardinality of the feasible set (i.e., the number of clustering
configurations) grows exponentially with the number of data points
and due to the non-convexity of the optimization landscape. As
a result, in practice, polynomial-time approximate algorithms are
employed to obtain good local solutions.This highlights the need for
developing more efficient optimization algorithms that can either
improve solution quality, reduce runtime, or accomplish both.
In addition, existing polynomial-time algorithms often require
a random initial cluster assignment, and both the quality of the
solution and the convergence speed can be highly sensitive to this
choice of initialization.

To address these challenges, we develop a unified framework that
incorporates multiple data characteristics—such as local and global
information—into the optimization objective, with the flexibility
to assign arbitrary weights to specify their relative importance in
clustering. Our approach begins by decomposing the problem of
finding k clusters into hierarchical clustering, where each level of the
hierarchy consists of binary clustering. We then introduce a method
to incorporate centroids as variables within the objective function
of a combinatorial optimization problem. This formulation enables
various centroid-based binary clustering models, such as those
that account for intercluster distance, intracluster distance, or both
(see Figure 1), to be cast as combinatorial optimization problems.
Furthermore, the objective function with centroid variables can be
linearly combined with that of the weighted max-cut problem into
a single, unified objective. Solving an unconstrained combinatorial
optimization problem with binary variables can be mapped to
the problem of finding the ground state (i.e., the eigenstate with
the lowest eigenvalue) of a spin Hamiltonian [15]. This mapping
offers a crucial benefit: it enables the problem to be solved on
a quantum computer using quantum simulation techniques such
as those based on quantum phase estimation and amplitude
amplification [16–20], the variational quantum eigensolver [21–23],
the quantum approximate optimization algorithm (QAOA) [24],
quantum annealing [25], or quantum-inspired algorithms [26].
Notably, QAOA and quantum annealing do not require a random
initial cluster assignment, as their initial quantum state is a uniform
superposition of all computational basis states. This means that
the algorithms begin with all possible clustering configurations,

FIGURE 1
Illustration of the intracluster distance and the intercluster distance.
Unlike supervised learning, unsupervised learning cannot utilize a loss
function with exact labels. In a clustering approach, the loss function
can be created based on how well the hypothesis separates data
points into their appropriate groups. We customized and combined
intracluster distance, which measures how tightly data points are
clustered together within a cluster, and intercluster distance, which
measures how far apart different cluster centers are, as weighted
criteria in QUBO formula. By optimizing this loss function, we were
able to solve the clustering problem.

each assigned equal weight. Consequently, these approaches are
free from the sensitivity to initial conditions, unlike classical
polynomial-time algorithms. Moreover, formulating clustering as
a combinatorial optimization problem is advantageous when
incorporating constraints, as constraints can also be formulated as
combinatorial optimization problems and included as penalty terms
in the objective function.

We benchmark the effectiveness of our approach and the
proposed Hamiltonian formulations (i.e., the combinatorial
optimization problems) using several datasets: Iris, Wine, a subset
ofMNIST, and a synthetic Gaussian overlapping dataset. To evaluate
performance, we employed the Silhouette Score (SS) [27] and
the Rand Index (RI) [28] as metrics, conducting comparative
analysis with the k-means algorithm [29] and the weighted max cut.
Initially, we assessed the performance of each Hamiltonian by
searching for its exact solutions using a brute-force algorithm,
in order to establish a benchmark for comparing theoretical
predictions and practical outcomes. We then empirically tested
the efficacy of our Hamiltonian formulations using simulated
annealing and quantum annealing on the D-Wave Advantage
System 6.4 [30]. Furthermore, we expanded our investigation to
constrained clustering, incorporating Must-Link (ML), Cannot-
Link (CL), and cluster size constraints. By doing so, we highlight
the advantages of our centroid-based method, focusing on its
ability to manage complex data structures and accommodate real-
world data constraints. The following sections will elaborate on our
methodological framework, the tailored Hamiltonian designs for
clustering objectives, and the results of our comparative analysis,
emphasizing the adaptability of our approach.

2 Related work

In this section, we review prior research efforts that framed
centroid-based clustering as a combinatorial optimization problem.
Several studies have approached this with a particular focus
on Quadratic Unconstrained Binary Optimization (QUBO)
formulations. Ref. [31] and Ref. [32] explored the representation
of cluster centroids in QUBO under the assumption of equal cluster
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sizes, typically in the context of k-means clustering. Ref. [33]
extended this work by introducing a QUBO formulation of the
k-medoids approach, which differs from k-means clustering by
selecting k representative data points (medoids) as cluster centers
instead of calculating centroids based on themean of the data points.

These works illustrate that centroid-based clustering algorithms,
like k-means and k-medoids, can be formulated as combinatorial
optimization problems, specifically QUBO, albeit under restricted
conditions. A recurring assumption in these studies is the uniform
distribution of data, which undesirably constrains clusters to be
of approximately equal size. Moreover, the use of synthetic data
in experiments raises concerns about the generalizability of these
methods to real-world data. While Ref. [34] proposed an iterative
fractional cost approach to address the issue of uneven data
distributions, their solution significantly increases computational
complexity due to the need for hyperparameter tuning and iterative
recalculations.

In contrast to previous approaches, ourmethod does not require
predefined cluster sizes or rely on computationally intensive iterative
processes. It directly incorporates the number of data points in
each cluster as a variable in the objective function, eliminating the
assumption of fixed cluster sizes. This enables greater flexibility and
adaptability to a wider range of data distributions.

3 Methodology

We begin by discussing the process of mapping clustering
problems to combinatorial optimization problems. To represent
the assignment of N data points into two clusters, we use
a binary variable z ∈ {−1,+1}N. Each element zi indicates the
cluster assignment of the ith data point, xi, where xi ∈ ℝd is
the representation of the data in the feature space. This feature
space representation is obtained after applying any necessary pre-
processing techniques, such as Principal Component Analysis
(PCA), normalization, or standardization.

In the Hamiltonian formulation, we introduce z′i = (1+ zi)/2 ∈
{0,1} to denote the computational basis state of the ith qubit,
representing the cluster assignment. The variables z and z′

correspond to the eigenvalues and the eigenstates of the Pauli Z
operator, respectively:Z|0〉 = + |0〉 andZ|1〉 = − |1〉. In general, the
objective function subject to minimization in QUBO problems can
be expressed as

f (z) = a0 +∑
i<j

aijzizj +
N

∑
i=1

aizi. (1)

In the context of clustering, a0 is a constant independent
of z, aij represents the relationship between data points xi and
xj, ai reflects characteristics of each individual data point. The
combinatorial optimization problem can be mapped to finding
the smallest eigenvalue and the corresponding eigenvector of
the Hamiltonian for a finite-dimensional quantum system. The
correspondingHamiltonian is obtained by replacing ziwith the Pauli
Z operator and 1 with the identity operator acting on the ith qubit:

H = ∑
z∈{−1,+1}N

f (z) |z′〉〈z′| = a0I+∑
i<j

aijZiZj +
N

∑
i=1

aiZi. (2)

where z′ ∈ {0,1}N is obtained by mapping every element of z as
(1+ zi)/2, and I is the identity matrix.

Existing QUBO-based clustering algorithms typically rely solely
on pairwise distances between data points. In this case, a0 = 0 and
ai = 0 for all i, leading to an optimization problem of the form

min
z∈{−1,+1}N

N

∑
i<j

aijzizj, (3)

where aij ≥ 0 represents the dissimilarity measure between the ith
and jth data points. For instance, aij = ‖xi − xj‖2. Equivalently, this
problem can be formulated as finding the ground state (i.e., the
lowest-energy state) of the Hamiltonian,

H =∑
i<j

aijZiZj. (4)

This optimization problem is also known as the weighted max-
cut problem on a graph. However, this formulation of clustering
neglects global information, such as centroids, in the optimization
process. This limitation is primarily due to the computational
complexities and challenges involved in representing centroids
within the combinatorial optimization framework, unless there is
prior knowledge that the dataset is evenly distributed among clusters
[32, 35, 36] as noted in Section 2.

To incorporate the centroid information into the combinatorial
optimization (e.g., QUBO) framework, we introduce the variables
N+ and N−, which represent the number of data points assigned to
+1 and −1, respectively, and add these variables into the objective
function. The number of data points assigned to each cluster can be
computed as

N± =
N

∑
i=1

1± zi
2
.

These variables serve as the building blocks for constructing the
desired objective function, alongwith any necessary constraints.The
centroids of the two clusters can then be expressed as

μ± = 1
N±

N

∑
i=1

xi
1± zi
2
.

Moreover, for a given dataset x = {xi}
N
i=1, we define the distance

function l:ℝd × {−1,+1}N × {−1,+1} → ℝ≥0 as

l(μ,z, s) =
N

∑
i=1
‖xi − μ‖22

1+ szi
2
.

Here, (1+ szi)/2 acts as an indicator function, taking the value 1
if zi = s (i.e., if xi ∈ C(s), where C(s) denotes the cluster labeled
by s), and 0 otherwise. Thus, this function computes the total
distance between the centroid μ and the data points in the cluster
labeled by s. For instance, l(μ±,z,±1) measures the total distance
between the centroid μ± and the data points grouped in the cluster
labeled ±1. (i.e., the total intracluster distance). On the other hand,
l(μ±,z,∓1) calculates the total distance between the centroid of
the ±1 cluster and the data points labeled the ∓1 (i.e., the total
intercluster distance).

To construct a clustering objective function that incorporates
centroid information, one can take a linear combination of the
distance functions l(μ,z, s). However, this approach poses two

Frontiers in Physics 03 frontiersin.org

https://doi.org/10.3389/fphy.2025.1544623
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


Seong and Park 10.3389/fphy.2025.1544623

challenges when applying the Hamiltonian approach to solve the
optimization problem. First, it is non-trivial to map the binary
variables within the 1/N± term into the Hamiltonian framework.
Second, these denominators can cause numerical instability if all
(or nearly all) data points are assigned to one of the clusters. To
address these issues, we multiply the objective function by suitable
powers of N± to eliminate the denominators and prevent numerical
instability. As detailed in Supplementary Appendix 1, the terms
involving N± in the denominators appear with powers of either
1 or 2 from when the functions are combined for optimization.
Accordingly, we apply the necessary multiplicative factors to
cancel out these terms while minimizing deviations from the
original clustering objectives. By linearly combining these modified
functions, optimization problems that focus on minimizing
intracluster distances, maximizing intercluster distances, or both
can be transformed into a Hamiltonian problem. In the following,
we present three specific examples of such centroid-based objective
functions. The corresponding Hamiltonians can be derived using
a similar procedure as explained in Equations 1–4, by replacing
the scalar 1 with a 2N-dimensional identity matrix and the binary
variables zi with the Pauli Zi operators acting on the ith qubit.
The multiplications of the binary variables zi (e.g., zizj or zizjzk)
correspond to the tensor products of the Pauli Zi operators (e.g.,
Zi ⊗Zj or Zi ⊗Zj ⊗Zk).

3.1 Intracluster distance

We start by setting up the optimization problem aimed at
minimizing intracluster distances. This is achieved by linearly
combining l(μ+,z,+1) and l(μ−,z,−1) and scaling the result by an
appropriate multiplicative factor, as shown below:

min
z∈{−1,+1}N

N2
+N

2
− [l(μ+,z,+1) + l(μ−,z,−1)] . (5)

This formulation encourages clusters to concentrate around their
centroids byminimizing intracluster variance, which is conceptually
equivalent to the objective of the well-known k-means algorithm.

However, the minimum of the objective function in Equation 5
can be achieved by setting eitherN+ orN− to zero, leading to a trivial
solution that does not represent useful clustering. To prevent this,
we multiply l(μ+,z,+1) by N

2
+ and l(μ−,z,−1) by N

2
−, focusing on the

respective clusters. The problem can then be reformulated as:

min
z∈{−1,+1}N

N2
+l(μ+,z,+1) +N

2
−l(μ−,z,−1) . (6)

Notably, in each intracluster distance term, either N+ or N− appears
only with a power of 1 (see Supplementary Appendix 1). Thus,
multiplying each term by a linear factor N± suffices to eliminate
the denominator. However, using higher-order factors, such as
the quadratic term N2

±, not only removes the denominator but
also reflects the influence of cluster sizes into the optimization
process. To analyze how different powers of N± influence the
clustering results, we conducted simulations using both N2

± and
N±. The results obtained by scaling with N2

± are labeled as
Intra, whereas those obtained by scaling with N± are labeled
as Intra∗.

3.2 Intercluster distance

To achieve well-separated clusters, it is beneficial to consider
intercluster distance, which aims to maximize the separation
between different clusters. While minimizing intracluster distance
enhances cohesion within each cluster, it may introduce ambiguity
near adjacent clusters, especially when boundaries are unclear.
By focusing on intercluster separation, we can better distinguish
data points near ambiguous or overlapping boundaries, thereby
improving the overall clustering performance. Following a
similar approach to that used for intracluster distances, the
objective function is constructed by linearly combining l(μ−,z,+1)
and l(μ+,z,−1), with both terms multiplied by N2

+N
2
−. Since

each intercluster distance term includes either 1/N2
+ or 1/N2

−
(see Supplementary Appendix 1), multiplying the entire linear
combination by N2

+N
2
− is necessary to cancel these denominators.

The resulting optimization problem for intercluster distance is then
defined as follows:

min
z∈{−1,+1}N

−N2
+N

2
− [l(μ−,z,+1) + l(μ+,z,−1)] . (7)

In this formulation, we maximize the squared distance of each data
point to the centroid of the opposite cluster, encouraging the data
points to be as far as possible from the other cluster. We observe that
this approach enhances clustering performance, particularly in cases
where cluster boundaries are not clearly defined (see Section 4).

3.3 Combining intra and intercluster
distances

Now, we can integrate both intracluster and intercluster
distances within a unified framework. By simultaneously
optimizing these distances, we aim to strengthen the compactness
within clusters while enhancing the separation between
different clusters. This can be achieved by linearly combining
Equation 5 and Equation 7, with the multiplicative factor N2

+N
2
−,

which removes the denominators in both the intracluster and
intercluster distance terms. The resulting optimization problem is

min
z∈{−1,+1}N

N2
+N

2
− [l(μ+,z,+1) + l(μ−,z,−1) − l(μ−,z,+1) − l(μ+,z,−1)] . (8)

The optimization aims to assign each data point xi to a cluster
label zi ∈ {−1,+1} such that the overall intracluster distances
are minimized while the intercluster distances are maximized.
Specifically, the function promotes tight clustering by minimizing
the distances between data points and the centroid of their assigned
cluster. At the same time, it enhances separation by maximizing
the distances between data points and the centroid of the opposite
cluster. By optimizing over all possible assignments of zi, we seek
a clustering configuration where data points are closely grouped
around their respective centroids and well-separated from the
other cluster.

By rearranging Equation 8 (see Supplementary Appendix 1.3),
the combined objective function can also be expressed as:

min
z∈{−1,+1}N

−NN2
+N

2
−‖μ+ − μ−‖

2
2.
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This expression reveals that optimizing the combined intracluster
and intercluster distances is equivalent to maximizing the squared
distance between the cluster centroids. Therefore, by optimizing the
combined objective function in Equation 8, we inherently maximize
the separation between the centroids of the two clusters.

3.4 Constrained clustering

In practice, analysts often need to perform clustering
under constraints, which are dictated by task requirements
or the available information. These constraints ensure that
clustering not only groups data effectively but also adheres to the
underlying structure and expert knowledge specific to the domain.
According toRef. [37], these constraints typically fall into threemain
categories: labeling constraints, cluster constraints and comparison
constraints.

Labeling constraints are based on preassigned labels from
domain knowledge, guiding the clustering algorithm to ensure
that labeled objects are assigned to the correct groups. Cluster
constraints focus on the characteristics of the clusters, such as the
desired number of clusters or restrictions on cluster size or density.
Comparison constraints include Must-Link (ML) and Cannot-Link
(CL) relations, which specify whether certain objects should or
should not be placed in the same cluster based on their inherent
relationships. This approach allows users to specify relationships
between data points even in the absence of class labels. In our
framework, these constraints can be incorporated by augmenting
the objective function with penalty terms that increase the objective
value when the constraints are violated.

To implement labeling constraints, we modify the objective
function to penalize incorrect cluster assignments. If the ith data
point is labeled as +1 (corresponding to the zi = 1), we add a term
−λpzi with λp > 0 to the objective function. Similarly, if the data
point is labeled −1 (corresponding to the zi = −1), we add +λpzi.
This ensures that labeled points are assigned to the correct cluster,
minimizing the penalty function when the cluster assignment
matches the provided labels. For cluster constraints, if the goal is
to ensure that a specific number of data points are assigned to each
cluster, we can modify the objective function as

f (z) + λp(C−
N

∑
i=1

zi)
2

. (9)

Here, C represents the desired difference in the number of data
points between two clusters, and λp > 0 is the hyperparameter
controlling this aspect. Since zi ∈ {−1,+1}, the term ∑Ni=1zi
evaluates the difference in the number of data points between
the two clusters for a given cluster assignment. Consequently, the
second term in Equation 9 becomes zero only when the constraint
is satisfied, while the objective value increases quadratically with
deviation from the desired cluster sizes.

Comparison constraints, such as Must-Link (ML) and Cannot-
Link (CL), can also be incorporated. Using the penalty term
described in Ref. [38], where Qij = + 1 for Must-Link and Qij = − 1
for Cannot-Link, we modify the objective function as

f (z) − λp∑
i<j

Qijzizj.

The second term ensures that the objective value increases when
Must-Link or Cannot-Link constraints are violated, thereby seeking
a solution that satisfies these pairwise relationships.

Note that the constraints are incorporated via the penalty
method, where the hyperparameter λp controls the strength of
constraint enforcement. Choosing an appropriate value for λp
is crucial, as excessively large values may overly restrict the
optimization, while very small values may fail to enforce constraints
effectively. Common approaches for selecting λp include grid search,
random search [39], and adaptive methods [40].

3.5 k-clustering

1:k← The desired number of clusters

2:clusters← [ ] ⊳  Initialize an empty list

of clusters

3:while number of clusters in clusters < k do

4:  Construct a customized Hamiltonian

5:  Determine the ground state of the Hamiltonian

using a quantum algorithm

6:  Extract the clusters from the binary solution

7:  Repeat steps 4–6 for each extracted cluster

8:  Append the new clusters to the clusters list

9:end while

10:return clusters

Algorithm 1. Hamiltonian k-clustering.

Building upon the work of Ref. [35], we briefly discuss a k-
clusteringmethod inspired by hierarchical clustering techniques. To
formalize this approach, we present the Hamiltonian k-clustering
algorithm, shown in Algorithm 1. This method iteratively performs
binary clustering, eliminating the need for one-hot encoding
for each cluster and avoiding complex constraint penalty terms,
such as those ensuring that each data point belongs to only
one cluster. Consequently, this approach simplifies the clustering
process, reduces the problem size, and enhances scalability, making
it more suitable for the current capabilities of quantum annealers.
Furthermore, this method can provide hierarchical insights into
the data structure by unveiling nested cluster relationships. Thus,
Hamiltonian clustering can be extended beyond binary clustering
to general clustering problems. In the following section, we
present experimental results that validate the effectiveness of our
proposed method.

4 Experiments

To assess the effectiveness of our array of customized
Hamiltonians, we conducted experimental analyses using the
Silhouette Score (SS) and the Rand Index (RI) as primary
performance metrics, with comparisons to the k-means algorithm
and the weighted MaxCut. The Silhouette Score evaluates cohesion
within clusters and separation between clusters, while the Rand
Index measures agreement with the ground truth by calculating
the true positives and true negatives in the clustering results.
In addition to these primary metrics, we examined other
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aspects of clustering performance, such as the distances between
cluster centroids, intracluster distances (the sum of distances
within clusters), and intercluster distances (the sum of distances
between clusters). These additional results are summarized in
the tables in Supplementary Appendix 2.

4.1 Exact solutions

To establish a baseline for evaluating the performance of
our proposed Hamiltonian methods, we employed a brute-force
algorithm to exhaustively search the solution space on small
datasets. Although this approach is computationally expensive and
infeasible for large datasets, it allows us to find exact solutions
and precisely evaluate the performance of our proposed methods.
For this reason, we selected the Iris and Wine datasets for our
experiments due to their widespread usage as standard benchmarks
in clustering and classification tasks, as well as their suitability
for exhaustive search given their size. The Iris dataset consists of
150 samples with four features categorized into three classes, while
the Wine dataset contains 178 samples with thirteen features also
categorized into three classes. To focus on binary clustering, we
excluded the Setosa class (50 samples) from the Iris dataset and
class 1 (59 samples) from the Wine dataset. For each dataset, we
randomly sampled 16 data points and repeated the experiment
150 times. We applied normalization to scale the features of the Iris
dataset to a range between 0 and 1. For theWine dataset, we applied
standard scaling to transform the features to have zero mean and
unit variance.

Figure 2 summarizes the performance of different methods
on the Iris and Wine dataset. For the Silhouette Score, the k-
means algorithm achieves the highest score on the Iris dataset. The
Intra-Inter combined method and Intra∗ method follow closely in
second and third place. Notably, the Intra-Inter combined method
surpasses the k-means algorithm on the Wine dataset. For the
Rand Index, one of our Hamiltonian methods outperforms the k-
means algorithm on both datasets. The Intra∗ method achieves the
highest Rand Index on the Iris dataset, whereas the Inter method
outperforms the Intra∗ method on the Wine dataset. By combining
Intra and Inter methods, we achieved balanced performance across
both datasets. In all cases, at least one of our Hamiltonian
methods outperforms the weighted MaxCut, highlighting the
benefit of incorporating centroid information into the clustering
process.

4.2 Simulated annealing

Although the brute-force algorithm guarantees exact
solutions, its high computational complexity restricts its
application to small datasets. To validate the scalability of
our method, we employ the simulated annealing algorithm.
This approach enables testing on larger datasets, including not
only the Iris and Wine datasets but also Gaussian-distributed
synthetic dataset and 0–1 MNIST dataset. The synthetic dataset
follows Gaussian distributions with overlapping ranges (see
Supplementary Figure S1 in Supplementary Appendix 2), and the
0–1 MNIST dataset contains handwritten images of digits 0

FIGURE 2
The heatmap illustrates exact search results, showing the performance
of Hamiltonian methods on the Iris and Wine datasets. The values
represent the means of performance metrics (RI: Rand Index, SS:
Silhouette Score), with darker shades indicating higher rank (better
performance). White text indicates the best results for each
evaluation metric.

FIGURE 3
The heatmap illustrates simulated annealing results, showing the
performance of Hamiltonian methods on the Gaussian synthetic, Iris,
Wine and MNIST 0–1 datasets. The values represent the means of
performance metrics (RI: Rand Index, SS: Silhouette Score), with
darker shades indicating higher rank (better performance). White text
highlights the best results for each evaluation metric.
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FIGURE 4
(a) A visualization of a complete graph with 5 vertices, denoted as K5, where each vertex (representing a data point) is connected to every other vertex.
(b) The embedding of K5 onto the D-Wave Pegasus topology [41], showing how the fully connected graph is mapped onto the limited qubit
connectivity of the quantum hardware. The gray background highlights unused qubits, while colored nodes and edges show the embedded qubits and
their connections. The purple node is embedded onto two separate physical qubits, which are linked by a purple edge, representing a chain. This chain
ensures that the two qubits act together as a single logical qubit during the quantum annealing process.

TABLE 1 Comparison of quantum annealing results: Silhouette Score
and Rand Index between Intra-Inter combined method and k-means
algorithm for the Gaussian synthetic, Iris, Wine and 0–1 MNIST datasets.

Intra-Inter
combined

k-means

Dataset SS RI SS RI

Gaussian 0.444 0.798 0.461 0.729

Iris 0.442 0.922 0.443 0.904

Wine 0.279 0.888 0.280 0.903

0–1 MNIST 0.479 0.989 0.480 0.981

and 1 in a 28× 28 pixel format. We selected 100 samples from
the Iris dataset (excluding the Setosa class) and 119 samples
from the Wine dataset (excluding class 1). For the Gaussian-
distributed synthetic dataset 150 samples were used and 175
samples were chosen from the 0–1 MNIST dataset. All experiments
were conducted using an identical annealing schedule, ensuring
that each experiment was allocated the same computational
time budget.

Figure 3 presents the performance of different methods across
these dataset. For the synthetic dataset, the k-means algorithm
achieved the highest Silhouette Score compared to other methods.
However, both the Inter and Intra-Inter combinedmethods achieved
the highest Rand Index. This indicates that they handle overlapping
data more effectively than other methods. Furthermore, simulations
using actual datasets revealed noteworthy results. Although the k-
means algorithm achieved marginally higher Silhouette Scores, our
Hamiltonian methods consistently yielded high Rand Index values
while maintaining comparable Silhouette Scores.This enhancement
in the Rand Index suggests that our methods not only optimize
intracluster cohesion and intercluster separation but also produce

cluster assignments that more accurately reflect the true underlying
classes. In particular, for the 0–1 MNIST dataset, the Intra-Inter
combined method demonstrated excellent performance, indicating
thatHamiltonian based clustering can be effectively applied to image
recognition tasks.

4.3 Quantum annealing

To verify that our method can operate on a current quantum
device, we performed quantum annealing using the D-Wave
Advantage System 6.4, which employs the Pegasus topology
(see Figure 4B). Our clustering problem inherently involves a
fully connected (complete) graph, as depicted in Figure 4A. This
connectivity poses challenges for current quantum devices, which
often have limited qubit connectivity. We utilized the clique sampler
from the D-Wave Ocean SDK [42], which is designed to optimally
embed fully connected problems onto the hardware. In graph theory,
a clique is a subset of vertices in which every pair of distinct
vertices is connected by an edge, forming a complete subgraph. The
term clique size refers to the number of vertices in such a fully
connected subgraph. Notably, the maximum clique size for the D-
Wave Advantage System 6.4 is 175, meaning that it can embed fully
connected problems involving up to 175 logical qubits (representing
data points). This capability allowed us to process the entire Iris and
Wine datasets—each containing fewer than 175 data points—in a
single trial. However, the 0–1 MNIST dataset exceeds the limited
qubit connectivity of the system, necessitating the random selection
of subsets of 175 data points. To ensure statistical robustness,
we repeated this sampling process ten times. Our intercluster
method demands additional qubits beyond those representing
the data points due to the inclusion of higher-order terms
(see Supplementary Equation S21 in Supplementary Appendix 1.2)
and hence the slack variables necessary for formulating it as a
Binary Quadratic Model (BQM). This extra qubit requirement
exceeds the hardware’s maximum clique size when handling larger
datasets, leading us to exclude the intercluster method from
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FIGURE 5
Chain break fraction for four different Hamiltonians using the D-Wave Advantage System 6.4. We conducted 200 samplings on a single quantum
machine instruction on a QPU, setting the annealing time to the maximum possible duration of 2000 μs. The system employed 5,612 physical qubits.
Using the 0–1 MNIST dataset, we observed chain breaks by averaging the results of 200 samplings. Remarkably, the Intra-Inter combined method did
not experience any chain breaks, demonstrating superior stability. This stability significantly influenced the annealing results, resulting in consistently
high Rand Index values. When evaluating the Rand Index, we calculated the Rand Index of the minimum energy among the 200 samples, further
affirming the robustness and effectiveness of the Intra-Inter combined method.

FIGURE 6
The plots display the Rand Index as a function of the percentage of known labels for the Iris (left) and Wine (right) datasets, under constrained
clustering with Must-Link (ML) and Cannot-Link (CL) constraints. Where the proportion of revealed labels ranges from 0% to 100% in 10% increments.
The performance improves as more label information is revealed, with the both dataset showing a recovery in performance after an initial decline
between 10% and 30%. The variability in the Inter method suggests sensitivity to the hyperparameter λp.

our quantum annealing experiments given the current hardware
constraints.

In this analysis, the Intra-Inter combined method achieved
higher Rand Index values while maintaining similar Silhouette
Scores compared to the k-means algorithm for the Gaussian
synthetic, Iris, and 0–1 MNIST datasets, as shown in Table 1
These results indicate a notable advancement in quantum-enhanced
clustering. In contrast, the Intra, Intra

∗
, and weighted MaxCut

methods encountered the logical qubit embedding issue known
as chain breaks, leading to random solutions. Figure 5 illustrates
this phenomenon by showing the chain break fractions for
four Hamiltonians, highlighting the stability of the Intra-Inter
combined method on the 0–1 MNIST dataset. In the process
of embedding a problem into the D-Wave Systems, multiple
physical qubits are used to represent a single logical qubit.
These physical qubits are connected in a chain, as illustrated
by the purple edge in Figure 4B. A chain break occurs when
these physical qubits fail to maintain the same state after the

annealing process. This misalignment leads to unreliable solutions.
Several studies [43–47] have investigated how chain breaks affect
the accuracy of quantum annealing results, highlighting the
need for effective embedding strategies and adjustments of chain
strength values to minimize such occurrences. Notably, the Intra-
Inter combined method performed efficiently on current QPU
without the need for additional system parameters tuning or
embedding strategies, such as adjusting annealing schedules or chain
strengths.

4.4 Constrained clustering

We performed constrained clustering on the Iris and Wine
datasets using Must-Link (ML) and Cannot-Link (CL) constraints,
implemented through simulated annealing. Labels of randomly
selected data pointswere revealed according to specified proportions
from the entire dataset. Based on these revealed labels, we generated
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FIGURE 7
The top plots show the Rand Index across various methods with cardinality constraints applied to the Iris (left) and Wine (right) datasets. The bottom
plots depict the difference between the given cardinality (C) and the experimental results (C

∗
). The horizontal axis represents the number of data

points from label 1 to label 2, ranging from (10%, 90%) to (90%, 10%). Notice that the Inter method underperformed on the Iris dataset. In contrast, the
Intra
∗
and Intra-Inter combined methods maintained a high Rand Index while closely achieving the desired cardinality.

constraints whether pairs of data points should be grouped together
(ML) or separated (CL).The proportion of data points with revealed
labels ranged from 0% to 100% in 10% increments, resulting in 11
distinct levels. A 0% ratio reflects a standard clustering scenario
without any constraint information, whereas a 100% ratio indicates
that all labels are fully known. For each ratio, we conducted
50 trials using different random samples to calculate average
performancemetrics.This choice balances statistical robustness and
computational efficiency.

Figure 6 presents the outcomes of constrained clustering with
ML and CL constraints. In both datasets, the Rand Index initially
declined when only 10%–30% of label information was provided,
but progressively improved as more information available. In the
case of Wine dataset, the Intra-Inter combined method quickly
converged to the true labels. In contrast, the Intermethod showed no
consistent trend and exhibited considerable variability.This suggests
that the solution values are sensitive to the hyperparameter λp,
which can influence the prioritization of constraints or clustering
methods.

Subsequently, we implemented cardinality constraints to assign
a specific number of data points to each cluster on the Iris and
Wine datasets using simulated annealing. For each experiment, we
selected a total of 50 data points from the Iris dataset and 48 data
points from the Wine dataset, drawn from labels 1 and 2 according
to predetermined ratios.The proportions of data points from label 1
and label 2 varied as follows: (10%, 90%), (20%, 80%), (30%, 70%),
(40%, 60%), (50%, 50%), (60%, 40%), (70%, 30%), (80%, 20%), and
(90%, 10%). This means we started with 10% data points from label
1% and 90% from label 2, gradually adjusting the proportions until
we reached 90% from label 1% and 10% from label 2.

Figure 7 illustrates the performance of our methods with
cardinality constraints. The Intra

∗
and Intra-Inter combined

methods achieved high Rand Index values across different label
ratios for both datasets, closely matching the desired cardinality
values. On the Iris dataset, the Intra, weighted MaxCut and Inter
methods exhibited less satisfactory performance with balanced

data points (50% from each label). On the Wine dataset, the
Intra and weighted MaxCut methods also underperformed with
balanced data points. Nevertheless, the results of the Intra

∗

and Intra-Inter combined methods indicate that it is possible to
perform clustering on imbalanced data and adjust cluster sizes
according to user specifications, effectively addressing real-world
clustering problems.

5 Conclusions and discussion

In this work, we formulated the clustering problem as finding the
ground state of a Hamiltonian and developed methods to integrate
centroid information directly into the objective function. We defined
a distance function l(μ,z, s) that encompasses intracluster distance,
intercluster distance, and a combination of both. By incorporating the
number of data points in each cluster as a variable within the objective
function,we eliminated theneed forfixedcluster size assumptions.We
also extended ourmethod to constrained clustering, enabling domain
experts to embed prior knowledge into the clustering process. Our
experimental results demonstrated that at least one of our proposed
Hamiltonians outperforms the weighted MaxCut across multiple
datasets, including both synthetic and real-world examples. This
underscores the importance of incorporating centroid information
in clustering algorithms. Notably, the Intra-Inter combined method
exhibited balanced performance across most datasets.

The significance of our research lies in developing a flexible and
unified clustering strategy capable of addressing complex clustering
challenges. By enabling the integration of various clustering
objectives, our approach effectively manages data points clustered
around their mean and handles overlapping clusters, as evidenced
by our experimental results. Application to real datasets further
highlights the practical utility of theHamiltonian formulation. A key
benefit of our method is its compatibility with quantum simulation
techniques. In particular, our quantum annealing experiments on
the D-Wave Systems showed that the Intra-Inter combined method
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operates effectively on current quantum device, demonstrating its
applicability to real-world problems.

Potential directions for future research include expanding the
Hamiltonian-based clustering framework to develop data-driven,
automated methods for determining the optimal number of clusters.
The intracluster distance formulation in our Hamiltonian approach
can be leveraged to enforce density constraints. Additionally, refining
the Intra-Inter combinedmethod by applying dynamic weights to the
linear combination of distances could allow adaptation to context-
specific requirements. Extending this Hamiltonian formulation to
address more complex clustering scenarios, such as time series
and high-dimensional datasets, also presents a promising direction.
Exploring alternative quantum hardware platforms, such as Rydberg
atom arrays [48–53], could further expand the utility of our
approach.While large-scaleall-to-allqubitconnectivity isnotnaturally
available,ongoingadvances inhigh-fidelitycontrol[54],highlytunable
interactions [55], and long coherence times [56, 57] open a path for
scaling our method to larger problem instances.These advancements
have the potential to enable new applications in fields like finance,
drug discovery, and social network analysis.
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