
TYPE Brief Research Report
PUBLISHED 20 February 2025
DOI 10.3389/fphy.2025.1544914

OPEN ACCESS

EDITED BY

Zhenxu Bai,
Hebei University of Technology, China

REVIEWED BY

Yajun Pang,
Hebei University of Technology, China
Ruiqing He,
Nanjing Institute of Technology (NJIT), China

*CORRESPONDENCE

Yi Chen,
chenyi@cjlu.edu.cn

Yan Shi,
shiyan@cjlu.edu.cn

RECEIVED 13 December 2024
ACCEPTED 13 January 2025
PUBLISHED 20 February 2025

CITATION

Chen Y, Zhang Z, Wang L, Liu P and Shi Y
(2025) Single-photon imaging for 3D
reflectivity and depth estimation in low-light
conditions.
Front. Phys. 13:1544914.
doi: 10.3389/fphy.2025.1544914

COPYRIGHT

© 2025 Chen, Zhang, Wang, Liu and Shi. This
is an open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other forums is
permitted, provided the original author(s) and
the copyright owner(s) are credited and that
the original publication in this journal is cited,
in accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

Single-photon imaging for 3D
reflectivity and depth estimation
in low-light conditions

Yi Chen1,2,3*, Zhenyu Zhang2, Liqiang Wang1, Penghuan Liu2 and
Yan Shi2,4*
1College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, China, 2College
of Optical and Electronic Technology, China Jiliang University, Hangzhou, Zhejiang, China, 3Hengdian
Group Tospo Lighting Company Limited, Dongyang, Zhejiang, China, 4Key Laboratory of Light-sensing
and Image Metrology, State Administration for Market Regulation, Hangzhou, Zhejiang, China

Three-dimensional active imaging systems operating in photon-starved
regimes have broad applications, including remote sensing, autonomous
navigation, and military surveillance. In this study, we present a noncoaxial
scanning imaging system capable of generating high-quality depth and
reflectivity images with an average of only ∼1 detected photon per
pixel, leveraging a single-photon avalanche diode (SPAD) detector. The
accompanying depth retrieval algorithm integrates an l1-norm regularizer
and operates without requiring prior knowledge of the number of
targets in the scene. This design significantly enhances the algorithm’s
robustness and reliability for practical applications. Experimental results
validate the proposed algorithm’s effectiveness, underscoring its potential
for advancing three-dimensional active imaging under photon-starved
conditions.

KEYWORDS

lidar, 3D imaging, SPAD detector, TCSPC, TOF

1 Introduction

Light detection and ranging (LiDAR) is an advanced optical remote sensing technology
that utilizes pulsed lasers to measure target reflectivity and distance [1–3]. Depth
estimation is achieved by calculating the time of flight (ToF) of photons, defined as
the time interval between the emission of a laser pulse and the receipt of the reflected
signal. To differentiate laser photons from ambient photons in ToF measurements,
the time-correlated single-photon counting (TCSPC) technique is widely employed [4].
This technique detects individual photons and records their arrival times relative to a
synchronized laser signal. By constructing a time-correlated histogram of photon arrival
times and analyzing it, both depth and reflectivity information of the scene can be
extracted.

Traditional LiDAR systems typically require the detection of hundreds of photons
per pixel to compensate for the intrinsic Poisson noise associated with optical
detection, even when single-photon detectors are utilized. However, in scenarios
where the detector is positioned far from the target or rapid data acquisition is
essential, the number of detected photons is significantly reduced. This limitation
challenges the effectiveness of TCSPC-based techniques. Recent advancements in
image processing have enabled imaging under low-light conditions, mitigating the
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constraints faced by conventional LiDAR systems in photon-limited
scenarios.

A prominent technique for low-light imaging is first-photon
imaging (FPI). In FPI, depth and reflectivity information are
retrieved in low-photon flux environments by utilizing only the first
detected photon at each pixel [5]. However, in FPI configurations,
the detection time of the first photon is a random variable. This
introduces inefficiencies in data acquisition, particularly when
using single-photon avalanche diode (SPAD) array cameras with
uniform dwell times for all pixels [6]. To address this challenge, the
concept of photon-efficient imaging was proposed, which, unlike
FPI, employs a fixed dwell time per pixel, thereby enabling faster
data acquisition [7, 8]. The effectiveness of this approach was
experimentally demonstrated using a SPAD array camera in a study
reported in [9].

In this paper, we propose a SPAD-based LiDAR system
designed to retrieve depth and reflectivity information within a
photon-efficient imaging framework. Our approach builds upon
prior work [9] by eliminating the need for prior knowledge of
the number of targets in the scene. This advancement significantly
enhances the system’s robustness, especially in real-world scenarios
where the number of targets is often unknown. Experimental results
demonstrate the effectiveness of our method, achieving accurate
depth and reflectivity reconstruction with raw data containing an
average of approximately one detected photon per pixel.

2 Basic principle

In this part, the reflectivity and depth of the scene are calculated
by solving an unconstrained optimization problem with Total
Variation (TV) and sparsity regularization, respectively. We define
the scene’s reflectivity as A ∈ RNx×Ny and the depth Z ∈ RNx×Ny , and
let B ∈ RNx×Ny be the average rates of background-light plus dark-
count detections. At t = 0, the scene is illuminated by a laser pulse
s (t). The photon flux of the reflected light for (i, j)th pixel of the
composite image is (Equation 1):

ri,j(t) = Ai,js(t− 2Zi,j/c) +Bi,j, t ∈ [0,Tr) (1)

where c is the speed of light. Since we used the SPAD detector,
the dark count rate of each pixel caused by the internal structure
of the SPAD is similar, so we ignored this part of noise in data
processing process.

We define the total number of time bins as Nz = [Tr/Δ] with Δ
be the time resolution of SPAD, and letCi,j,k be the observed number
of photons in the kth time bin for pixel (i, j), ns pulsed-illumination
trials until time kΔ. According to the theory of photon statistics of
coherent light, the number of detected photon on short time-scales
follows Poisson distribution [10] (Equation 2).

Ci,j,k ∼ Ρ(ns∫
kΔ

(k−1)Δ
ri,j(t)dt),k = 1,2,…,ΝZ (2)

where Ρ(•) denotes the realization of a Poisson process. Since the
experiment was conducted in a low-flux regime, the total number of
photons∑Nz

k=1Ci,j,k wasmuch less than ns, which effectively addressed
the pulse-pileup distortions [11, 12]. Using the sparse photon-
detection dataC ∈ RNx×Ny×Nz to estimate the scene’s reflectivityA and
depth Z.

2.1 Reflectivity estimation of the scene

The reflectivity estimation model can be obtained from the
Poisson-process rate function (Equation 3):

ns∫
Tr

0
ri,j(t)dt = ns(Ai,jS+NzΔBi,j) (3)

where S = ∫Tr
0 s(t− 2Zri,j/c)dt is the total number of photons

detected by the SPAD in the case of total reflection of a single
pulse. The conditional probability mass function of Ci,j given
Ai,j is (Equation 4):

Ρr(Ci,j;Ai,j) = − log
[ns(Ai,jS+NZΔBi,j)]

Ci,j exp[−ns(Ai,jS+NZΔBi,j)]
Ci,j!

(4)

Due to the generally small spatial variance in images of natural
scenes, we incorporate a transverse-smoothness constraint into the
reflectivity image using the TV norm. The resulting reflectivity
image, Â, is thus obtained by solving a nonnegative optimization
problem regularized by the TV norm:

Â = argmin[(∑
i,j
LA(Ci,j;Ai,j))+ τA‖A‖TV],Ai,j ≥ 0 forall i, j (5)

where LA(Ci,j;Ai,j) = − log Pr(Ci,j;Ai,j) and τA is the regularization
parameter. The definition of TV norm is given by Equation 6:

‖A‖TV = ∑
r1,r2∈N
‖Ar1 −Ar2‖

q

p

(6)

where N defines the set of pixel neighborhoods and ‖.‖qp is the
lp norm to the power of q. The optimization problem outlined
in Equation 5 can be efficiently solved utilizing proximal splitting
methods, due to the convexity of the objective function [13, 14].

2.2 Censoring extraneous detections

The optical signal of the target, in the absence of background
noise, was recorded only in a limited number of time bins. However,
there were multiple non-zero entries in the collected dataset Ci,j,k,
leading to the formation of multiple ToF clusters in each pixel.
To improve the accuracy of depth estimation, it is necessary to
filter the TOF dataset and identify valid clustering intervals that
accurately represent the target features. The target’s ToF set was
collected as zΔ = hist(ZΔ) in Nz bins of width 100 ps. Given the
sparsity of Nz and the consistent amount of noise collected at
each pixel, we compute the estimations of the target depth ̃zΔ by
subtracting the average environmental light from the photon dataset
Ci,j,k indexed based on its transverse-coordinate and accounting for
dark count noise (Equation 7):

( ̃zΔ)k =∑(Ci,j,k −ΔBi,j),k = 1,2, ...,NZ (7)

It is observed that ̃zΔ is a distorted representation of zΔ resulting
from convolution with sz ∝ s(2z/c), where s(t) is the laser’s pulse
shape and ∫ szdz = 1.The problem of determining the effective range
for depth estimation can be formulated as follows:

̂zΔ = argmin
Nz

∑
k=1
‖( ̃zΔ)k − (sz ∗ zΔ)k‖

2

2
+ λ|zΔ|1 for all k = 1,2,…,Nz

(8)
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FIGURE 1
Single-photon imaging set-up and the functional block diagram for the experiments. (A) Experimental setup; (B) Functional block diagram.

where sz is the discrete convolution operator. The use of l1-
norm (l1 = (|x1|+|x2|+⋯+|xn|)) in the objective Equation 8 results
in a sparse model, automatically selecting the optimal depth interval
that represents the target features. Unlike previous methods, the
proposed algorithmdoes not require prior knowledge of the number
of targets in the scene, making it suitable for more complex
scenes. The regularization parameter λ is introduced in Equation 8,
which poses an unconstrained sparse deconvolution optimization
problem. To find the optimal solution, the fast iterative shrinkage-
thresholding algorithm (FISTA) is utilized [15]. Let Sk be the set
of all k such that ( ̃zΔ)k > δ, where δ is the threshold constant.
The photon sparse data cube after censoring can be computed
as follows Equation 9:

C̃i,j,k = {
Ci,j,k, i f k ∈ Sk
0, otherwise

(9)

2.3 Estimation of scene depth

The estimation of the target’s depth is performed within the
valid depth interval determined in Section 2.2, using a processing
method similar to that described in Section 2.1. The same TV
norm is utilized to restrict the longitudinal sparsity of the target
depth. As a result, the depth estimate ̂Z is resolved as a non-negative
TV-regularized convex optimization problem (Equation 10):

̂Z = argminZ∑ ∑
Ti,j∈Ui,j

[LZ(Zi,j;Ti,j) + τZ‖Z‖TV] subject to Zi,j ≥ 0, for all i, j

(10)

where LZ(Zi,j;Ti,j) = ‖(Ti,jΔ− 2Zi,j/c)k‖
2
2
and Ti,j is the detection

time-bin of the censored data cube C̃i,j,k. Ui,j is the set of
uncensored detection times at pixel(i, j) and τZ is the regularization
term for TV norm. The first term enforces data fidelity by
minimizing the discrepancy between the observed detection times
and those predicted based on the estimated depths. The second

term incorporates a TV regularization, which penalizes large
gradients in the depth, encouraging smoothly varying depth profiles
in the estimated depth map while preserving sharp edges. This
regularization is crucial for handling noisy data and preventing
unrealistic depth estimates. The non-negative constraint Zi,j ≥ 0
ensures physically meaningful depths. By minimizing this objective
function, we obtain the depth estimate ̂Z that best balances data
fidelity with spatial smoothness.

3 Experimental validation

The experimental setup is depicted in Figure 1A, with the
corresponding functional block diagram shown in Figure 1B. The
primary parameters of the illumination source include wavelength,
pulse width, power, and repetition rate. The light source was a
pulsed broadband supercontinuum laser with a wavelength range
of 470 nm–2,400 nm. The laser pulse width was approximately
100 ps (Tr ≈ 100 ps), which is a critical factor influencing the
imaging resolution. The light source operated at a repetition rate
of 2 MHz, determining the system’s sampling speed. Its power
output was 500 mW, significantly impacting the imaging distance.
The scanning system employed a dual-axis galvo scan head from
Thorlabs (QS15−XY−AG−ϕ15 mm, protected silver mirrors). This
system comprised a scan head with mirrors, a servo driver board,
and power cables.The scanning range spanned from −22.5° to 22.5°,
with an input voltage range of −5 V to 5 V.

The scan head turned 1° per input 0.22 V.The laser was incident
on the center of the lowermirror (scanningX-Axis) andwas emitted
by the uppermirror (scanningY-Axis) to illuminate themannequin.
The function generator controlled the scanning frequency and
amplitude of the galvanometers. We chose a two-channel arbitrary
waveform function generator (33612A) manufactured by Keysight
Technologies. It can generate pulses up to 80 MHz and a jitter time
≤ 1 ps for precise timing.

The scan head is being controlled by a voltage signal, and
for every 0.22 V of change in the voltage, the scan head turns
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FIGURE 2
Reflectivity and depth reconstructions of mannequin’s face. (A, C) The
reflectivity and depth estimation using pixelwise reconstruction
method from Ref. [14]. (B, D) Reflectivity and depth reconstruction
using the proposed method. (E, F) The mean absolute error using the
proposed method.

by 1°. In the experiment, the laser beam was directed to the
center of the lower mirror, which is responsible for scanning along
the X-axis. The upper mirror was responsible for emitting the
laser beam to illuminate the mannequin and for scanning along
the Y-axis. The galvanometers are regulated by a two-channel
arbitrary waveform function generator (33612A) manufactured by
Keysight Technologies. This function generator has the capability
of producing pulses with a frequency up to 80 MHz and precise
timing with a jitter time of ≤ 1 ps, ensuring accurate and efficient
3D imaging results. In the experiment, the X-axis scan range
was from −0.52° to 0.56°, which corresponds to an input voltage
range of −1150 mV to 1230 mV. The Y-axis scan range was from

−0.17° to 0.54°, which corresponds to an input voltage range of
−370 mV to 1810 mV.

The detector utilized in the experiment was the SPAD (IDQ 100)
manufactured by ID Quantique (IDQ) of Switzerland. With a time
resolution of Δ = 40 ps and a photosensitive area 50 µm, the SPAD
demonstrated a single-photon detection probability of 35% at λ =
500 nm. This improvement in detection efficiency led to a higher
generated key rate and faster image acquisition. The high timing
resolution also resulted in smaller coincidence detection windows,
reducing the number of false pair detections and thus improving
the signal-to-noise ratio in imaging. The signals received by the
SPADwere statistically processed using a Time-to-Digital Converter
(TDC) manufactured by IDQ. Each frame had a capture window
of 200 ns, with a total capture duration of 1 µs. Prior to scanning,
the galvanometer scanning area was adjusted, and continuous laser
pulses were emitted. This setup ensured that the SPAD effectively
captured the scene information for each pixel during the TDC
acquisition period.

We employed a low-power laser to illuminate the face of
mannequin to simulate the low luminous flux detection. The
resulting reconstructed reflectivity and depth images are presented
in Figure 2. The size of the reconstructed image is 110 × 120 pixels,
with an average of approximately one detected photon per pixel.
In order to compare the performance of the proposed algorithm,
we compared its results to those obtained using the conventional
algorithm, as reported in [16]. Figure 2A displays the reflectivity
results obtained using the conventional algorithm. This approach
fails to account for the impact of noise on the image and as
a result, the reconstructed reflectivity image exhibits significant
noise artifacts. In contrast, Figure 2B presents the reflectivity image
obtained using the proposed algorithm, which is significantly
superior to that produced by the conventional algorithm. This
improvement highlights the effectiveness of the proposed algorithm
in mitigating the effects of noise in low luminous flux detection.

Figures 2C, D displays the depth reconstruction results obtained
through the conventional and proposed methods. As depicted in
Figure 2C, the conventional algorithms utilize the time-bin with the
highest photon count for each pixel as the depth interval. However,
this approach entails processing data from all time-bins for each
pixel, which results in poor noise filtering and longer imaging times.
In contrast, the proposed FISTA algorithm selects the effective time-
bins without prior knowledge of the number of scene features.
By excluding irrelevant signal interference, depth estimation is
performed only using these effective time-bins, a process that
resembles reflectivity estimation. The resulting image is smoothed
using the TV norm, effectively removing noise while preserving
character features. The final depth result is presented in Figure 2D.

In the low-flux depth imaging experiments, the mean absolute
error (MAE) was used to quantify the computational results of
the two algorithms (Figures 2E, F). Because it does not preprocess
the noise, the conventional method resulted in a high depth error,
where the ground truth is obtained by detecting approximately 1,100
signal photons per pixel. Compared with conventional methods, our
framework reduces the error evidently. In conclusion, our proposed
algorithm successfully achieves few-photon imaging without the
requirement of prior knowledge of the number of scene features,
making it both effective and widely applicable.
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4 Discussion and conclusion

The LiDAR system presented in this paper is specifically
designed to operate in low-light conditions, where only a limited
number of photons are available for detection. The primary
objective of the system is to accurately retrieve reflectivity and
depth information of target objects. The associated reconstruction
algorithm is both robust and flexible, requiring no prior knowledge
of the number of objects in the scene. This adaptability makes
it particularly well-suited for real-world applications, where the
number and characteristics of objects can vary significantly. The
algorithm employs a mathematical framework to reconstruct target
information from the sparse and noisy signals detected by the
LiDAR system. Additionally, the proposed approach is versatile and
can be extended to non-scanning LiDAR systems.The paper further
suggests potential improvements to the reconstruction algorithm by
incorporatingmore advanced regularization terms. Techniques such
as joint basis pursuit [17] or data-driven neural networks [18] could
enhance the quality and resolution of the reconstructed images.
This technology holds significant potential for a wide range of
applications, including scenarios with low photon reflectivity in
underwater environments, long-distance imaging, and conditions
affected by atmospheric turbulence.
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