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Advances in deep learning methods have demonstrated remarkable progress
in wheelset fault diagnosis. However, current deep neural networks suffer from
design flaws, including low accuracy, high computational complexity, limitations
in frequency-domain analysis, and inefficient long time-series feature encoding.
To address these challenges, this study proposes a Transformer network model
based on dual convolutional neural networks and cross-attention enhancement
(Trans-DCC) for wheelset bearing fault diagnosis. The model incorporates a
dual feature fusion mechanism in the first layer of the Transformer encoder,
utilizing dual CNNs to extract low-level time-frequency features while reducing
subsequent attention computation complexity. Additionally, a cross-attention
mechanism is integrated into the last encoder layer, combining multi-head
attention with time- and frequency-domain features from a feedforward
connection layer. Attention weights are computed to prioritize critical features
before enhancement fusion. Finally, fully connected layers and a softmax
classifier are employed for fault classification. Experimental evaluation on a train
wheelset bearing dataset confirms the model’s effectiveness, demonstrating
high diagnostic accuracy. The proposed Trans-DCC model overcomes key
limitations of existing methods by enhancing feature extraction and fusion,
offering a robust solution for wheelset bearing fault diagnosis.

KEYWORDS

transformer network, dual convolutional neural network, cross-attention, wheelset
bearing, fault diagnosis

1 Introduction

Wheelset bearings mainly undertake functions such as support, transmission, and
motion conversion. Their service condition directly determines the security and stability
of train operation. Therefore, it is greatly significant for monitoring the health status and
diagnosing the faults of wheelset bearings.

Nowadays, the vibration signal processing is mainly used in the wheel bearing faults
diagnosis [1]. Ding J [2] et al. used an automatic detection system for wheel bearing faults,
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AFDMLEWT, which is based on multilevel empirical wavelet
transform. Xin G [3] et al. used logarithmic short-time Fourier
transform and improved calibration convolution. Although this type
of fault diagnosis method can determine the type or location of
damage to the train wheelset bearings, it overly relies on expert
knowledge, resulting in maintenance personnel being unable to
independently support the overall operation in many scenarios
[4–6].

Subsequently, machine learning methods emerged in practical
applications due to their advantages of automatically fitting sample
features and classification [7]. The traditional machine learning
methods mainly include statistical decision. They utilize different
concepts to classify extracted features [8, 9]. Euldji R [10] et al. used
a decision systemby vibration analysis and decision tree to detect the
state of wheelset bearings. However, traditional machine learning
still requires varying degrees of manual feature extraction, and in
order to apply the extracted features to machine learning, relevant
algorithms need to be used to compress the features [11].

Recently, deep learning algorithms have been mainly utilized in
mechanical fault diagnosis due to their superior automatic feature-
learning capabilities. Jovanovic Let al. [12] explored the potential
of convolutional neural networks (CNNs) for patient gain freezing
associated with Parkinson’s disease. Purkovic S et al. [13] explored
the potential of using CNNs in conjunction with audio analysis for
the identification of respiratory problems. Peng D et al. [14] used a
multibranch multi-scale CNN in wheelset bearing fault diagnosis.
DENG F et al. [15] used a lightweight neural network model called
ShuffleNet. In order to further improve the accuracy and robustness
of fault diagnosis, research workers began to introduce attention
mechanisms into deep learning models. Salb M et al. [16] explored
the potential of multiheaded recurrent architectures to forecast
cloud instance prices based on historical and instance data. Petrovic
A et al. [17] explored the potential of using CNNs in conjunction
with audio analysis for the identification of respiratory problems.
Cui X et al. [18] presented a novel load prediction model, which
integrates the whale optimization algorithm (WOA) to refine the
hyperparameters of an LSTM model bolstered by an attention
(ATT) mechanism and a CNN. Yuan Z et al. [19] proposed a graph
attention-based multichannel transfer learning network in wheelset
bearing fault diagnosis. Fault features ofmultipleworking conditions
are transferred by combining a recurrence graph attention residual
network (ResGANet) with multiple distribution adaptations and a
multichannel diagnosis decision strategy. Liao J X [20] proposed an
attention-embedded quadratic network, and it can facilitate effective
and interpretable bearing fault diagnosis. However, the receptive
field range in CNNs and the attention mechanism is often limited
by the size of the convolutional kernel, which can only consider
local information of the features. To avoid the shortcomings, a
transformer architecture that can enhance the global features to
the wheelset bearing fault diagnosis is applied [21, 22]. Ding Y
et al. [23] used a new time–frequency transformer (TFT) model
that addresses the shortcomings of CNNs in terms of computational
efficiency and feature representation. Hou Y et al. [24] used an
improved transformer, which is based on the multifeature parallel
fusion model diagnosis method. With the widespread application
of transformer models, their drawbacks are gradually becoming
apparent. Traditional transformer models often adopt a hierarchical
framework, which makes it difficult to integrate feature information

and weakens the learning ability of local features. To overcome
this shortcoming, some research workers combined the transformer
and CNNs to extract features from both the global and local
perspectives, achieving the extraction of all features. Xinyu Gu et al.
[25] suggested a novel SOH estimation based on data preprocessing
methods and a CNN-transformer framework. Zhao J et al. [26]
developed a predictive pretrained transformer (PPT) model that
enhanced the identification of both short-term and long-term
patterns in time-series data.Therefore, a new network that combines
a dual-channel CNN and transformer is proposed in this paper. The
main contributions of this article are as follows:

(1) The dual feature fusion model is proposed, in which two
CNNs extract fault features by both the time domain and
frequency domain simultaneously. FFT is used to achieve
global correlation encoding in the frequency domain, mining
hidden the fault features.

(2) A cross-feature fusion attention model, cross-attention (CA),
is added at the last layer of the transformer to achieve
deep fusion of temporal and spatial dual scale features and
comprehensively extract the feature of vibration signal.

(3) Anew framework calledTrans-DCChas been proposed,which
includes the local feature extraction in CNNs and the global
and temporal feature extraction in the transformer network,
achieving comprehensive encoding and extraction of global
information.

The rest of this paper is as follows: Section 2 describes basic
principles of CNNs and transformer encoders. Section 3 provides
a detailed introduction to the proposed Trans-DCC model and its
training process.The fourth section presents the effectiveness of fault
classification for wheelset bearings through experiments. Section 5
is the conclusion.

2 Related work

2.1 Local feature extraction with CNNs

ACNN extracts local features of input vibration signals through
convolution operations [27]. Convolutional kernels (also known as
filters) slide over the signal and perform dot product operations
with the signal to capture local patterns or structures in the signal.
Each convolution kernel generates a feature map that represents
the presence and strength of specific types of local features in the
signal [28]. Convolutional kernels use the same weight parameters
when sliding across the entire signal, greatly reducing the model
parameters and improving the efficiency of feature extraction. By
using convolution kernels of different sizes or constructing multi-
scale CNN structures, signal features at different time scales can be
captured, as shown in Figure 1.

2.2 Global feature extraction with
transformer

Multi-head attention (MHA) is the critical component of the
transformer, as shown in Figure 2. Based on the self-attention
mechanism, MHA is an improved method [29]. The advantage of
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FIGURE 1
Architecture of CNN.

multi-head attention is that it can handle problems with multiple
focus points and effectively handle complex semantic relationships.
The multi-head attention mechanism splits the input tensor into
h sub-tensor when calculating the attention matrix, and each sub-
tensor learns attention information in a different way [30]. Then,
for each sub-tensor, a self-attention calculation is performed to
obtain an output tensor MultiHead(Q,K,V)i. At last, the final
output, MultiHead(Q,K,V), is obtained by merging all the output
tensors together.

Q ∈ Rd×d,K ∈ Rd×d,V ∈ Rd×d are the learned dimensional query,
key, and value vectors. h represents the number of heads. Specifically,
the calculation of multi-head attention is as follows Equation 1:

MultiHead(Q,K,V) = Concat(head1,⋯,headh)WO, (1)

where headi represents the i-th attention head of the input sequence,
WO is theweight parameter for linear projection, andConcat(·) is the
splicing operation.

headi = Attention(QW
Q
i ,KW

K
i ,VW

V
i ), i = 1,⋯,h. (2)

In the above Equation 2, WQ ∈ Rd×hq,WK ∈ Rd×hk,WV ∈ Rd×hv

和WO ∈ Rhd×d are the learned projection matrices. So, each
attention head is obtained through Q,K,V self-attention calculation
as follows Equation 3:

Attention(Q,K,V) = So ftmax(QK
T

√dk
)V, (3)

where dk is the dimension size, which is used to scale the size
of attention. Softmax (•) normalizes the last dimension data in
the matrix.

In order to better capture the characteristics between different
frequency components and the health status of bearings, we
introduced learnable filters.These filters can learn and capture useful
features in vibration signals, thereby better reflecting the condition
of bearings. The Trans-DCC framework utilizes frequency domain
data for multi-scale global information fusion, revealing fault
characteristics.The introduction of transformer architecture helps to
encode global contextual features of input signals, further improving
the accuracy of the health status prediction. This transformer
framework accurately simulates the complex relationship between
input vibration signals and bearing health status.

For the feature extraction task of one-dimensional vibration
signals, a dense connection mechanism based on element-level

addition is used between CNN layers, thus alleviating gradient
vanishing and model degradation. This network design can reduce
the calculation and parameter complexity of the model while
ensuring performance, thereby accelerating the speed of feature
extraction.

Convolutional operations have been widely applied to many
tasks [31, 32]. Usually, convolution operation is as follows
Equation 4:

Oc(i) = b(i) + ∑
σ∈Ω

W(i,σ) ·X(i+ σ), (4)

where b is the bias, Ω represents the size of the CNN kernel, and i is
the time index of the input. When the function W (•) is exponent
independent, the convolution operation is equivalent to the
traditional CNN layer [33–35]. WhenW (•) is a function including i
and σ, this convolution operation has some complex types of layers,
such as variable row convolution [36] or dynamic convolution [37].
When b is 0, the above equation becomes Equation 5:

Oc(i) = ∑
σ∈Ω

W(i,σ) ·X(i+ σ). (5)

The self-attention module is represented as follows Equation 6:

Atten = F(Q,K,V) = so ftmax(QK
T

√dk
)V, (6)

where Q ∈ Rdin×dq ,R ∈ Rdin×dk ,andV ∈ Rdin×dv represent three
matrices, which are calculated by Q =Wq(X),K =Wk(X),andV =
Wv(X), respectively.

Due to dk being a constant, the self-attention mechanism of
point generation can be expressed as follows Equation 7:

Atten(i) = ∑
σ∈ψ

wq(i) ·wq(i+ σ) ·W(i+ σ). (7)

Wq and Wk represent the normalization function of softmax and
√dk, respectively, and ψ represents the size of the input. Therefore,
Atten(i) is as follows Equation 8:

Atten(i) = ∑
σ∈ψ

Wa(i,σ) ·Wv(i+ σ), (8)

where Wq(i,σ) =Wq(i) ·Wk(i+ σ).
On comparing Equations 5, 8, two differences between

convolution and self-attention can be found. In Equation 5, Ω
represents the kernel size, including a portion of the input. In
Equation 8, ψ is the entire size of the input. The self-attention is
defined in Equation 8.

3 Proposed method

When analyzing one-dimensional vibration signals of faulty
wheelset bearings, using either time-domain or frequency-domain
analysis methods alone has certain limitations. Time-domain
analysis mainly focuses on the characteristics of signal changes
over time, which can capture the transient response and waveform
features of the signal. However, it is not intuitive enough for
analyzing the frequency signals and frequency response. Frequency-
domain analysis converts signals and can intuitively analyze the
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FIGURE 2
Architecture of transformer encoder.

FIGURE 3
Structure of the proposed Trans-DCC.

frequency components of the signal and the frequency response
of system. Therefore, this paper adds a dual feature fusion
in the transformer encoder, using dual CNNs to separately
extract the time-domain and frequency-domain features, achieving
comprehensive feature extraction. This framework consists of three
parts: data preprocessing, transformer encoder composed of the
dual feature fusion mechanism and cross-attention mechanism, and
classifier, as shown in Figure 3.

3.1 Dual feature fusion mechanism

The dual feature fusion mechanism is a key component of
Trans-DCC and the first step in achieving valuable feature fusion

and related encoding. First, Trans-DCC uses two convolutional
neural network branches to process the input time-domain and
frequency-domain signals. Convolution operations can extract
valuable features from complex signals. The convolution operation
in each convolutional neural network uses multiple convolution
kernels, each with different extraction functions, which can extract
different levels of features from the input signal while discarding
irrelevant features. M different convolution kernels are represented
by µ1, µ2, …, µm. When the one-dimensional vibration signal δ[n]
is input, the output θi [n] of the i-th convolution kernel can be
expressed as follows Equation 9:

θi[n] = (δ⊗ μi)[n] =
∞

∑
k=−∞

δ[k] × μi[n− k], (9)
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TABLE 1 CNN structure and hyperparameters for extracting the time-domain features.

Networks Layers Parameter setting Operation/activation

CNN

Conv1D 1∗32 ReLu

Conv1D 32∗32 ReLu

Maxpooling-1d ReLu

BatchNorm-1d 32 —

Conv1D 32∗64 ReLu

Conv1D 64∗64 ReLu

Maxpooling-1d ReLu

BatchNorm-1d 64 —

Conv1D 64∗128 ReLu

Conv1D 128∗128 ReLu

Maxpooling-1d ReLu

BatchNorm-1d 128 —

TABLE 2 CNN structure and hyperparameters for extracting the space-domain features.

Networks Layers Parameter setting Operation/activation

CNN

Conv1D 1∗16 ReLu

Conv1D 16∗16 ReLu

Maxpooling-1d ReLu

BatchNorm-1d 16 —

Conv1D 16∗32 ReLu

Conv1D 32∗32 ReLu

Maxpooling-1d ReLu

BatchNorm-1d 32 —

Conv1D 32∗64 ReLu

Conv1D 64∗64 ReLu

Maxpooling-1d ReLu

BatchNorm-1d 64 —

where ⊗ represents the convolution. By using different convolutions,
multiple distinct features can be extracted from a signal.

Trans-DCC uses a dual branch convolution model to extract
time-domain and frequency-domain features, where the time-
domain convolution branch processes time-domain features and
the frequency-domain convolution branch processes frequency-
domain features. Using j to represent the branch number of a
convolutional network (j = 0 is the time domain and j = 1 represents
the frequency domain), each branch of the convolutional network

contains multiple convolution kernels, µj,i. Therefore, output θj,i [n]
of the i-th convolution kernel of the j-th convolutional branchmodel
can be expressed as follows Equation 10:

θj,i[n] = (δj ⊗ μj,i)[n] =
∞

∑
k=−∞

δj[k] × μj,i[n− k]. (10)

The above process achieves the extraction of multiple
time-domain and frequency-domain features. The frequency-
domain signals have characteristic of parameter sharing, where
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TABLE 3 Transformer-encoder network structure and hyperparameters for the time-domain features.

Networks Layers in_features out_features

Transformer-encoder×2

MultiheadAttention 128 128

Linear 128 128

Dropout 0.5

Linear 128 128

LayerNorm 128

LayerNorm 128

Dropout 0.5

Dropout 0.5

TABLE 4 Transformer-encoder network structure and hyperparameters for the space-domain features.

Networks Layers in_features out_features

Transformer-encoder×2

MultiheadAttention 64 64

Linear 64 128

Dropout 0.5

Linear 128 64

LayerNorm 64

LayerNorm 64

Dropout 0.5

Dropout 0.5

TABLE 5 Network structure and hyperparameters of cross-attention.

Networks Layers in_features out_features

Cross-attention

Query-Linear 128 128

Key-Linear 64 128

Value-Linear 64 128

AdaptiveAvgPooling-1d output_size = 1

Classifier-Linear 128 4

different positions can share the same weight. This weight-sharing
mechanism helps capture global features, thus handling remote
dependencies. For the input time series signal X∈RC×L, C represents
the number of input feature vectors and L represents the length
of the input feature vectors. The frequency-domain signal is
as follows Equation 11:

σ = F[X] ∈ RC×L, (11)

where F[·] represents the fast Fourier transform and σ
represents the complex output signals containing amplitude
and phase at different frequencies. For Fourier transformed
data σ, the amplitude and phase in the vibration signal can
be obtained.

A frequency-domain convolutional branch network consisting
of two different learnable weights, represented by Wamp_weight and
Wpha_weight , is designed. These two sets of weights are multiplied by
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FIGURE 4
Photograph of the wheelset bearing test platform.

FIGURE 5
Details of the test platform.

FIGURE 6
Photograph of the test bearing: (a) normal condition, (b) inner ring
fault, (c) outer ring fault, and (d) rolling element fault.

the amplitude and phase, respectively, and processed as convolution
kernels Equations 12, 13:

ηamplitude = √Re(σ)2 + Im(σ)2 (12)

ηphase = arctan(
Im(σ)
Re(σ)
). (13)

The size of the learnable filter is γ∈RC×L. The frequency-domain
output obtained by element-wise multiplication (also known as
the Hadamard product) between the converted frequency-domain

signal and γ as follows Equations 14–16:

β = γ · σ ∈ RC×L (14)

ηamplitude = ηamplitude ×Wamp_weight, (15)

ηphase = ηphase ×Wpha_weight. (16)

According to the task requirements, adjusting Wamp_weight ,
Wpha_weigh, and γ can achieve global frequency adjustment of the
signal. By enhancing frequencies of greater concern and reducing
less relevant frequencies, the network can design filters in the
frequency domain of specific tasks, thereby enhancing the flexibility
and adaptability of data processing.

The grid search method was adopted to systematically traverse
a variety of hyperparameter combinations, and the optimal
hyperparameters were determined through cross-validation.
Specifically, a series of candidate values were set for key
hyperparameters such as the learning rate, batch size, convolutional
kernel size, and the number of heads in the attention mechanism,
and the optimal combination was found through grid search.
In Tables 1–4, the training process and hyperparameters of the
time-domain and frequency-domain CNNs are shown.

3.2 Cross-attention layer of the
transformer

Traditional transformer models tend to focus on local context,
which may not be sufficient for tasks that require broader
information exchange and capture global feature correlations [38].
To solve this problem, a cross-attention mechanism is added after
the feedforward fully connected layer.

Cross-attention can calculate attention on two different
sequences. In the framework proposed in this article, the inputs
of cross-attention are time-domain features X1 ∈ Rn×d1 extracted
comprehensively by the transformer network from the time-
domain CNN. Frequency-domain features X2 ∈ Rn×d2 are extracted
comprehensively by the transformer network from the frequency-
domain CNN. One part is query set Q, and the other part is the
key value set, K. First, similarity in time-domain and frequency-
domain features is calculated by dot product to generate attention
weights, namely, the query set Q = X1W

Q and key value set K = V =
X2W

K. Based on attention weights, time-domain and frequency-
domain features are weighted and fused to generate a fused feature
representation. These features contain both time-domain and
frequency-domain information of the original signal, which helps to
more comprehensively describe the characteristic state of the faulty
wheel bearing. The calculation is as follows Equation 17:

CrossAttention(X1,X2) = So ftmax(QK
T

√d2
)V. (17)

where WQ ∈ Rd1×dk and WK ∈ Rd2×dk are the learned projection
matrices, where dk is dimensions of the key value set. The output
of the cross-attention is a tensor of size n× d2, and for each row
vector, its attention weight for all row vectors is given. The training
process and hyperparameters of cross-attention to extract time and
frequency fusion feature network Trans-DCC are shown in Table 5.
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TABLE 6 Detail of the test wheelset bearings.

Model number Pitch diameter, D/mm Roller diameter, D/mm Contact angle, φ/° Number of rolling
elements

197,726 176.29 24.76 8.83 20

FIGURE 7
Data of wheelset fault bearings.
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TABLE 7 Detail of the test dataset.

Fault type Speed condition Sample size Trained sample size Validated sample
size

Tested sample size

N 100 km/h/200 km/h/300 km/h 1,500/1,500/1,500 1,050/1,050/1,050 300/300/300 150/150/150

I 100 km/h/200 km/h/300 km/h 1,500/1,500/1,500 1,050/1,050/1,050 300/300/300 150/150/150

B 100 km/h/200 km/h/300 km/h 1,500/1,500/1,500 1,050/1,050/1,050 300/300/300 150/150/150

O 100 km/h/200 km/h/300 km/h 1,500/1,500/1,500 1,050/1,050/1,050 300/300/300 150/150/150

FIGURE 8
Loss and accuracy curves of the proposed Trans-DCC on the wheelset bearing dataset for (a) 100 km/h, (b) 200 km/h, and (c) 300 km/h.

FIGURE 9
2-D visualization results of extracted features from (a) 100 km/h, (b) 200 km/h, and (c) 300 km/h.

The paper aims to establish the relationship between
bearing vibration signals and bearing fault categories.
Model parameters are updated through backpropagation.
Here, by cross-entropy loss (CE), differences in actual and
estimated values are calculated. CE represents the following
Equation 18:

CELoss = − 1
N

N

∑
i=1

C

∑
c=1

yi,c · log(pi,c), (18)

where N is the number of samples in each batch and C represents
the number of types of faults. When the sample is a fault sample, yi,c
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FIGURE 10
Confusion matrixes of (a) 100 km/h, (b) 200 km/h, and (c) 300 km/h.

TABLE 8 Result of the ablation experiment.

Comparative indicators Time-domain Frequency-domain Time- and frequency-domain

Accuracy/% 94.83 95.18 98.41

Recall/% 94.78 95.46 98.08

F1-score/% 94.62 95.79 98.32

is 1; otherwise, it is 0. pi,c is the probability that the predicted sample
i belongs to class C.

4 Experimental verification

4.1 Dataset description

Datasets of high-speed train wheelset bearings are usually
collected from the comprehensive test bench of high-speed train
wheelset bearings, as shown in Figure 4. The test bench consists
of a driving motor, an axial loading device, a radial loading
device, supporting bearings, and test bearings, among others. Data
collected in the test are the vibration signals of the faulty wheelset
bearing. The accelerometer and its location are shown in Figure 5.
Photographs of test bearing are shown in Figure 6. The sensitivity
of the acceleration sensor is 2.505 mv/m/s2, which is installed above
the test wheelset bearing.

In the test, the sampling frequency was 12.8 kHz. The bearing
mainly includes four healthy states: outer ring fault (O), inner
ring fault (I), rolling element fault (B), and normal state (N),
as shown in Figure 6. Detailed information of the test bearings
is shown in Table 6.

Fault samples are collected using the above test bearings at
different speeds. The load during operation is set to 5 t. So, 12
experimental data points were collected for validation, as shown in
Figure 7. A sliding window was used to perform nonoverlapping
segmentation on the collected vibration signals. A total of 1,024
data points are present in each sample, and 1,500 samples are
obtained for each experimental data. Therefore, a total of 18,000

samples were obtained from 12 test data. All samples from different
operating conditions were placed in one dataset, and their order
was disrupted. The ratio of training, validation, and testing data is
7:2:1. The differences in datasets often help test the generalization
performance of a network, as shown in Table 7.

To improve the quality of the data, the following preprocessing
steps are taken:

(1) Random noise is often present in the data, so a low-pass was
used to denoise it. By filtering out the high-frequency noise
components, the impact of noise on model performance was
effectively reduced.

(2) To eliminate the dimensional differences between features, the
min–max normalization method is used to scale the data to
the range [0,1]. Then, the datasets are divided into training,
validation, and test sets, with proportions of 70%, 15%, and
15%, respectively. This division method helps to evaluate the
generalization ability of the model.

(3) Fourier transform is used to extract frequency domain features
to capture the periodic changes in the data.

4.2 Comparison and analysis of sample
generation effect

In this section, the fault diagnosis results, based on our proposed
Trans-DCC, are analyzed. Comparing with other methods,
estimating Trans-DCC model, the model used for experimental
verification in this article was written in Python 3.8. The deep
learning framework uses PyTorch 1.3, with experiments and training
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FIGURE 11
Ablation experiment of Trans-DCC. (a) CNN-transformer. (b) CNN extracting the frequency domain signal.

TABLE 9 Experiment results of 1DCNN, 2DCNN, transformer, CNN-transformer, and TCFormer CA in multiple conditions of wheelset bearing dataset.

Condition 100 km/h 200 km/h 300 km/h

Metrics Accuracy F1-score Accuracy F1-score Accuracy F1-score

1DCNN 94.24 ± 0.37 94.12 ± 0.16 93.79 ± 0.35 92.67 ± 0.23 93.35 ± 0.48 92.69 ± 0.29

2DCNN 95.76 ± 0.58 94.58 ± 0.28 95.03 ± 0.29 94.48 ± 0.35 94.54 ± 0.52 94.21 ± 0.84

Transformer 93.79 ± 0.73 92.31 ± 0.47 92.47 ± 0.58 91.27 ± 0.68 84.76 ± 0.73 83.29 ± 0.29

CNN-transformer 91.38 ± 0.92 90.27 ± 0.28 91.24 ± 0.52 90.13 ± 0.41 90.19 ± 0.58 90.04 ± 0.51

TCFormer CA 98.83 ± 0.43 98.29 ± 0.22 98.78 ± 0.45 98.36 ± 0.76 98.12 ± 0.36 98.03 ± 0.18

conducted on the Windows 11 operating system and NVIDIA
GeForce RTX 4060, Intel Xeon Gold 6530 CPU, 32 GB RAM, and
16 GB memory.

4.2.1 Comparison and analysis of sample
generation effect

The convergence behavior of the Trans-DCC model
is shown in Figure 8. Accuracy of the training and validation datasets
are stabilized, which proves the fast convergence speed of the Trans-
DCC model. In the initial training stage, the generalization ability
of the Trans-DCC model is enhanced by dropout, which results in
the slight fluctuations in the loss of the validation dataset. However,
these fluctuationswill gradually decrease, and themodel will achieve
stable performance.

T-distributed random neighbor embedding (t-SNE) [24] was
used to simplify the high-dimensional features of the final hidden
layer into a 2-D vector distribution, as shown in Figure 9.
Visualization results indicate that the Trans-DCC model can
effectively obtain unique feature fault patterns using short-term

signal sequences and accurately distinguish various fault types
even under complex and diverse working conditions. In addition,
the confusion matrix of the test results is shown in Figure 10.
Rows represent the actual fault types input, whereas lists represent
estimated fault types. In the mixed dataset, as shown in Figure 10,
the accuracy has been consistently high, with only sporadic
misclassifications observed in wheel bearing failures. These results
emphasize the robustness and efficiency of the proposed Trans-DCC
in fault diagnosis tasks.

4.2.2 Diagnostic results of ablation
In this experiment, we considered two channels, namely, the

time-domain CNN transformer and the frequency-domain CNN
transformer. In order to further analyze the impact of the time-
domain and frequency-domain models on the performance of
the Trans-DCC model, in this paper, we conducted two different
ablation experiments to verify and analyze, and the evaluation
indicators were taken as the average of three speed conditions. In
the two ablation experiments, the input signals were time-domain
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FIGURE 12
Radar plot of Trans-DCC and other comparative methods at
100 km/h, 200 km/h, and 300 km/h prediction results.

vibration signals and frequency-domain vibration signals, which
were, respectively, passed through CNN transformer. The results
are shown in Table 8.

After visualizing the features extracted from the two ablation
experiments (see Figure 11), it can be observed that there is actually
some overlap between their departmental regions, indicating that
the single channel fault diagnosismethod has classification coupling;
that is, the diagnostic effect is insufficient. This further validates the
accuracy and robustness of the proposed dual channel approach
from a lateral perspective.

4.2.3 Comparison of different methods
In order to analyze the performance of the Trans-DCC model,

comparative experiments are conducted using different methods.
Five models, namely, 1DCNN [39], 2DCNN [40], transformer [23],
CNN transformer [41], and TCFormer CA, are applied for the
diagnosis and classification of wheel bearing faults. Experiments
were conducted on wheelset bearing datasets to investigate the
performance of five models, that is, 1DCNN, 2DCNN, transformer,
CNN transformer, and TCFormer CA, under different operating
conditions. As shown in Table 9, 1DCNN and 2DCNN perform
well under low-speed conditions, with accuracies of 94.24% and
95.76%, respectively. When the speed increases from 100 km/h
to 300 km/h, both transformer and CNN transformer decrease
to below 94%, making it difficult to perform well under high-
speed conditions, which indicates that the speed is significant
for the feature extraction process. Under high-speed conditions,
the performance of each model generally decreases, indicating
difficulty in extracting useful feature information from high-speed
signals. TCFormer CA maintains excellent performance under all
operating conditions, with an accuracy rate consistently above 98%,
demonstrating strong fault diagnosis capabilities. The comparison
results of all networks are shown in Figure 12.

5 Conclusion

A Trans-DCC framework with dual domain feature extraction
capability is proposed to avoid the issue of accuracy in high-
speed train wheelset bearings fault diagnosis. The conclusions
are summarized as follows: 1) the designed CNN transformers
(CFormers) dual domain feature extraction network fully
extracts the time-domain feature and the frequency-domain
feature of vibration signals, and the ability of distinguishing are
enhanced between various fault signals. 2) Complexity of attention

computation in the transformer model is reduced by dual CNN
transformers (TCFormers) network channel using the few data
requirements of the original transformer. 3) The cross-attention
mechanism of the Trans-DCC framework can deeply mine long-
term faults and effectively adapt to bearing fault diagnosis problems
under various working conditions.

The experiments and analysis conducted on the train wheelset
bearing dataset demonstrate that the proposed model Trans-DCC
surpasses the other four models in terms of stability and exhibits
a high degree of accuracy in fault diagnosis at different speeds.
Thedouble convolutional neural network and cross-attentionweight
in the MSTF model reveal its diagnostic capability. Although the
model proposed in this paper has excellent performance, there is
still potential for further development. Future work should focus on
enhancing the model’s ability in interpretability learning to adapt to
a broader range of scenarios.
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