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The nonlinear partial differential equations are not only used in many physical
models, but also fundamentally applied in the field of nonlinear science. In order
to solve certain nonlinear partial differential equation, the extended hyperbolic
auxiliary equation method (EHAEM) is introduced in this article by means of the
symbolic computation software. The basic idea of the new algorithm is that if
certain nonlinear partial differential equation can be converted into the form of
elliptic equation, then its solutions are readily obtained. By taking the generalized
Schrödinger equation as an example, we demonstrate the effectiveness of the
proposed algorithm.Meanwhile,many new solutions areworked out, whichmay
be useful for depicting nonlinear physical phenomena.
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1 Introduction

Many phenomena in physics and the other disciplines are frequently characterized
by nonlinear partial differential equations (PDEs) [1]. To comprehend the physical
mechanisms underlying natural phenomena described by these nonlinear PDEs, it is
essential to investigate exact solutions for such equations.The exploration of exact solutions
to nonlinear PDEs has emerged as a significant aspect of research into nonlinear physical
phenomena [2].

Due to the inherent complexity of nonlinear partial differential equations (PDEs), there
is no universal method available for finding solutions to all PDEs. Significant progress has
been made in the calculation of exact solutions to partial differential equations (PDEs),with
the establishment of numerous important methodologies. Some typical methods include
inverse scattering transform method [3], Darboux transform [4], B ̈acklund transform [5],
and the Riccati equation expansion method [6], and so on [7, 8]. Haci employed the
tanh function approach to derive the soliton solutions for the (2 + 1)-dimensional nonlinear
electrical transmission line model [9, 10]. This method has been modified and applied to
construct travelling wave solutions of some special-type nonlinear evolution equations [9]
and the nonlinear wave structures for the eighth-order (3 + 1)-dimensional Kac-Wakimoto
equation [11]. The improved extended tanh-function method is utilized to derive the exact
traveling wave solutions for the Bogoyavlenskii equation [12]. Since the auxiliary equation
has more new exact solutions [13], Gabriel et al [14] have considered a modified Noguchi
nonlinear transmission network with a dispersive element.The first, second and third order
rogue wave solutions are constructed by using the modified Darboux transformation. The
AEM used by Fan and Bao [15] is a Weierstrass elliptic function method, which used the
Weierstrass elliptic function solutions and the degenerate solutions of the variable coefficient
higher order Schrödinger equation. Sabi′u investigates the extended AEM to derive precise
solitary wave solutions for the (3 + 1) generalized nonlinear wave equation [16]. The
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nonlinear partial differential equation is transformed into an
ordinary differential equation, which is also solved by integration.

Motivated by the above-analysis, we provide explicit solutions
to the subsidiary elliptic-like equation through the application of
symbolic computation software (MAPLE), utilizing both the power-
exponential function method (PFM) and the extended hyperbolic
auxiliary equation method (EHAEM). Then the exact solutions to a
Category of nonlinear PDEs are derived. A new algebraic method
for solving the nonlinear PDEs is proposed, which is called the
AEM. By applying this method to the generalized Schrödinger
equation, several new exact solutions are obtained which cannot be
found in the previous literatures. This algorithm is also applicable
to various nonlinear partial differential equations in the field of
mathematical physics. The rest paper is organized as four sections.
Followed by Section 2, we briefly introduce the EHAEM. The
exact solutions of the subsidiary elliptic-like equation is derived
by using the PFM and the EHAEM in Section 3. In Section 4, the
exact solutions of the generalized Schrödinger equation are derived
by using a simple transformation and the subsidiary elliptic-like
equation. In Section 5, some conclusions are given.

2 Introduction of the extended
hyperbolic AEM

Step 1 For a given nonlinear PDEwith one physical field p(x,y,z)
in three variable x,y,z,

Γ(p,px,py,pz,pxx,pxy,pxz,pyy,pyz,pzz,⋯) = 0. (1)

We assume that the form of its travelling wave solution
is p(x,y,z) = p(ς),ς = k(x+ ly+mz− σ), where k, l,m and σ are
constants to be determined later. The nonlinear PDE Equation 1 is
transformed into a nonlinear ODE

Δ(p,pς,pςς,pςςς,⋯) = 0. (2)

Step 2 In order to find the travelling wave solutions of Equation
2, we assume that the form of the solutions can be expressed as the
following Equation 3

p (ς) = c0 +
n

∑
i=1

coshi−1 ϖ (ς) [ci sinh ϖ (ς) + di cosh ϖ (ς)] , (3)

where ci,dj(i = 0,1,2,…,n; j = 1,2,…,n) are constants to be
determined later, sinhϖ(ς),coshϖ(ς) satisfy the following elliptic
auxiliary equation

(
dϖ (ς)
dς
)
2
= αcosh2ϖ (ς) + β sinh ϖ (ς)cosh ϖ (ς) + γ. (4)

By balancing the highest degree linear term and nonlinear term
in (2), the degree n can be determined.

Step 3 Substituting (3) and (4) into (2) and setting the coefficients
of sinhsϖ (ς)coshtϖ (ς) (t = 0,1; s = 0,1,…,n+ 2) to zero, we can
obtain a series of algebraic equations about the parameters
k, l,m,σ,ci,dj(i = 0,1,2,…,n; j = 1,2,…,n).

Step 4 With the help of symbolic computation software
Mathematica to solve the series of algebraic equations, we can obtain
the exact expressions of k, l,m,σ,ci,dj(i = 0,1,2,…,n; j = 1,2,…,n).

Step 5 When the values of α,β,γ are different, the Equation 4
has solutions in different forms. For example, the dark solitary wave
solutions, the bell profile solitary wave solutions and the Jacobian
elliptic function solutions [9].

Case 1 When α = 2(ρ2 + 1),β = 2(ρ2 − 1),γ = − 2(ρ2 + 1), we
obtain a Jacobi elliptic doubly periodic-
type solution,

sinh ϖ (ς) =
−cn2 (ς)
2sn (ς)
,cosh ϖ (ς) =

2− cn2 (ς)
2sn (ς)

. (5)

Case 2 When α = − 2(2ρ2 − 1),β = − 2,γ = 2(ρ2 − 1),we obtain a
Jacobi elliptic doubly periodic-
type solution,

sinh ϖ (ς) =
−sn2 (ς)
2cn (ς)
,cosh ϖ (ς) =

2− sn2 (ς)
2cn (ς)

. (6)

Case 3 When α = 2(ρ2 − 2),β = − 2ρ2,γ = − 2(ρ2 − 2),we obtain
a Jacobi elliptic doubly periodic-type solution,

sinh ϖ (ς) =
−m2 [1+ cn2 (ς)]

2dn (ς)
,cosh ϖ (ς) =

2−m2 [1+ cn2 (ς)]
2dn (ς)

.

(7)

Case 4When α = − 2(ρ2 − 2),β = − 2ρ2,γ = 0,we obtain a Jacobi
elliptic doubly periodic-type solution,

sinh ϖ (ς) =
−1+ sc2 (ς)
2sc (ς)

,cosh ϖ (ς) =
1+ sc2 (ς)
2sc (ς)
. (8)

Case 5 When α = 2(ρ4 − ρ2 + 1),β = 2(ρ4 − ρ2 − 1),γ = − ρ4 +
3ρ2 − 2,we obtain a Jacobi elliptic doubly periodic-type solution,

sinh ϖ (ς) =
−1+ sd2 (ς)
2sd (ς)

,cosh ϖ (ς) =
1+ sd2 (ς)
2sd (ς)

. (9)

Case 6 When α = 2(ρ2 + 1),β = 2(ρ2 − 1),γ = − 2(ρ2 + 1),we
obtain a Jacobi elliptic doubly periodic-type solution,

sinh ϖ (ς) =
−1+ cd2 (ς)
2cd (ς)

,cosh ϖ (η) =
1+ cd2 (ς)
2cd (ς)

. (10)

Case 7 When α = 1− ρ2,β = 0,γ = ρ2,we obtain a Jacobi elliptic
doubly periodic-type solution,

sinh ϖ (ς) = ±
sn (ς)
cn (ς)
,cosh ϖ (ς) = 1

cn (ς)
. (11)

Case 8 When α = ρ2 − 1,β = 0,γ = 1,we obtain a Jacobi elliptic
doubly periodic-type solution,

sinh ϖ (ς) = ±
ρsn (ς)
dn (ς)
,cosh ϖ (ς) = 1

dn (ς)
. (12)

Case 9 When α = ρ2,β = 0,γ = − 1,we obtain a Jacobi elliptic
doubly periodic-type solution,

sinh ϖ (ς) = −
1± dn (ς)
2ρsn (ς)

+
ρsn (ς)

2 [1± dn (ς)]
,cosh ϖ (ς) =

1± dn (ς)
2msn (ς)

+
ρsn (ς)

2 [1± dn (ς)]
. (13)

Case 10 When α = 1,β = 0,γ = − ρ2,we obtain a Jacobi elliptic
doubly periodic-type solution,

sinh ϖ (ς) = ±
cn (ς)
sn (ς)
,cosh ϖ (ς) = 1

sn (ς)
. (14)
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Case 11Whenα = 1
2
(ρ4 + 1) ,β = 1

2
(ρ4 − 1) ,γ = 1

4
(−ρ4 + 2ρ2 − 5),

we obtain a Jacobi elliptic doubly periodic-
type solution,

sinh ϖ (ς) =
[1± dn (ς)]
2sn (ς)

(−1+
sn2 (ς)
(1± dn (ς))2

),

cosh ϖ (ς) =
sn2 (ς) + [1± dn (ς)]2

2sn (ς) [1± dn (ς)]
. (15)

Case 12 When α = − 2,β = − 2,γ = 2,we obtain a bell profile
solitary wave solution,

sinh ϖ (ς) = 1
2
[−1+ sech2 (ς)]cosh (ς) ,

cosh ϖ (ς) = 1
2
[1+ sech2 (ς)]cosh (ς) . (16)

Case 13 When α = 4,β = 0,γ = − 4, we obtain a dark soliton
wave solution,

sinh ϖ (ς) =
−1+ tanh2 (ς)
2 tanh (ς)

,cosh ϖ (ς) =
1+ tanh2 (ς)
2 tanh (ς)

. (17)

Case 14 When α = 2,β = 2,γ = 0,we obtain a singular
soliton solution,

sinh ϖ (ς) =
−1+ csch2 (ς)
2 csc h (ς)

,cosh ϖ (ς) =
1+ csch2 (ς)
2 csc h (ς)

. (18)

3 Solutions of the elliptic-like
equation

Fχ″ (ς) +Gχ (ς) +Hχ3 (ς) = 0, (19)

where F,G,H are arbitrary constants. The elliptic equation is
an important type of partial differential equation and has wide
applications in fields such as mathematical physics and engineering.
For example, in elasticity mechanics, the equation describing plane
stress problems may be an elliptic equation. Its characteristic is
usually that the second-order derivative terms have a specific form,
which makes the solutions of the equation have some special
properties.

3.1 Application of the power-exponential
function method

Supposing the solution of Equation 19 is

χ (ς) = Aeσς +B
Ce2σς +Deσς +E

, (20)

where A,B,C,D,E and σ are constants to be determined.
Substituting (Equation 20) into (Equation 19) and setting the

coefficients of all powers of eiσρ (i = 0,1,…,5) to zero, we the
following Equation 21

{{{{{{{
{{{{{{{
{

GAC2 + Fσ2AC2 = 0,
GBC2 + 4Fσ2BC2 − 4σ2ACD+ 2GACD = 0,
GAD2 +HA3 − 6Fσ2ACE+ 3Fσ2BCD+ 2GBCD+ 2GACE = 0,
HBD2 − 4Fσ2BCE+ 2GBCD+ 3HA2S+ Fσ2BD2 − Fσ2ADE+ 2GADE = 0,
GAE2 + 3HAB2 + Fσ2AE2 − Fσ2BDE+ 2GBDE = 0,
HB3 +GBE2 = 0.

(21)

Taking advantage of Mathematica, yield

C = −HA
2

GE
, E = E, D = 0, Fσ2 +G = 0, B = 0, A = A.

(22)

We can derive many kinds of solutions of Equation 19 by
substituting Equation 22 into Equation 20.

Family 1 For Fσ2 +G = 0,B = 0, we have the rational-type
solution for Equation 19

χ1 (ς) =
−8AGEeσς

HA2e2σς − 8GE2
(23)

where Fσ2 +G = 0,B = 0, A,E are arbitrary constants.
Family 2 For HA2 + 8GE2 = 0, we have the bell profile

solution for Equation 19

χ2 (ς) = −4AGEsech (σς) . (24)

Family 3 For HA2 − 8GE2 = 0, we have the singular
solution for Equation 19

χ3 (ς) = −4AGEcsch (σς) . (25)

3.2 Application of the extended hyperbolic
AEM

In light of the need for a coherent and balanced relationship
between the two components ϕ″ (η) and ϕ3(η) in (Equation 19), we
suppose that the solution of (Equation 19) has the form

ϕ (η) = a0 + a1sinhw (η) + b1coshw (η) , (26)

where a0,a1,b1 are constants to be determined, sinhw(η) and
coshw(η) satisfy (4).

Combing Equations 4, 19, 26 and collecting the coefficients
of sinhpw (η)coshqw (η) (q = 0,1;p = 0,1,2,3), yields the
following Equation 27

{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{
{

Ba0 +D(a
3
0 + 3a0b

3
1) = 0,

A(a1 f +
3b1g
2
+ 2a1h)+Ba1 + 3D(a20a1 + a1b

2
1) = 0,

A(b1 f +
a1g
2
+ b1h)+Bb1 +D(3a20b1 + b

3
1) = 0,

6Da0a1b1 = 0,
3D(a0a21 + a0b

2
1) = 0,

2A (a1g+ b1h) +D(3a21b1 + b
3
1) = 0,

2A (b1g+ a1h) +D(a
3
1 + 3a1b

2
1) = 0.

(27)

Solving the algebraic (Equation 27) by software Maple, one can
derive the following results.

Family 1 g ≠ 0

a1 =
√6D (Δ+N)

6D
, b1 =

(A f +B)√6D (Δ+N)

3DAg
−
[6D (Δ+N)]

3
2

108D2Ag
,

a0 = 0. (28)
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a1 = −
√6√D (Δ+N)

6D
,b1 = −
(A f +B)√6D (Δ+N)

3DAg

+
[6D (Δ+N)]

3
2

108D2Ag
,a0 = 0. (29)

a1 =
√6√D (−Δ+N)

6D
,b1 =
(A f +B)√6D (−Δ+N)

3DAg

−
[6D (−Δ+N)]

3
2

108D2Ag
,a0 = 0. (30)

a1 = −
√6√D (−Δ+N)

6D
,b1 = −
(A f +B)√6D (−Δ+N)

3DAg

+
[6D (−Δ+N)]

3
2

108D2Ag
,a0 = 0 (31)

where

△ = √4 A2 f2 + 8 A fB+ 4 A2 fh+ 4 B2 + 4 BAh+A2h2 + 9 A2g2,

N = 4A f + 4B−Ah.

Family 2 g = 0 with the following Equation 32

a1 = ±√
A f +B
D
, a0 = b1 = 0. (32)

Combining Equations 5–18, and substitute Equations
28, 29, 30, or 31 into Equation 26, we can derive various
solutions of Equation 19.

(i) Jacobi-type solutions

ϕ4 (η) =
2HJ−HIcn2 (η)

2sn (η)
, (33)

where
H =
√3D(√B2+10A2−2AB−2A(B+8A)m2+10A2m4+2B−5Am2−5A)

9AD(m2−1)
,

I = B− 4A+ 2Am2 −√B2 + 10A2 − 2AB− 2A (B+ 8A)m2 + 10A2m4,

J = A−B+Am2 +√B2 + 10A2 − 2AB− 2A (B+ 8A)m2 + 10A2m4.

ϕ5 (η) =
2HJ−HIsn2 (η)

2cn (η)
, (34)

where
H =
√3D(√B2+10A2−2AB+4A(B−A)m2+4A2m4+2B+10Am2−5A)

9AD
,

I = 4A−B− 2Am2 +√B2 + 10A2 − 2AB+ 4A (B−A)m2 + 4A2m4,

J = B−A+ 2Am2 −√B2 + 10A2 − 2AB+ 4A (B−A)m2 + 4A2m4.

ϕ6 (η) =
2HJ−HIm2 [1+ cn2 (η)]

2dn (η)
, (35)

where
H =
√3D(√B2+4A2+4AB−2A(B+2A)m2+10A2m4+2B−5Am2+10A)

9ADm2 ,

I = 4Am2 − 2A−B+√B2 + 4A2 + 4AB− 2A (B+ 2A)m2 + 10A2m4,

J = Am2 −B− 2A+√B2 + 4A2 + 4AB− 2A (B+ 2A)m2 + 10A2m4.

ϕ7 (η) =
HJ+HIsc2 (η)

2sc (η)
, (36)

where

H =

√3D(√B2 + 4A2 + 4AB− 2A (B+ 2A)m2 + 10A2m4 + 2B+Am2 − 2A)

9ADm2 ,

I = 4Am2 −B− 2A+√B2 + 4A2 + 4AB− 2A (B+ 2A)m2 + 10A2m4,

J = √B2 + 4A2 + 4AB− 2A (B+ 2A)m2 + 10A2m4 −B− 2A− 2Am2.

ϕ8 (η) =
HJ+HIsd2 (η)

2sd (η)
, (37)

where
H = √3D(Δ+2B−5A+7Am

2−3Am4)
9AD(m4−m2−1)

,

I = 3Am4 −Am2 − 4A+B−Δ, J = 5Am4 − 3Am2 + 2A+B−Δ,

Δ = √9A2m8 − 18A2m6 − 5A2m4 + 2A (2B+ 7A)m2 +B2 − 2AB+ 10A2.

ϕ9 (η) =
J+Hcd2 (η)
2cd (η)

, (38)

where
J =
√3D(√B2−2AB+10A2+2B−5A)(B−4A−√B2−2AB+10A2)

9AD
,

H =
√3D(√B2−2AB+10A2+2B−5A)(2A+B−√B2−2AB+10A2)

9AD
.

ϕ10 (η) =
HJ [1± dn (η)]

2sn (η)
+

HIsn (η)
2 [1± dn (η)]

, (39)

where
J = 2Am2 − 3Am4 + 4B−A−△, I = 3Am4 + 2Am2 + 4B− 7A−△,

H =
√3D(√16B2−32AB+25A2+16A(B−A)m2−14A2m4+9A2m8+8B−11A−3Am4+4Am2)

18AD(m4−1)
,

△ = √16B2 − 32AB+ 25A2 + 16A (B−A)m2 − 14A2m4 + 9A2m8.

(ii) Bell profile solitary wave solution

ϕ11 (η) =
1
2
[J+H sech2 (η)]cosh (η) , (40)

where
J =
√3D(√B2+2AB+10A2+2B+5A)(√B2+2AB+10A2−4A−B)

9AD
,

H =
√3D(√B2+2AB+10A2+2B+5A)(2A−B+√B2+2AB+10A2)

9AD
.

(iii) Singular soliton solution

ϕ12 (η) =
J+H csch2 (η)
2 csc h (η)

, (41)
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with J =
√3D(√B2+2AB+10A2+2B−A)(B−2A−√B2+2AB+10A2)

9AD
,

H =
√3D(√B2+2AB+10A2+2B−A)(B+4A−√B2+2AB+10A2)

9AD
.

ϕ13 (η) = ±√|
m2A+B

D
|
sn (η)
cn (η)
. (42)

ϕ14 (η) = ±√|
A+B
D
|
msn (η)
dn (η)
. (43)

ϕ15 (η) = ±√|
B−A
D
|[

1± dn (η)
2msn (η)

+
msn (η)

2 [1± dn (η)]
] . (44)

ϕ16 (η) = ±√|
B−m2A

D
|
cn (η)
sn (η)
. (45)

(v) Dark soliton wave solution

ϕ17 (η) = ±√|
B− 4A
D
|
(tanh2 (η) − 1)
2 tanh (η)

. (46)

4 Applications to the generalized
Schrödinger equation

The generalized Schrödinger equation reads

iqt −
s
2
qxx + |q|

2 q− iαqxxx + iμ(|q|
2q)x + iνq(|q|

2)x = 0 (47)

Equation 47, which can describe practical phenomenon, can
be divided into a series of integrable models [17, 18]. Using the
previously-provided method, we can get solutions of Equation 47.

By putting the following Equation 48

u (x, t) = ϕ (η)exp [i (kx−ωt)] , η = −λx+ t+ η0, (48)

into Equation 47, we have

Aϕ″ (η) +Bϕ (η) +Dϕ3 (η) = 0, (49)

we need to determine k,ω and λ.
Equation 49 coincides with Equation 19, where

A = 1, B =
kλ (s− 3αk) + 1

αλ3
, D = −

3μ+ 2ν
3αλ2
.

The constraint conditions are expressed as the
following Equation 50

ω = 3k
λ
+ 4sk2 − 8αk3 − s

2αλ
− s

2k
2α
, k =

s(3μ+ 2ν) − 6α
6α(μ+ ν)

. (50)

Then the solutions of Equation 47 are

u (x, t) = ϕ (η)exp [i (kx−ωt)] , η = −λx+ t+ η0. (51)

Combing Equations 23–25, 33–46, 51, we can derive solutions
of the generalized Schrödinger Equation 47.

u1 (x, t) = [
8MBTeλη

8BT2 −DM2e2λη
]exp [i (kx−ωt)] .

u2 (x, t) = −4MBTsech (λη)exp [i (kx−ωt)] .

u3 (x, t) = −4MBTcsch (λη)exp [i (kx−ωt)] .

u4 (x, t) = [
2HJ−HIcn2 (η)

2sn (η)
]exp [i (kx−ωt)] ,

where

H =

√3D(√B2 + 10A2 − 2AB− 2A (B+ 8A)m2 + 10A2m4 + 2B− 5Am2 − 5A)

9AD(m2 − 1)
,

I = B− 4A+ 2Am2 −√B2 + 10A2 − 2AB− 2A (B+ 8A)m2 + 10A2m4,

J = A−B+Am2 +√B2 + 10A2 − 2AB− 2A (B+ 8A)m2 + 10A2m4.

u5 (x, t) = [
2HJ−HIsn2 (η)

2cn (η)
]exp [i (kx−ωt)] ,

where

H =

√3D(√B2 + 10A2 − 2AB+ 4A (B−A)m2 + 4A2m4 + 2B+ 10Am2 − 5A)

9AD
,

I = 4A−B− 2Am2 +√B2 + 10A2 − 2AB+ 4A (B−A)m2 + 4A2m4,

J = B−A+ 2Am2 −√B2 + 10A2 − 2AB+ 4A (B−A)m2 + 4A2m4.

u6 (x, t) = {
2HJ−HIm2 [1+ cn2 (η)]

2dn (η)
}exp [i (kx−ωt)] ,

where

H =

√3D(√B2 + 4A2 + 4AB− 2A (B+ 2A)m2 + 10A2m4 + 2B− 5Am2 + 10A)

9ADm2 ,

I = 4Am2 − 2A−B+√B2 + 4A2 + 4AB− 2A (B+ 2A)m2 + 10A2m4,

J = Am2 −B− 2A+√B2 + 4A2 + 4AB− 2A (B+ 2A)m2 + 10A2m4.

u7 (x, t) = [
HJ+HIsc2 (η)

2sc (η)
]exp [i (kx−ωt)] ,

where

H =

√3D(√B2 + 4A2 + 4AB− 2A (B+ 2A)m2 + 10A2m4 + 2B+Am2 − 2A)

9ADm2 ,

I = 4Am2 −B− 2A+√B2 + 4A2 + 4AB− 2A (B+ 2A)m2 + 10A2m4,

J = √B2 + 4A2 + 4AB− 2A (B+ 2A)m2 + 10A2m4 −B− 2A− 2Am2.

u8 (x, t) = [
HJ+HIsd2 (η)

2sd (η)
]exp [i (kx−ωt)] ,
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where

H =
√3D (Δ+ 2B− 5A+ 7Am2 − 3Am4)

9AD(m4 −m2 − 1)
,

I = 3Am4 −Am2 − 4A+B−Δ, J = 5Am4 − 3Am2 + 2A+B−Δ,

Δ = √9A2m8 − 18A2m6 − 5A2m4 + 2A (2B+ 7A)m2 +B2 − 2AB+ 10A2.

u9 (x, t) = [
J+Hcd2 (η)
2cd (η)

]exp [i (kx−ωt)] ,

where

J =
√3D(√B2 − 2AB+ 10A2 + 2B− 5A)(B− 4A−√B2 − 2AB+ 10A2)

9AD
,

H =
√3D(√B2 − 2AB+ 10A2 + 2B− 5A)(2A+B−√B2 − 2AB+ 10A2)

9AD
.

u10 (x, t) = {
HJ [1± dn (η)]

2sn (η)
+

HIsn (η)
2 [1± dn (η)]

}exp [i (kx−ωt)] ,

where

J = 2Am2 − 3Am4 + 4B−A−△, I = 3Am4 + 2Am2 + 4B− 7A−△,

H =
√3D(√16B2−32AB+25A2+16A(B−A)m2−14A2m4+9A2m8+8B−11A−3Am4+4Am2)

18AD(m4−1)
,

△ = √16B2 − 32AB+ 25A2 + 16A (B−A)m2 − 14A2m4 + 9A2m8.

u11 (x, t) =
1
2
[J+H sech2 (η)]cosh (η)exp [i (kx−ωt)] .

where

J =
√3D(√B2 + 2AB+ 10A2 + 2B+ 5A)(√B2 + 2AB+ 10A2 − 4A−B)

9AD
,

H =
√3D(√B2 + 2AB+ 10A2 + 2B+ 5A)(2A−B+√B2 + 2AB+ 10A2)

9AD
.

u12 (x, t) = [
J+H csch2 (η)
2 csc h (η)

]exp [i (kx−ωt)] ,

where

J =
√3D(√B2 + 2AB+ 10A2 + 2B−A)(B− 2A−√B2 + 2AB+ 10A2)

9AD
,

H =
√3D(√B2 + 2AB+ 10A2 + 2B−A)(B+ 4A−√B2 + 2AB+ 10A2)

9AD
.

u13 (x, t) = ±√|
m2A+B

D
|[

sn (η)
cn (η)
]exp [i (kx−ωt)] .

u14 (x, t) = ±√|
A+B
D
|[

msn (η)
dn (η)
]exp [i (kx−ωt)] .

FIGURE 1
Solitary wave solution u10 of Equation 47, with the integration
constant be one, and m 1/2 at times t = 3.14.

FIGURE 2
Solitary wave solution u15 of Equation 47, with the integration
constant be one, and m = 1/2 at times t = 3.14.

u15 (x, t) = ±√|
B−A
D
|[

1± dn (η)
2msn (η)

+
msn (η)

2 [1± dn (η)]
]exp [i (kx−ωt)] .

u16 (x, t) = ±√|
B−m2A

D
|[

cn (η)
sn (η)
]exp [i (kx−ωt)] .

u17 (x, t) = ±√|
B− 4A
D
|[

tanh2 (η) − 1
2 tanh (η)

]exp [i (kx−ωt)] .

RemarkThe proposed method can also be extended to the other
type of nonlinear partial differential equations. Figures 1, 2 provide
the solitary wave solutions of Equation 47.
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5 Conclusion

In summary, the AEM is presented and applied to the
generalized Schrödinger equation. As a result, several new exact
solutions are obtained which include bright solitary wave solutions,
dark solitary wave solutions, bell profile solitary wave solutions and
Jacobian elliptic function solutions. This method is standard, direct
and realized by computermechanization, being useful for describing
certain nonlinear physical phenomena as well as extended to the
other nonlinear partial differential equations.

In addition, Fan and Chow [19] once applied the Bell
polynomials to deduce the Darboux covariant Lax pairs and
infinite conservation laws of some (2 + 1)-dimensional nonlinear
evolution equations. Based on this theory, we hope investigate some
corresponding properties of Equation 47 presented in the paper in
future. Application of the currentmethod to the fractional nonlinear
partial differential equations is another future direction [20].
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