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Prediction of thermospheric
temperature over the South Pole
based on two-layer LSTM
network

Hao Yang, Yanshi Huang*, Pingbing Zuo, Kun Zhang,
Mengqi Shao and Huan Shi

School of Aerospace, Harbin Institute of Technology, Shenzhen, China

This study presents a new two-layer LSTM network-based model, which
improves the accuracy of thermospheric temperature over the South Pole
simulated by MSIS2.0 model. A dataset is constructed using temperature data
measured by the South Pole FPI from 2000 to 2011 along with corresponding
temperature derived from MSIS2.0 model, F10.7 and Ap indices, which are the
input parameters of the first LSTM network layer. The first LSTM layer combines
these inputs into a one-dimensional time series, while the second LSTM layer
extracts temporal features from the output of the first layer. The proposed
LSTM-based model shows better performance in predicting FPI observations
compared to the empirical MSIS2.0 model during both geomagnetically quiet
and disturbed periods. For the year 2011, the mean absolute error between the
MSIS2.0 model and FPI data is 53.460 K, whereas the LSTM model reduces it to
34.024 K. The euclidean distance analysis also demonstrates better performance
of the LSTM model. This study illustrates the potential of applying a two-layer
LSTM network to optimize model simulations in upper atmosphere research.

KEYWORDS

thermospheric temperature, South pole, FPI, LSTM, deep learning

1 Introduction

The Earth’s atmosphere is a complex system that plays a vital role in regulating climate
and sustaining life.Understanding the interactions between theEarth and space, particularly
in the upper atmosphere spanning from 80 km to 500 km, holds great importance [1].
Extensive researches have been conducted over several decades to help our understanding
of this region [2].

Fabry-Perot Interferometer (FPI [3]) instruments measure temperature and wind
velocity in the upper atmosphere based on doppler shifts observed in transmitted light. Only
a limited number of FPIs have been deployed in the South Pole region to study the temporal
evolution of thermospheric parameters [4, 5]. Given the limited observational data available,
researchers have conducted a series of studies on the phenomena of winds and temperatures
over polar regions under conditions of solar activity and geomagnetic activity[6–8]. To
enhance these investigations, additional observational data are often required, including
data from balloon [9] and satellite [10] observations.Furthermore, temperature data
observation based on FPI is lack of data during the beginning and end of each year. For
example, observations of temperature data over the South Pole often exhibit data gaps [11].
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To address this shortcoming, numerical simulation work can be
employed. Models such as DTM (Dynamic Thermosphere Model
[12, 13]), TIEGCM (Thermosphere-Ionosphere-Electrodynamics
General Circulation Model, [14]), and GITM (Global Ionosphere-
Thermosphere Model, [15]) can provide continuous temporal
variations at a particular location and address the problem
of gap.Among various models used for simulating the upper
atmosphere, the Mass Spectrometer Incoherent Scatter (MSIS)
model stands out as one of the most widely employed ([16]). The
MSIS model combines theory and observations to predict upper
atmospheric behavior, providing valuable insights into composition,
density, temperature, and other properties [17, 18]. Despite its
effectiveness, there are limitations associated with the MSIS model
that need improvements for more accurate predictions.The MSIS
model family has been continuously evolving and improving
since the early 1970s. Accurate prediction of FPI values from
MSIS simulations poses challenges due to inherent complexities
and dynamic nature within these regions. It necessitates precise
modeling of multiple physical processes involving ion-neutral
interactions, chemical reactions, and energy transfer mechanisms.
Advanced techniques are required to optimize MSIS simulations
effectively while improving FPI value prediction accuracy.Recently,
Licata et al. [19] developed a machine learning-based MSIS-
UQ model and calibrated it against NRLMSIS2.0 to reduce the
discrepancies between the model and satellite density. The research
findings show that MSIS-UQ achieved significant improvement in
terms of MAE (Mean Absolute Error) compared to NRLMSIS2.0,
reducing the differences between the model and satellite density
by approximately 25% [19]. It outperformed the High Accuracy
Satellite Drag Model (HASDM) by approximately 11% [21].

Although these models can compensate for gaps in
observational data, the discrepancies between the simulation results
and the actual observations remain significant. For instance, Huang
et al. [22] demonstrates that the neutral temperature at Palmer
Station during geomagnetic storms simulated from TIEGCM is
much smaller to the FPI observations.Similarly, Lee et al. [5] reveals
that the observed temperature in the upper atmosphere at Jang Bogo
Station (JBS) in Antarctica is approximately 200 K higher than the
simulated results from TIEGCM during geomagnetic storms.

We propose a novel approach utilizing a two-layer Long Short-
Term Memory (LSTM) network [23, 24] framework to optimize
MSIS2.0 simulation results over Antarctica.LSTM networks, which
are designed to handle sequential data while retaining long-
term dependencies, are well-suited for processing time-series
data, making them promising tools for improving atmospheric
simulations [25]. Reddybattula et al. [26] developed an LSTM-based
model using 8 years of GPS-TEC data to forecast ionospheric total
electron content at a low-latitude Indian station, outperforming
traditional models like IRI-2016. Similarly, Vankadara et al. [27]
proposed a Bi-LSTM model trained on 11 months of TEC data
with solar and geomagnetic indices, which accurately forecasts
ionospheric total electron content and surpasses conventional
models such as LSTM, ARIMA, IRI-2020, and GIM. More studies
have explored the application of LSTM networks in atmospheric
data processing, including researches by Hao et al. [28]; Kun et al.
[29]. These investigations specifically highlight the remarkable
achievements of LSTM networks in the domain of atmospheric
prediction. They underscore the exceptional capabilities of LSTM

networks in effectively processing atmospheric data and significantly
improving prediction accuracy for atmospheric forecasting [30,
31]. In addition, Zhang et al. [32] confirmed that, compared to
traditional neural network models, the combination of models
and neural networks with applied physical constraints have greater
potential in space weather applications. The two-layer LSTM
network constructed in this work is not a conventional LSTM
network. On one hand, it is composed of two independent LSTM
networks; on the other, the functions implemented by these two
networks are different. However, LSTM networks have been widely
applied in prediction problems, there has been relatively limited
research on their application in handling regression problems.
Therefore, it is crucial to explore and investigate the potential of
LSTM networks in addressing regression problems.

In this study, we use FPI-measured temperature at South Pole
from year 2000–2011 to train a two-layer LSTM network in order to
develop a prediction model. It presents a promising avenue for
improving the overall accuracy predicting FPI measurements,
contributing to better understanding of upper atmospheric
dynamics through advanced neural networks.

2 Data and models

2.1 Neutral temperature measured by FPI
at the South Pole

The thermospheric temperature measured by FPI at the South
Pole from 2000 to 2011 is used in this study, sourced from
Madrigal database (https://cedar.openmadrigal.org/list). Figure 1
shows temporal variation of the neural temperature at 250 km
between Day of Year (DOY) 100 and 245 from year 2000–2011.
The black line represents the measurements overlapped over the
11 years, whereas the red line depicts the averaged temperature for
these years. Figure 2 shows the temporal distribution of temperature
data counts, with a total number of about 400,000 counts from
year 2000–2011. The top panel displays the hourly distribution
of temperature data, which is relatively uniform. The middle
panel presents monthly data counts, with the fewest in September,
exceeding 10,000. It is worth noting that FPI observations begin
in April and end around September every year. The bottom
panel shows the data counts for each year, with the least count
in year 2003.

The FPI temperature measurements exhibit a mean absolute
error of 34.31 K (the temperature range spans approximately
500–3000 K), with a mean relative error of 3.91% and a median
relative error of 3.37%. The proportion of errors greater than
100 K is 1.75%, and the proportion of errors greater than 200 K
is 0.07%. The standard deviation of 2.24% suggests that the
measurement noise is constrained but non-negligible, particularly
given the dynamic range of the thermosphere. Observational
error and abrupt fluctuations in FPI data hinder neural networks
from effectively extracting time series features. To address this
challenge, we employed a Savitzky-Golay filter [33] with a 3-h
temporal window. This approach leverages localized polynomial
regression to adaptively smooth noise while preserving the integrity
of transient features. The Savitzky-Golay filter smooths data by
fitting a polynomial within amovingwindow, with its core operation
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FIGURE 1
Thermospheric temperature at 250 km measured by the South Pole FPI from year 2000–2011. The black lines represents the temporal variation of
overlapped temperatures from DOY 100 to DOY 245, while the red line is the average over these 11 years.

FIGURE 2
Local time (upper panel), Monthly (middle panel) and annual (bottom panel) distribution of the South Pole FPI data counts.

defined by the Equation 1.

ysmoothed
i =

m

∑
j=−m

cj yi+j (1)

where yi+j represents the data within a window of 2m+ 1 points
centered around yi, and cj are the filter coefficients obtained by
fitting a polynomial of degree n (with n < 2m+ 1) through least
squares regression. This equation shows that each smoothed value is
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aweighted sumof the surrounding data points.The coefficients cj are
designed to reduce noise while preserving important signal features.
In this study, the smoothing timewindowwas set to 3 h based on two
considerations. First, a large window would reduce the differences
between extreme values, whereas a too small window would not
reduce noise, and an empirically determined 3 h serves as a suitable
compromise. Additionally, since the MSIS2.0 simulation is based
on AP and F10.7 data, with a time resolution matching the lower-
resolution AP data (3 h), the smoothing window was set to 3 h.

2.2 Temperature simulated by the MSIS2.0
model

In this study, the MSIS2.0 model (referred to as MSIS) is
used, which is an empirical atmospheric model that describes
the average observed behaviors of temperature and mass density
through a parametric analytic formulation [34]. The model inputs
include location, time, solar activity F10.7 index and geomagnetic
activity Ap index [35], sourced from the OMNI database (https://
omniweb.gsfc.nasa.gov/ow.html). The F10.7 index measures solar
radiation intensity at a wavelength of 10.7 cm and is used to assess
solar activity’s impact on the Earth’s atmosphere, especially in the
thermosphere and ionosphere.The AP index quantifies the activity
level of the Earth’s magnetic field based on measurements from
multiple ground stations. It reflects the intensity of interactions
between solar wind and the Earth’s magnetic field. The temporal
resolution of AP index is 3 h, while that of F10.7 index is 1 day.
To ensure consistency, the F10.7 and Ap indices were upsampled
via linear interpolation to match the FPI timestamps, which have
a resolution of approximately 3 min, before running the MSIS
simulations and model training.

The MSIS model is employed to simulate the neutral
temperature at an altitude of 250 km at the South Pole for the
period from 2000 to 2011. Figure 3 depicts the MSIS simulated
temperatures similar to Figure 1. The blue line in Figure 3 also
illustrates a seasonal variation with lowest temperature in winters at
the South Pole.

2.3 Development of temperature
prediction model based on two-layer LSTM
network

A dataset is constructed using FPI data as the label and the
correspondingMSIS simulations, F10.7, andAp indices as the features,
all alignedwith the FPI observational timeline. In the training process
of neural networks, the data is typically divided into three categories:
training set, validation set and test set.The training set is the data used
to train the model and to enable the model to learn the relationship
between features and labels. Validation Set is the data used to evaluate
the model’s generalization ability during training and help prevent
overfitting, and it is also used for tuning model hyperparameters or
selecting the best model. The test set is the data used for the final
evaluation ofmodel performance on new data after training.The data
from 2000 to 2009 is used to train the LSTM network, while the data
from2010 is used for cross-validation during the training process.The
MAE between the model and the FPI for 2010 is calculated, and if it

exceeds theMAE between theMSIS and the FPI for three consecutive
epochs, training will stop. The data from 2011 is used to test the
performance of the trained network.

The LSTM network is a powerful neural architecture that
effectively manages information input and output through gating
mechanisms (including input gate, output gate, and forget gate [36]),
as depicted in Figure 4. As a Recurrent Neural Network (RNN)
specifically designed for sequential data processing, such as text
data in natural language processing, the LSTM network excels at
controlling information flow and addressing issues like gradient
vanishing during deep training [37]. The flow of information in an
LSTM can be summarized as follows: the forget gate, the input gate,
the cell state, and the output gate.

The forget gate ft determines how much historical information
to retain from the cell state using a sigmoid function σ [38].
As shown in Equation 2, it combines the previous hidden state h⟨t−1⟩

and current input x⟨t⟩, W f is a weight matrix partitioned into W fh
(for h⟨t−1⟩) and W fx (for x⟨t⟩), which are learned independently. b f
is the bias term, and σ scales outputs to [0,1], representing retention
probabilities.

ft = σ(W f ⋅ [h〈t−1〉,x〈t〉] + b f) (2)

The input gate determines which new information should be
stored in the cell state, and it is composed of two components, a
sigmoid layer that decides which information should be updated
and a tanh layer that generates new candidate values of the cell state
̃c⟨t⟩, as shown in Equations 3, 4, Wc and Wi is a weight matrix, bi

and bc is the bias term, the Tanh function compresses the input to a
specific range (−1, 1), helping to stabilize the network by preventing
excessively large or small values.

it = σ(Wi ⋅ [h
〈t−1〉,x〈t〉] + bi) (3)

̃c⟨t⟩ = Tanh(Wc ⋅ [h⟨t−1⟩,x⟨t⟩] + bc) (4)

The cell state c⟨t⟩ is updated by combining the forget gate and the
input gate, as expressed by the Equation 5, where c⟨t⟩ is the cell state
at the current time step and c⟨t−1⟩ is the cell state from the previous
time step. The term ft ∗ c

⟨t−1⟩ indicates the old information retained
by the forget gate, while it ∗ ̃c⟨t⟩ represents the new information
added by the input gate.

c⟨t⟩ = ft ∗ c
⟨t−1⟩ + it ∗ ̃c

⟨t⟩ (5)

The output gate determines the hidden state h⟨t⟩ at the current
time step. It controls the output using a sigmoid function that
decides which parts of the cell state should be output and
a tanh function that scales the cell state values, as shown in
Equations 6, 7.

ot = σ(Wo ⋅ [h
〈t−1〉,x〈t〉] + bo) (6)

h〈t〉 = ot ∗ tanh(c〈t〉) (7)

We designed a two-layer LSTM network where each layer
serves a different function (see Figure 4). Table 1 presents the
hyperparameters associated with our chosen LSTM network
structure. The first LSTM layer (a single-layer LSTM) processes the
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FIGURE 3
Thermospheric temperature at 250 km simulated by MSIS from year 2000–2011. The black lines represents the temporal variation of overlapped
temperature, while the blue line is the average value over these 11 years.

FIGURE 4
Two-layer LSTM network Diagram.

input data, which consists ofMSIS-derived temperatures, F10.7, and
Ap indices, arranged as a time series of length 512 with 3 features
[i.e., shape (512, 3)]. This LSTM layer with 256 hidden units outputs
a transformed sequence, resulting in a shape of (512, 256). A fully
connected layer is then applied to reduce this output to a one-
dimensional series, yielding a shape of (512, 1). Essentially, this
process combines three features into one feature. A standard fully
connected network (without LSTM) can also merge features, but it
only processes the current time step. We use an LSTM because it
integrates information from neighboring time steps [37], capturing
the temporal dependencies in the data. Before feeding this output
into the second LSTM layer, it is reshaped from (512, 1) to (256, 2)

because the original data often shows significant differences between
consecutive time points; by merging every two time steps into
one, the training process becomes more stable. The second LSTM
layer (a four-layer LSTM) takes the reshaped input (256, 2) and
extracts higher-level features, producing an output of shape (256,
256). A fully connected layer then processes this output, initially
reformatting it to (256, 2) before reshaping it to restore the original
sequence length (512, 1). In summary, the first LSTM layer reduces
dimensionality, the second LSTM layer captures high-level patterns,
and the final fully connected layer restores the sequence length.

In predictive applications using LSTM networks, it is common
to retain only the final timestep output as the forecast [39]. For
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TABLE 1 The essential hyperparameters of the two-layer LSTM.

Models Epoch Batch Num layers Input size Seq len Hidden size Lr

First layer 10 16 1 3 512 256 1e-4

Second layer 10 16 4 2 256 256 1e-4

FIGURE 5
Temporal variation of solar and geomagnetic conditions during two selected periods, the quiet time from DOY 176 to 182 in year 2011 on the left, the
storm time from DOY 216 to 221 on the right. From top to bottom panels they are total IMF magnetic field, IMF component in the z-direction Bz, solar
wind speed, solar wind dynamic pressure, Ap, F10.7 and Dst indices. (a) Quiet time (b) storm time.

example, when the LSTM output shape is (10,5), indicating 10
timesteps with 5 features, it retains the five features from the
final timestep (shape 1,5) as the prediction for the 11th timestep.
In contrast, our regression model retains all output information
and uses it to fully reconstruct a time series of the same length
as the input.

3 Validation of the LSTM-Network
based model

The two-layer LSTM model aims to improve the prediction
accuracy of the MSIS model. To validate this, two critical aspects

require verification, the one is whether this model improves
the accuracy compared to its baseline, the other is whether
it outperforms existing models under identical experimental
conditions.

Firstly, we have verified whether the model enhances the
prediction accuracy of the MSIS model by analyzing two aspects:
testing its performance during both quiet periods and geomagnetic
storm events, and evaluating it across the entire test dataset. As
shown in Figure 5, during the quiet time from DOY 176 to 182
in year 2011, there are little variation in Interplanetary Magnetic
Field (IMF) Bz, dynamic pressure of the solar wind (Pd), Ap index,
F10.7 index and Dst index, while during the storm time from DOY
145 to 153, there were obvious disturbances in IMF, Pd, and Dst
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FIGURE 6
Comparison of the temporal variations at the South Pole during the quiet (left) and storm (right) time. From top to bottom panels are the Dst index,
temperature measured by the South Pole FPI (black) and those simulated by the MSIS model (blue) and our two-layer LSTM model (red), differences
between the model results and the observation, and their percentage differences. (a) Quiet time (b) storm time.

TABLE 2 Performance comparison between two-layer LSTM and
baseline models for the whole year of 2011.

Model R2 MAE RMSE MAPE%

MSIS 0.463 53.460 65.991 6.12%

DTM 0.483 49.105 64.775 5.53%

LSTM (one-layer) 0.626 40.879 55.092 4.64%

LSTM (two-layer) 0.746 34.024 45.409 3.82%

indices.The results of temperature at 250 km over the South Pole for
both quiet time (left) and storm time (right) are shown in Figure 6.
The first row displays the Dst index variation. The second row
compares observed thermospheric temperature (South Pole FPI,
smoothed) with MSIS simulations and two-layer LSTM result. The
third and fourth rows show absolute and percentage differences
between models and observations. To quantify these discrepancies,

MAE and MAPE (Mean Absolute Percentage Error) are calculated
using Equations 8, 9, where yi denotes the observed values and ŷi
represents the model predictions.

MAE = 1
n

n

∑
i=1
|yi − ŷi| (8)

MAPE (%) = 100
n

n

∑
i=1
|
yi − ŷi
yi
| (9)

Further calculations during quiet periods reveal that the MAE
between MSIS model and FPI measurement is 49.40 K, while that
between LSTM model and FPI data is 23.37 K. The MAPE between
MSIS model and FPI measurement is 6.36%, compared to 2.95% for
the LSTM model. During the geomagnetic storm time, the MSIS
model having a MAE of 47.56 K and a MAPE of 5.39%, and the
LSTM model showing a MAE of 26.29 K and a MAPE of 2.92%.
For the entire test dataset (all data of year 2011), the MAE between
MSISmodel and FPI data is 53.46 K, while theMAE of LSTMmodel
is 34.02 K, the MAPE between MSIS model and FPI measurement
is 6.12%, compared to 3.82% for the LSTM model. These results
demonstrate that both MSIS model and LSTM based Model do
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FIGURE 7
The results of kernel density estimation for the euclidean distance
between models and FPI observations.

well predicting the thermospheric temperature at the South Pole,
and the LSTM model improves the forecasting performance by
approximately 15 K compared to the MSIS model.

Secondly, we validate whether the two-layer LSTM model
outperforms existing models. Under the same conditions, we added
simulation results from the DTM model and the one-layer LSTM,
and introduced two metrics, RMSE (Root Mean Square Error) and
R2 (Coefficient of Determination), for validation. These two metrics
are shown in Equations 10, 11. Table 2 shows performance metrics
calculated from comparing the model results with the smoothed
observational data. R2 indicates how well the model’s predictions
match the data (closer to 1 is better), MAE gives the average error,
RMSE emphasizes larger errors, and MAPE shows the error as
a percentage. By comparing these metrics, the two-layer LSTM
network outperforms the other models on all four indicators. It
shows the smallest error relative to the raw data and the greatest
improvement in MSIS model performance.

RMSE = √ 1
n

n

∑
i=1
(yi − ŷi)

2 (10)

R2 = 1−
∑n

i=1
(yi − ŷi)

2

∑n
i=1
(yi − ̄y)

2
(11)

To clearly show the error distribution of these models on the
entire test set, we used kernel density estimation to plot their
Euclidean distance error distribution, as shown in Figure 7. For
the Euclidean distance, we first divided the test set into daily
segments and then calculated the Euclidean distance for each
segment, the calculation method for the Euclidean distance is given
in Equation 12, yi represents the model values, and ŷi represents the
observed values. The Euclidean distance for time series is a method
used to measure the similarity or dissimilarity between two time
series [40]. It calculates the difference between corresponding values
of the two time series at each time point, squares these differences,
sums them up, and takes the square root of the total to obtain the
final distance. In simple terms, Euclidean distance measures the
straight-line distance between numerical values of two time series at
each time point. A smaller Euclidean distance indicates that the two

time series are closer or more similar to each other, while a larger
Euclidean distance suggests they are farther apart or have greater
differences. Kernel density estimation uses a smoothing kernel to
estimate the probability density function of data. Equation 13 shows
that f̂(x) is the estimated density function, where n is the number
of data points, h is the smoothing bandwidth, and K(⋅) is the kernel
function. Here, xi represents the Euclidean distances with the square
root √d, and x is the Euclidean distance at which the density is
estimated.

d = √
n

∑
i=1
(yi − ŷi)

2 (12)

f̂ (x) = 1
nh

n

∑
i=1

K(
x− xi
h
) (13)

Figure 7 shows the Euclidean distances between model results
and FPI measurements using kernel density estimation. The blue
line represents MSIS, the yellow line represents DTM, the red line
represents the two-layer LSTM, and the green line represents the
one-layer LSTM. The peak values are (32.678, 0.094) for MSIS,
(28.959, 0.064) for DTM, (26.638, 0.055) for the one-layer LSTM,
and (24.109, 0.068) for the two-layer LSTM. These peaks represent
the most frequent error magnitudes in each model, meaning that
errors around these values occur most often. The y-axis value of
each peak indicates the probability density, where a higher peak
means that more error samples are concentrated near that value. A
lower peak position on the x-axis suggests that the model generally
has smaller errors. The results suggest that the two-layer LSTM
reduces large errors and lowers their frequency compared to other
models, as it has the smallest peak x-value and a relatively higher
probability density.

Beyond these analyses, we conducted comparative experiments
with alternative models to demonstrate the superiority of the two-
layer LSTM architecture. Research by Hossain et al. [41] indicates
that while the MSIS model can roughly capture the trend of FPI
variations, it fails to reproduce its precise structure. In other words,
the MSIS model cannot forecast the large amplitude fluctuations in
FPI data. Similarly, Meriwether et al. [42] used the WAM model to
predict temperature, comparing its results with the FPI weighted
average temperature.The averaged temperature ranged between 700
and 800 K, with the WAM model’s absolute error between 50 and
80 K, leading to a calculatedMAPEof approximately 6.25%–11.43%.
For our work, which is benchmarked against the MSIS model, the
goal is to improve its accuracy and minimize errors. The results
above indicate that this objective has been initially achieved.

4 Conclusion

While empirical models are widely used to simulate the upper
atmosphere, they have limitations that affect their prediction
accuracy. Previous studies have shown that LSTM networks are
effective in processing atmospheric data across various domains
and improving prediction accuracy. These collective findings affirm
the promising application of LSTM networks in upper atmosphere
researches.

First, the analysis of thermospheric temperature measured by
the FPI at the South Pole from year 2000–2011 demonstrates that the
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temperature range is from about 500 K to 3,000 K, with an average
around 900 K. Then a dataset is constructed using FPI data from
2000 to 2011 along with corresponding temperature derived from
MSIS model, F10.7 and Ap indices, which are the input parameters
of the LSTM neural network. The data from year 2000–2009 is used
to train the LSTM network, those of year 2010 is used for cross-
validation, and those of year 2011 is used to test the performance
of the trained network.

Next, a two-layer LSTM-based model is developed to improve
the prediction accuracy of neutral temperature over the South Pole.
The input data, consisting of three features, are first transformed
into a one-dimensional time series by the first LSTM layer, while
the second LSTM layer extracts temporal patterns from this series.
This allows the model to capture complex temporal features more
effectively. The results show that the two-layer LSTM model
improves the accuracy of the MSIS model during geomagnetic
storms, quiet periods, and the entire test set. Additionally, this
model outperforms other empirical models and standard one-layer
LSTM networks.

It is important to note that this study primarily addresses
a regression problem rather than prediction-oriented tasks. In
prediction scenarios, typically only outputs from the last hidden
layer in an LSTM network are used for prediction. However,
for regression problems, information from all hidden layers is
incorporated to generate accurate results. The results of this
study demonstrate that using two-layer LSTM networks, we
achieve notable improvements in prediction accuracy compared
to traditional approaches. This indicates the potential of advanced
techniques like two-layer LSTM networks in helping our
understanding of the complex and dynamic nature of the upper
atmosphere.
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