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The structure of the bank-firm loan network is crucial for understanding the
transmission of systemic risk within the banking system. Drawing on complex
network theory, this study analyzes loan data from 370 Chinese commercial
banks spanning January 2013 to December 2023 to construct a syndicated
loan network, wherein different banks lend to the same enterprise. This analysis
reveals how the structure of this network influences systemic risk in the
banking sector across various periods. Our findings indicate that, in the long
term, network density and centralization significantly mitigate systemic risk,
whereas transitivity and average clustering coefficients have a positive effect
on systemic risk. In the short term, the network demonstrates strong mean-
reverting properties. Additionally, we observe a noteworthy phenomenon: the
bank-firm loan relationships exhibit a ‘core-periphery’ hierarchical structure,
characterized by a network that is both robust and fragile. These insights
offer a novel perspective on the relationship between bank network structures
and systemic risk, contributing to the interdisciplinary application of physics in
economic and financial studies.
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1 Introduction

Banks play a crucial role in the financial systems and economic growth of countries [1].
As the primary intermediaries of capital flows, banks not only provide essential financing
support to the real economy but also significantly promote the growth of social financing.
From March 2015 to March 2024, the renminbi loans extended by Chinese financial
institutions to the real economy increased from 85.09 trillion yuan to 244.59 trillion yuan,
representing an average of 61.5% of the total social financing scale. This trend indicates
that the real economy is highly reliant on bank loans for financing [2, 3], particularly
large enterprises that utilize bank financing to sustain their operations and expand, thereby
underscoring the indispensable role of banks in economic development.

Bank loans are an essential corporate financing tool in contemporary financial
markets. They not only address the substantial financing needs of enterprises
but also facilitate the efficient allocation of financial resources, thereby serving
as a crucial pillar for economic growth. However, with the rapid advancement
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of financial markets and the deepening of financial innovation,
bank loans have transformed from simple credit transactions
into a complex network of bank-firm loans [4]. This networked
characteristic has not only improved financing efficiency but also
introduced new challenges: the high interconnectedness among
banks, as well as between banks and enterprises, may result in the
swift transmission and accumulation of risks within the network,
potentially jeopardizing the stability of the financial system [5].

Despite this, traditional financial regulation often prioritizes
the risk status of individual commercial banks, neglecting the
influence of interbank interconnectedness on systemic risk. This
oversight was starkly illustrated during the 2008 global financial
crisis, which revealed that the intricate network relationships among
banks could intensify risk transmission and increase the likelihood
of systemic collapse [6]. In recent years, chain reactions initiated by
problems within individual banks—such as the successive failures of
Silicon Valley Bank, Signature Bank, and First Republic Bank—have
further underscored the necessity of addressing systemic risk within
the banking system [7]. When a single bank within the system
encounters difficulties, these complex interconnections can trigger
a chain reaction throughout the entire network, generating systemic
risk and posing a significant threat to the sustainable development
of the national economy.

Given the complex and interconnected nature of the banking
system [8], when individual banks within this system face
difficulties, it may trigger a chain reaction throughout the entire
banking network, resulting in systemic risk [9]. Systemic risk
refers to the potential for a chain reaction initiated by the
failure of a single node or a localized event within a system,
which can ultimately result in the loss of functionality or the
collapse of the entire system [6, 10]. characteristics of loss-sharing
and risk transmission between the banking system and the real
economy highlight the interconnectedness and cohesiveness of the
banking system, as well as its links to the real economy, which
are primary sources and accelerators of systemic risk formation
and propagation (as illustrated in Figure 1). Consequently, the
implementation of macroprudential regulatory tools to address
issues of interbank interconnectedness has become essential for
preventing systemic risk.

This study makes three significant contributions to the existing
literature. First, it offers broader sample coverage. Unlike previous
studies that typically focus on a limited sample of listed banks
or systemically important banks [11], this research utilizes a
comprehensive loan dataset encompassing 370 Chinese commercial
banks. This dataset includes banks of various sizes and types,
thereby significantly enhancing the breadth of the research and the
generalizability of the findings. It provides a more robust empirical
foundation for understanding the overall network characteristics
and risk relationships within the Chinese banking system. Second,
the study employs a complex network model to illustrate the bank-
firm loan network, quantifying the dynamic evolution of loan
relationship structures over different periods by extracting network
features such as density, centralization, transitivity, and clustering
coefficient. Third, to thoroughly explore the dynamic relationship
between loan relationship structures and systemic risk, the study
employs the ECM to differentiate and validate short-term and long-
term impacts. Through this approach, the study not only elucidates
how the structural characteristics of the loan network influence

FIGURE 1
The impact of the network structure of bank-firm loans on systemic
risk in the banking system.

systemic risk across various time scales but also offers policymakers
more targeted, time-sensitive risk management recommendations.

The remainder of this paper is organized as follows: Section 2
reviews and summarizes the main points and findings of existing
literature. Section 3 details the research methodology employed,
including the construction of the stress index, network construction,
and the error correction model. Section 4 presents the empirical
analysis results. Section 5 discusses the conclusions and policy
recommendations of this study and proposes directions for
future research.

2 Literature review

2.1 Bank-firm loan

China’s financial system is predominantly bank-driven [12,
13]. Existing literature on financial systemic risk has primarily
concentrated on modeling interbank lending markets [14–16].
However, the increasing scale of renminbi loans extended by
Chinese financial institutions to the real economy suggests that
financing for the real economy remains largely reliant on bank
loans. In particular, some large enterprises, which possess thousands
of subsidiary companies, have substantial credit lines and loan
amounts [17]. These enterprises typically serve as the core of
supply chains [18], linking numerous upstream and downstream
firms of various types.The business activities of these enterprises not
only influence the sound operation of the financial institutions that
provide financing but also significantly impact the overall structure
and stability of the financial network.

Currently, there are limited studies that construct bank-firm
loan networks based on bank-firm lending data [19–21]. Syndicated
loans serve as a financial tool whereby banks collaborate to
address the substantial financing needs of enterprises [22, 23]. In
contrast to traditional single-bank loans, syndicated loans allow
multiple banks to share both risk and return, thereby providing
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enterprises—especially those engaged in capital-intensive and green
projects—with more reliable financing options [24, 25]. In recent
years, syndicated loans have gained widespread adoption globally
and have become a crucial area for examining the relationship
between systemic risk in banking [19]. The credit lending activities
between banks and enterprises establish complex relationships,
forming an interdependent financial network within the system
through credit-based lending [6].

2.2 Structure of the bank-firm loan
network and systemic risk

The credit lending activities between banks and enterprises
create complex relationships, forming an interdependent financial
network within the banking system. Graph theory provides a
natural conceptual framework for analyzing this network. In
this framework, participants within the banking system are
represented as nodes, while the connections between them indicate
relationships, thereby depicting the entire banking system as
a network [26]. When a bank node encounters issues, other
bank nodes in the network may also be affected through these
connections. Network models, which are capable of illustrating risk
transmission within the banking system on a micro-level while
simultaneously reflecting and predicting the impact of contagion
on the broader economic system at a macro-level, have garnered
increasing research attention for modeling banking and economic
systems [19, 26, 27]. Consequently, complex network theory has
emerged as a valuable tool for analyzing and predicting banking risk
contagion.

By selecting appropriate metrics to describe the characteristics
of the bank-firm loan network, the structure of these relationships
can be quantified. Multiple methods are currently available for
feature extraction or identification within networks, including
neural networks [28], CART decision trees [29], Bayesian networks
[30], and complex network models [31, 32]. Among these
methods, indicators such as network density, network centralization,
transitivity coefficient, and average clustering coefficient in complex
networkmodels effectively reflect the concentration of risk, potential
contagion strength, and degree of risk clustering within the bank-
firm loan network.Therefore, this study employs a complex network
model to extract the features of the bank-firm loan network between
banks and enterprises, with the aim of quantifying the evolution of
interbank risk correlation structures over different periods.

Existing research has examined the characteristics of bank-
firm loan networks between banks and enterprises, as well as their
impact on the banking system and the economy from various
perspectives. Some scholars have concentrated on the topological
structure of these networks and their role in risk contagion.
For example, network density and centralization are regarded as
effective measures of the concentration and dispersion of risk
within loan networks [33]. A higher network density signifies
closer interbank collaboration, which aids in distributing loan risk;
however, excessive centralization may result in the accumulation of
systemic risk at certain critical nodes, thereby posing a threat to the
overall stability of the network [34].

On the other hand, the contagion properties within bank-
firm loan networks have also drawn significant attention from the

academic community. Research indicates that when a default event
occurs at an enterprise or bank node, its effects can propagate
through the network structure, thereby accelerating the formation
and dissemination of systemic risk [6, 35]. In light of this, optimizing
the structure of bank-firm loan networks to achieve a balance
between risk and return has emerged as a primary concern for
scholars and policymakers.

3 Methodology

The Financial Market Stress Index has proven effective in
assessing systemic risk conditions within financial systems and
in identifying risk events, thereby offering practical implications
[32, 36, 37]. The emphasis is placed on comparing financial
risks rather than on absolute values to monitor the operations of
financial markets.

This study utilizes the Chinese Banks Stress Index (CBSI)
synthesis method of cumulative distribution function [32, 38],
which involves ranking the original observed indicators
(X1,X2,…,Xn) according to their economic significance. The
ranking is performed in ascending order if a higher observation
indicates greater risk or in descending order if a lower observation
indicates greater risk. The newly ranked indicator X[1] < X[2] < … <
X[n] is then mapped under the empirical cumulative distribution
function to a new indicator Zt based on the original indicator Xt:

Zt =
{
{
{

r
n
,xi,[r] ≤ xi,t < xi,[r+1], r = 1,2,…,n− 1

1,xi ≥ x[n]
(1)

where the subscript [r] represents the ranking position of Xt.
Using the empirical cumulative distribution function, we map

the observed values representing risk conditions to the interval (0,1].
To give the stress index a more intuitive economic meaning, each
mapped indicator is equally weighted to synthesize the CBSI. The
CBSI is constructed as follows:

CBSI = 1
N

N

∑
i=1

Zt (2)

where N represents the number of original indicators.

3.1 Construction of the bank-firm loan
network

Following the approach outlined by Hao et al. and Jia et al. [19,
39], this study begins by analyzing loan data from publicly listed
companies. A connection is established between a bank and a listed
company if a loan is extended during a specific period; otherwise,
the connection is considered absent. Figure 2a depicts a simplified
bipartite network consisting of four banks and five listed companies.
To focus on the interbank network structure, the bipartite network
is transformed into a network comprising only commercial banks,
where each bank serves as a node. To measure the strength of
connections between banks and listed companies, the study opts
not to use the number of loans as the weight of the link [19].
Instead, the loan amount shared by two banks with a bank-firm loan
relationship is utilized as the linkweight between them. For instance,
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FIGURE 2
Network mapping of bank-firm loan relationships. (a) Bank-firm bipartite network, (b) Banks syndicated loan.

Bank one and Bank three have a shared loan relationship with three
companies (Company 2, Company 3, and Company 4), resulting
in a link weight of 2130{(10+ 1000) + (10+ 100) + (10+ 1000)}.
Conversely, Bank two and Bank 3, sharing loans with two
companies (Company two and Company 4), have a link weight of
2200{(100+ 1000) + (100+ 1000)}. On the other hand, Bank one and
Bank 2, which also share loans with two companies (Company two
and Company 4), have a link weight of 220{(10+ 100) + (10+ 100)}.
This method of using loan amounts as link weights provides a more
comprehensive understanding of potential risk relationships among
commercial banks. Figure 2b illustrates the resulting commercial
bank network derived from the bipartite network, with each link
weight indicating the shared loan amount.

3.2 Structural characteristics of the
bank-firm loan network

The mapped one-mode commercial bank network is denoted by
set G = (V,W), where G is a network consisting of interconnected
commercial banks represented by V. The set V = {v1,v2,…,vn}
represents nodes, with elements vi representing individual
commercial banks, and setW = {wij} represents the weighted edges
in the network, indicating the bank-firm loan amounts between
commercial bank i and commercial bank j.

In this study, we analyze a weighted undirected network,
where wij is considered equal to wji. The topological network
can be represented by an adjacency matrix A = (aij),
as shown in Equation 3.

aij =
{
{
{

1,wij > 0

0,wij = 0
(3)

The unique characteristics of the topological structure of
the bank-firm loan network may exhibit specific properties
that cannot be fully captured through network diagrams alone.
Hence, choosing suitable measurement criteria becomes crucial in
examining the topological characteristics and evolutionary trends
of bank-firm loan networks. This research delves into four complex
network topological metrics to investigate the alterations in the
general properties of commercial banking bank-firm loan network,

including network density, network centralization, transitivity
coefficient, and average clustering coefficient.

3.2.1 Network density
The density of a network is a metric that quantifies the level

of connection between nodes in the network and is computed by
dividing the existing edges by the total potential edges. It is denoted
by a numerical value ranging from 0 to 1, wherein higher values
signify increased interconnectedness. The calculation for network
density can be expressed by the following Equation 4:

Density = 2m
n (n− 1)

(4)

where m represents the total number of edges in the network and n
signifies the number of nodes.

Within the framework of the bank-firm loan network in
commercial banking, a higher level of network density suggests an
increased amount of bank-firm loan relationships between banks,
leading to a more varied network configuration. With a constant
total loan demand from enterprises, this diversification allows the
risk of bank-firm loans from a single bank to be spread across
multiple banks, avoiding the concentration of risk in any one bank.
As a result, in the event of a risk occurrence in one bank, other banks
can help absorb and distribute this risk through diverse connections,
ultimately reducing systemic risk.

3.2.2 Network centralization
Network centralization measures the importance of specific

nodes within a network. Centralization is highest in star-shaped
networks and lowest in fully connected networks. The calculation
for centralization can be expressed by the following Equation 5:

Centralization =
∑n

i=1
(Cmax − ki)

n2 − 3n+ 2
(5)

where Cmax represents the maximum centrality in the network, ki
is the degree of node vi, and n is as previously defined. This metric
assesses the control capacity of core nodes in a network [40].

In the specific case of the bank-firm loan network, centralization
refers to the extent to which a small number of banks have control
over loan relationships. A high level of centralization suggests
that these banks wield significant influence and control within the
system, and their risk status can greatly affect systemic risk.
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3.2.3 Transitivity coefficient
According to Barrat et al. [41], the transitivity coefficient is a

measure that indicates the probability of neighboring nodes being
linked to a particular node, reflecting the degree of clustering within
the network. Increased transitivity coefficient values indicate more
pronounced clustering among nodes in the network, particularly in
the realm of weighted networks. The calculation for transitivity can
be expressed by the following Equations 6, 7:

Ti =
1

si (ki − 1)
∑
j,h

wij +wih

2
aijaihajh (6)

Transitivity =
∑n

i
Ti

n
(7)

where Ti denotes the transitivity of node vi, si = ∑
N
j=1aijwij represents

the strength of node vi, and ki is as previously defined.
In the bank-firm loan network of commercial banks, a

high transitivity coefficient suggests the existence of triangular
connections among banks. For instance, if Bank A is in a loan
agreement with Bank B, and Bank B has a loan deal with Bank C,
it implies that Bank A is also connected with Bank C through a
loan arrangement. These triangular connections generate additional
routes for risk transmission, potentially increasing systemic risk.

3.2.4 Average clustering coefficient
The average clustering coefficient is calculated as the mean

value of the clustering coefficients in the network. This coefficient
represents the degree to which nodes are interconnected within
their immediate surroundings.The calculation for average clustering
coefficient can be expressed by the following Equations 8, 9:

Clustering i =
2ei

ki (ki − 1)
(8)

Clustering avg =
∑n

i
Clustering i

n
(9)

where ei represents the number of edges between the neighbors of
node vi, and ki is as previously defined.

Within the bank-firm loan network, the clustering coefficient
reflects the tightness of the network, showing the level of
interconnected bank-firm loan relationships among banks. A high
average clustering coefficient indicates the presence of numerous
small cliques or subnetworks among the banks. These closely linked
groups can accelerate the spread of risk within cliques, potentially
affecting the overall stability of the banking system.

3.3 Error correction model (ECM)

Constructing a monthly trade network of bank-firm loans
among various commercial banks reveals evolving syndication
relationship structures over time. This study seeks to investigate
how these relationship characteristics impact banks’ systemic risk.
While the ordinary least squares (OLS) method is commonly used,
it assumes that economic variables are stationary. However, many
macroeconomic variables are time series data and nonstationary
in practice. Utilizing the OLS method in such cases can lead
to ‘spurious regression.’ Engle and Granger [42] introduced the
cointegration method and ECM to address this issue by examining

the significance of variable coefficients to determine short-term and
long-term relationships among variables. Therefore, this research
aims to empirically analyze the network structure characteristics
of the commercial banking system and banks’ systemic risk using
cointegration and ECM methods. The model is outlined as follows:

CBSIt = α0 + α1Networki,t + α2Controli,t + εt (10)

ΔCBSI t = β0 + λECMt−1 + β1Network i,t + β2Control i,t +ωt (11)

Equation 10 represents the cointegration regression
equation, while Equation 11 represents the ECM. In these equations,
CBSI denotes the Chinese Commercial Bank Stress Index (CBSI),
while ΔCBSI represents the first-order difference of the CBSI; α0
and β0 are constants; α1 and α2 denote the long-term correlation
coefficients of the variables; Networki,t is the characteristic value of
the ith topological feature indicator at period t;Controli, t represents
the characteristic value of the ith control variable at period t; εt and
ωt are random error terms; λ is the adjustment speed coefficient,
indicating short-term correction to equilibrium; ECMt−1 denotes
the lagged error correction term; β1 and β2 are the short-term
correlation coefficients of the variables.

4 Results

4.1 Construction of the stress index for
Chinese Commercial Banks

China has not faced systemic banking risk; therefore, the
banking stress index is utilized to assess systemic risk. Monthly data
on various factors, such as the nonperforming loan ratio (NPL),
the TED spread, the weighted interest rate of the 7-day interbank
pledged repo (RR), the liquidity ratio (LR), the capital adequacy
ratio (CR), and the excess reserve ratio (PR) from January 2013 to
December 2023were collected. By applying Formulas 1, 2, amonthly
CBSI was calculated for the mentioned period. All the data used in
this analysis were obtained from theWIND database. To address the
fact that NPL, LR, CR, and PR are reported quarterly, cubic spline
interpolation was employed to convert quarterly data into monthly
data. The systemic stress index for commercial banks, synthesized
using the cumulative distribution function method in this study, is
calculated as shown in Equation 12:

CBSI = NPL_ecdf+TED_ecdf+RR_ecdf+ LR_ecdf+C_ecdf+PR_ecdf
6

(12)

Where, _ecd f denotes the empirical cumulative distribution
function values of the respective indicators.

Figure 3 illustrates the monthly trend of the CBSI from January
2013 to December 2023. This index is constructed from multiple
indicators, including the nonperforming loan ratio (NPL), the TED
spread, the 7-day interbank pledged repo weighted interest rate
(RR), the liquidity ratio (LR), the capital adequacy ratio (CR),
and the excess reserve ratio (PR). Data obtained from the WIND
database reflects systemic risk within the Chinese banking sector
over time. Key observations include the ‘money shortage’ events in
June and December 2013, which resulted in a significant increase
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FIGURE 3
Trend of the Chinese banking system stress index (CBSI).

in liquidity risk for commercial banks; the prolonged Sino-US
trade war during 2018–2019, which hampered trade financing and
credit activities, leading to a deterioration in asset quality within
affected industries and an escalation of the CBSI; and the financial
strain on enterprises during the COVID-19 pandemic (2020-2021).
This strain was coupled with diminished demand for corporate
loans and challenges in loan repayments, which exerted additional
pressure on the banking sector, culminating in a peak of the CBSI in
December 2021.

This index effectively captures the varying levels of systemic risk
confronting Chinese commercial banks, closely aligning with real-
world events and reflecting the broader economic challenges faced
by the banking industry during these periods.

4.2 Evolution of bank-firm loan structures
in Commercial Banks

This study establishes a bank-firm loan network among Chinese
banks by analyzing loan data from listed companies in the CSMAR
database. The dataset covers the period from January 2013 to
December 2023 and includes five state-owned commercial banks,
13 joint-stock commercial banks, 125 urban commercial banks, and
227 rural commercial banks, for a total of 370 commercial banks.
The data processing steps involved excluding information from the
People’s Bank of China, three policy banks, foreign banks, and some
nonbanking financial institutions to ensure sample homogeneity.
Additionally, invalid data such as undisclosed loan details, non-
RMB settlements, vague bank names, and loans from nontraditional
banks were eliminated. The monthly aggregation of daily loan data
and consolidation of loans from different branches at the head
office level resulted in 132 months of data and 84,210 bank loan
records. Considering that bank-firm loan involve long-term loan
risks, this study focuses on the stock amount of bank-firm loans
between banks.

Figure 4 illustrates the evolution of the bank-firm loan network
in China, highlighting the relationships between banks and firms in
December of each year from 2013 to 2023. The network comprises
various types of banks, with state-owned commercial banks (red
triangles) and joint-stock commercial banks (blue quadrilaterals)
forming the core tier, while urban commercial banks (green

pentagons) and rural commercial banks (yellow circles) occupy the
periphery. Key observations include: (1) December 2013: The bank-
firm loan relationships were predominantly organized into dense
clusters led by large banks, with limited inter-cluster connections.
This suggests that financial activities were concentrated in the core
institutions, while peripheral banks had fewer direct connections
to firms. (2) December 2023: Over the years, the network has
evolved to become more interconnected, forming a ‘core-periphery’
tiered structure [43–45]. This indicates that smaller banks are
gradually becoming more integrated into the financial system,
contributing to better resource allocation and risk diversification.
(3) The transformation of the network into a ‘group loan model’
signifies that multiple city commercial banks are now revolving
around key listed companies. This shift underscores the growing
role of small- andmedium-sized banks in crucial financial activities,
enhancing the inclusivity and sustainability of the financial system.
(4) The increasing involvement of city and rural commercial banks
at the network’s center suggests that these banks are emerging as
new “systemically important institutions” [46, 47], reflecting a trend
toward a more balanced and equitable distribution of financial
resources, particularly between urban and rural areas.

This evolution enhances the overall resilience and stability of the
financial system, contributing to improved financial inclusion and a
more sustainable allocation of resources.

Figure 5 illustrates the evolution of four key topological
indicators—network density, network centralization, transitivity
coefficient, and average clustering coefficient—from January 2013
to December 2023.These indicators provide critical insights into the
structure and dynamics of the bank-firm loan network, highlighting
the changing patterns of collaboration among commercial banks
in China over the past decade. Key observations include: (1)
Network Density: Fluctuating between 0.22 and 0.25, network
density exhibits a cyclical pattern. During periods of robust
economic activity, density increases as bank-firm loan relationships
expand, indicatingmore frequent collaborations. Conversely, during
economic downturns, the frequency of interbank cooperation
diminishes, resulting in reduced density.This trend suggests that the
network is highly responsive to economic conditions, with banks
adjusting their loan relationships in response to fluctuations in
demand. (2) Network Centralization: Ranging from 0.50 to 0.55,
network centralization remains relatively stable, albeit with some
volatility. A higher centralization score indicates that certain banks
consistently occupy central roles within the network, underscoring
their significance in lending activities and their influence on
systemic risk. (3) Transitivity Coefficient: With an average value
of approximately 0.50, the transitivity coefficient remains stable
over time. This stability suggests that banks in the network tend
to maintain consistent relationships with their partners, thereby
reinforcing a dense and stable cooperation structure. (4) Average
ClusteringCoefficient: Varying between 0.18 and 0.20, the clustering
coefficient shows a gradual increase over the period. This trend
indicates that interbank cooperative relationships are becoming
more tightly-knit, reflecting a clustering effect. A higher clustering
coefficient may signify stronger, more resilient cooperative ties
among banks, which could contribute to enhancing the stability of
the financial system.

The dynamic analysis of these indicators offers a deeper
understanding of how changes in bank-firm loan networks
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FIGURE 4
Bank-firm loan networks (December of each year).

FIGURE 5
Evolution of key network indicators of bank-firm loan relationships
(2013–2023).

can influence systemic risk, highlighting the evolving nature of
interbank collaborations. This comprehensive view is crucial for
assessing financial stability and formulating policies to mitigate
potential risks in the banking sector.

4.3 Impact of bank-firm loan structures on
the systemic risk of Commercial Banks

4.3.1 Descriptive statistics of variables
This study draws on the relevant literature on financial

crises and includes traditional macrolevel control variables. These
variables consist of the year-on-year growth rate of the money
supply (M1), which reflects the central bank’s monetary policy
position; the banking prosperity index (Bank); and the corporate
prosperity index (Cop). Detailed descriptive statistics can be
found in Table 1.

4.3.2 Model testing
4.3.2.1 Unit root test

TheADFunit root testmethodwas used to assess the stationarity
of the variables, with the lag length determined based on the
Akaike information criterion (AIC).The test results in Table 2 reveal
that the original variables all fail to reject the null hypothesis,
indicating that they are nonstationary series. However, after first-
order differencing, the ADF values of the variables are all below
the critical value at the 1% significance level, leading to the
rejection of the null hypothesis. Therefore, all first-order differenced
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TABLE 1 Descriptive statistics of the variables.

Variable Obs Mean Std. Dev Minimum Maximum

CBSI 132 0.5038 0.1157 0.2588 0.7551

Density 132 0.2899 0.0384 0.2270 0.3990

Centralization 132 0.5969 0.0359 0.5034 0.6662

Transitivity 132 0.5662 0.0580 0.4813 0.7119

AverageClustering 132 0.3048 0.0503 0.1858 0.3773

M1 132 0.0835 0.0629 −0.019 0.2540

Bank 132 0.2284 0.0159 0.1943 0.2660

Enterprise 132 0.1767 0.0180 0.1010 0.2087

TABLE 2 ADF test results for the variables.

Variable t-Statistic Prob.∗ Conclusion

CBSI 0.2100 0.7457 Nonstationary

ΔCBSI −12.4191 0.0001∗∗∗ Stationary

Density 0.3466 0.7837 Nonstationary

ΔDensity −10.4775 0.0001∗∗∗ Stationary

Centralization 0.2984 0.7707 Nonstationary

ΔCentralization −12.7667 0.0001∗∗∗ Stationary

Transitivity 0.2369 0.7535 Nonstationary

ΔTransitivity −11.5632 0.0001∗∗∗ Stationary

AverageClustering 2.9176 0.9991 Nonstationary

ΔAverageClustering −10.7845 0.0001∗∗∗ Stationary

LnM1 −1.2011 0.2095 Nonstationary

ΔLnM1 −16.7270 0.0001∗∗∗ Stationary

Bank −0.7758 0.3783 Nonstationary

ΔBank −11.3578 0.0001∗∗∗ Stationary

Enterprise −0.6843 0.4188 Nonstationary

ΔEnterprise −11.3578 0.0001∗∗∗ Stationary

Notes: Δ is I (1).∗∗∗∗∗and∗denote significance at the 1%, 5%, and 10% levels respectively.

variables are stationary series, denoted as I (1). These results
suggest that although the original multivariate time series variables
are nonstationary, their first-order differences are stationary,
implying the presence of a long-term equilibrium relationship
among them.

TABLE 3 ADF test results for the residual sequence.

Variable t-Statistic Prob.∗ Conclusion

ϵt −4.8032 0.0001∗∗∗ Stationary

Notes:∗∗∗∗∗and∗denote significance at the 1%, 5%, and 10% levels respectively.

4.3.2.2 Cointegration test
This study utilizes the Engle-Granger two-step method

to investigate the cointegration between variables [42].
The first step involves using the ordinary least squares
method to regress the equation formulated in Equation 10,
which depicts the correlation between the bank-firm loan
network structure and the systemic risk of commercial
banks. The findings of the model calculations are outlined in
Equation 13.

CBSIt = −1.3267Densityt − 0.0582Centralizationt

+ 1.5296Transitivityt + 0.9977AverageClusteringt
− 0.2774M1t − 0.1903Bankt + 0.2138Enterpriset + 0.0981

(13)

Subsequently, the residual series εt from the model is derived
and subjected to a stationarity test. As shown in Table 3, the
Augmented Dickey-Fuller (ADF) value for the unit root test of
the residual series εt is compared to the critical value at the 1%
significance level, revealing that the residual series εt is stationary
(I (0)). This indicates the presence of a cointegration relationship
among the variables, making Equation 13 a cointegration regression
equation.This implies a long-term equilibrium relationship between
the bank-firm loan network structure and the systemic risk of
commercial banks.

The regression results in Table 4 indicate that the long-term
impact coefficients of the bank-firm loan network structure on the
systemic risk of banks are statistically significant. The regression
coefficient for network density is −1.3267 and is almost significant
at the 10% level (p value of 0.0921), showing a negative influence of
network density on the systemic risk of commercial banks. On one
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TABLE 4 OLS Regression results.

Dependent variable: CBSI Coefficient Std. Error t-Statistic Prob

Density −1.3267 0.7816 −1.6974 0.0921∗

Centralization −0.5882 0.3505 −1.6779 0.0959∗

Transitivity 1.5296 0.5696 2.6854 0.0082∗∗∗

AverageClustering 0.9977 0.2323 4.2947 0.0001∗∗∗

M1 −0.2774 0.1597 −1.7373 0.0848∗

Bank −0.1903 0.8371 −0.2274 0.8205

Enterprise 0.2138 0.5293 0.4040 0.6869

C 0.0981 0.3593 0.2730 0.7853

R-squared 0.6844

F-statistic 38.3961

Prob (F-statistic) 0.0001

Notes:∗∗∗∗∗and∗denote significance at the 1%, 5%, and 10% levels respectively.

hand, high network density facilitates enhanced information sharing
and cooperation. A high network density indicates closer interbank
relationships and increased opportunities for collaboration. These
closer relationships can mitigate information asymmetry through
coordinated information sharing and risk management measures.
On the other hand, high-density networks help disperse the impact
of shocks. In such networks, the risks associated with individual
banks are more readily distributed across multiple connected
parties, thereby reducing the concentration of shocks. This risk
dispersion contributes to alleviating systemic chain reactions that
may arise from the failure of a single bank. This finding is consistent
with the previous theoretical explanation that interbank cooperation
and information sharing are key factors in reducing systemic
risk over time.

Similarly, the regression coefficient for network centralization is
−0.5882, which is also nearly significant at the 10% level (p value
of 0.0959), indicating that network centralization has a negative
impact on systemic risk. On one hand, a higher level of network
centralization indicates the presence of a limited number of core
nodes within the network. These core nodes, by maintaining a
substantial number of connections and demonstrating high levels
of resilience and shock-absorbing capacity, can act as stabilizing
anchors for the entire network. In the context of interbank co-
loan networks, central banks or key financial institutions often
have superior access to information resources, ample liquidity
reserves, and robust capital buffers, all of which contribute positively
to the overall stability of the network. On the other hand, a
centralized network structure can facilitate the swift transmission
of rescue resources or stabilizing conditions from core nodes to
peripheral nodes. For instance, when the risk level of peripheral
nodes increases, core nodes can alleviate local shocks by enhancing
liquidity supply, thereby limiting the spread of risk across a
broader scope.

The regression coefficient for the transitivity coefficient is 1.5296,
which is statistically significant at the 1% level (p value of 0.0082),
indicating a positive impact of transitivity on systemic risk. On
one hand, high transitivity increases the number of pathways for
risk propagation. The triangular relational networks among banks
create additional channels for risk transmission, enabling local
shocks to spread rapidly through multiple paths across the entire
network.On the other hand, high transitivity signifiesmore complex
and tightly knit relationships between banks, which can lead to
the compounding and accumulation of local risks among multiple
parties. Under certain contingent conditions, this may result in the
rapid amplification of these risks.

Similarly, the regression coefficient for the average clustering
coefficient is 0.9977, which is also significant at the 1% level (p
value of 0.0001), indicating a positive correlation between the
average clustering coefficient and systemic risk. On one hand, a
high clustering coefficient indicates that the relationships among
banks are closely knit and tightly interconnected. This characteristic
facilitates the rapid transmission of localized shocks within the
system. For instance, if a financial institution experiences a liquidity
shortage due to a default, its highly interconnected network
may swiftly propagate the liquidity crisis to its directly linked
counterparties, thereby amplifying the spread of the crisis. On
the other hand, a high clustering coefficient reinforces positive
feedback mechanisms. In networks characterized by high clustering
coefficients, behaviors within localized sub-networks are more
likely to generate feedback effects. For example, an increase in
a particular bank’s risk level might prompt all banks within its
cooperative network to simultaneously adopt more conservative
lending strategies, further tightening liquidity conditions and
exacerbating systemic risk.

To summarize, the results of the regression analysis indicate
that the structural features of the network formed by bank-firm
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loans play a significant role in the overall risk faced by commercial
banks. More precisely, network density and centralization are
found to reduce systemic risk, whereas the transitivity coefficient
and average clustering coefficient are associated with an increase
in systemic risk. Additionally, the degree of monetary policy
tightness is shown to have a moderate effect on systemic risk.
These results provide concrete data that elucidate the relationship
between interbank network structures and systemic risk, offering
valuable insights for both bank risk mitigation strategies and
policy-making.

4.3.3 ECM
The research reveals a notable long-term equilibrium

relationship between the structure of the bank-firm loan network
and systemic risk within banking institutions. However, there can
be short-term deviations from this equilibrium. To remedy these
deviations, the lagged term of the residuals from Equation 13
functions as the lagged error correction term. This effectively
integrates both the short-term and long-term impacts of the
bank-firm loan network structure on systemic risk in banks.
Equation 11 defines the error correction model, with Equation 14
illustrating the derived effects of the bank-firm loan network
structure on systemic bank risk.

ΔCBSIt = −1.9557ΔDensityt + 0.1905ΔCentralizationt

+ 0.72ΔTransitivityt + 0.2182ΔAverageClusteringt
− 0.021ΔM1t − 0.6228ΔBankt + 1.1187ΔEnterpriset
− 0.4962ECMt−1 + 0.0022

(14)

Equation 14 depicts the short-term dynamic adjustment
relationship between variables. The error correction model
results are detailed in Table 5, showing a significant adjustment
speed coefficient of −0.4962 at the 1% level, indicating a strong
capacity for the system to return to equilibrium. In the short
term, the bank-firm loan network structure minimally impacts
the systemic risk of commercial banks, with only network
density significantly affecting systemic risk at the 5% level.
This suggests that the long-term influence of the bank-firm
loan network structure on systemic risk in commercial banks
outweighs its short-term impact. Several reasons support this
observation:

• Enterprises typically engage in medium to long-term
borrowing from commercial banks to sustain production
and operational activities, leading to persistent risk
exposure for banks;
• Short-term market fluctuations and economic events are often

random and unpredictable, potentially making short-term
relationships between variables insignificant. In contrast, long-
term information dissemination and risk adjustment enhance
the long-term impact of the bank-firm loan network structure
on systemic risk;
• The risk-sharing and buffering mechanisms within the bank-

firm loan network may not fully materialize in the short term.
Banks may turn to short-term financing for liquidity issues,
while the risk-buffering effects of bank-firm loan relationships
necessitate stable cash flows and credit cooperation over
the long term.

5 Discussion

This study explores the network of bank-firm loans between
Chinese commercial banks through the analysis of loan
announcements made by publicly traded companies. The evolution
of its topological structure is examined using a complex network
model. Additionally, an error correction model is employed to study
how the bank-firm loan network structure impacts the systemic
risk of commercial banks. The findings reveal that the connections
among commercial banks in the modern banking system exhibit
both resilience and vulnerability. The research results suggest
the following:

• The structure of the bank-firm loan network has a considerably
greater impact on systemic risk in the long term compared
to the short term. The inherent long-term stabilization
mechanisms within the banking system are crucial for
sustainable development, as they facilitate a gradual return
to equilibrium when confronted with external shocks,
thereby promoting continued economic growth. This finding
emphasizes the significance of long-term collaboration and
risk management, which closely aligns with the role of banks
in pursuing sound operations and supporting enduring
socio-economic objectives;
• Furthermore, network density and centralization can

mitigate systemic risk for commercial banks over the long
term. This risk-sharing mechanism is well-suited to the
stability objectives of sustainable development within the
banking sector;
• In the long run, such a network structure effectively addresses

systemic risk and enhances the risk absorption capacity of the
banking industry.In contrast, the transitivity coefficient and
average clustering coefficient significantly elevate systemic risk
for commercial banks in the long term. This phenomenon
underscores the potential pitfalls of excessive network
centralization: while transitivity and average clustering can
improve internal collaboration and information flow within
the network, they can also engender highly interlinked
risk chains, thereby amplifying the impact of shocks from
individual nodes across the entire network.

The outcomes of the error correction model and the risk
characteristics of the bank-firm loan network highlight the necessity
of balancing “short-term stability” with “long-term sustainability”
within the banking system for sustainable development. By
optimizing loan network structures, fostering medium-to long-
term cooperation, and strengthening risk-buffering mechanisms,
banks can not only diminish their systemic risk but also more
effectively support the sustainable development goals of society and
the environment.

Based on the above conclusions, the following policy
recommendations are proposed to effectively reduce systemic risk
in commercial banks and achieve sustainable development in the
banking sector.

• Promotion of interbank cooperation and information
exchange. Regulatory bodies should encourage banks to work
closely together, thereby increasing the network’s density. The
Development of platforms and mechanisms for information
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TABLE 5 Regression results for the ECM.

Dependent variable: ΔCBSI Coefficient Std. Error t-Statistic Prob

ΔDensity −1.9557 0.8864 −2.2064 0.0292∗∗

ΔCentralization 0.1905 0.4624 0.4120 0.6810

ΔTransitivity 0.7200 0.6589 1.0926 0.2767

ΔAverageClustering 0.2182 1.1942 0.1827 0.8553

ΔM1 −0.0210 0.2065 −0.1019 0.9190

ΔBank −0.6228 1.0430 −0.5971 0.5515

ΔEnterprise 1.1187 0.7143 1.5662 0.1199

ECM(-1) −0.4962 0.0782 −6.3432 0.0001∗∗∗

C 0.0022 0.0051 0.4396 0.6610

R-squared 0.2956

F-statistic 6.3993

Prob (F-statistic) 0.0001

Notes:∗∗∗∗∗and∗denote significance at the 1%, 5%, and 10% levels respectively.

sharing can enhance transparency and trust, which in turn
disperses risks and mitigates systemic threats;
• Foster the Growth of Core Banks. Considering the

adverse effects of network centralization on systemic risk,
policymakers should prioritize the support and oversight of
key banks within the bank-firm loan network to ensure their
stability. This involves monitoring their capital adequacy and
liquidity requirements to boost resilience;
• Mitigate risk transmission effects. To address the issues related

to the transitivity coefficient, regulatory bodies should institute
and improve mechanisms that isolate risks between banks,
thereby preventing rapid risk spread. Setting limits on risk
transmission and bolstering interbank risk monitoring are
critical steps in this direction;
• The structure of the interbank network is refined. To

address systemic risks associated with a high average
clustering coefficient, it is recommended to refine the
interbank network structure by avoiding excessively tight-
knit subgroups. Diversifying interbank loan relations
and reducing highly concentrated cooperative clusters
can help limit the extent and pace of risk spread across
the network
• Craft Tailored Regulatory Policies. Regulatory bodies should

devise specific regulatory policies reflecting the varying roles
and positions of banks within the bank-firm loan network.
Core banks should adhere to stricter risk management
protocols and capital requirements, whereas peripheral banks
should receive additional support and guidance to enhance
their risk resiliency.

While this study provides a comprehensive examination of the
impact of bank-firm loan network structure on the systemic risk

of commercial banks, several limitations must be acknowledged.
Firstly, the analysis relies exclusively on loan data from publicly
listed companies, whereas small and medium-sized enterprises
(SMEs) are generally more susceptible to default risks. Secondly,
we did not differentiate loan data across various industries, despite
the fact that default risk associated with loans can vary significantly
between sectors. Lastly, the ECM method does not comprehensively
address all endogeneity issues, particularly the potential risks
introduced by lagged variables. Due to constraints in the existing
dataset and research design, more robust causal inference tools,
such as the instrumental variable (IV) approach or a natural
experiment framework, were not utilized in this study. Future
research could benefit from incorporating loan data from SMEs and
developing multi-layer network models to more effectively capture
the network structures at the industry level. Additionally, further
investigation into the influence of network structure on systemic
risk is warranted. Furthermore, employing instrumental variables
derived from exogenous shocks or utilizing a natural experiment
framework should also be considered to enhance the robustness
of conclusions through improved causal inference mechanisms.
These significant issues will be explored in greater depth in our
forthcoming studies.
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