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Non-Markovian nature of
cryptocurrencies

Ahmet Celikoglu*

Department of Physics, Faculty of Science, Ege University, Izmir, Türkiye

Whether financial assets movements exhibit correlation and memory has
been an intriguing question for physicists. This study aims to investigate
whether financial shocks exhibit non-Markovian behavior. In particular, it
explores the presence of long-term memory and non-local fluctuations during
financial crises. The non-Markovian behavior of volatility and return during the
cryptocurrency crashes of 2017–2021 and 2021–2024 cycles are examined. The
analysis shows that a scaling relation, which is valid for a singular Markovian
process, breaks down in data sets spanning approximately 1 year and 3 years
after the onset of the 2017 crash. A similar pattern was observed in the 2021
crash, although the analysis does not work for some data sets. In these time
intervals, the crash process shows non-Markovian behavior with financial shocks
demonstrating non-local fluctuations and evidence of long-term memory.
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1 Introduction

Over the past decades, considerable effort has been directed toward understanding the
dynamics of financial markets, driven largely by the desire to predict future asset prices.
In this context, modern approaches such as machine learning, deep learning, and neural
networks have often been used to understand these dynamics and improve price forecasting
[1–4]. However, considerable efforts are still being made to understand the underlying
dynamics of financial market movements, as this understanding is important for accurate
risk estimation. In doing so, scientists have been inspired by the results or methods used in
other complex systems that are expected to exhibit similar dynamics. One such system is
that of earthquakes. In particular, three empirical laws of earthquakes [5–8] have inspired
the analysis of financial markets [9–14].

Financial market crashes and subsequent crises can be thought of as the aftershock
regime that occurs following a major earthquake. In a sequence of aftershocks following
a main shock, the number of aftershocks decreases with time in a power law form [6, 7].
The distribution of waiting-times between successive events in such complex systems is
also in the form of a power law pattern [15]. The relationship between these two scaling
behaviors for a single Markov process has been proved analytically [16, 17]. The sum of
the exponents of these two distributions is equal to 1 for a Markovian process. In 2009,
based on this theoretical relationship, the aftershock series of the Landers and Hector
Mine earthquakes were analyzed, and it was demonstrated that the underlying process
exhibits non-Markovian [15]. Subsequently, similar studies were carried out for volcanic
earthquakes at the Icelandic volcano Eyjafjallajokull and Mt. Etna in Sicily. The authors
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TABLE 1 Some reference examples in the literature.

Data source Sum of the exponents

Min. Max.

Landers Abe and
Suzuki (2009)

1.417 1.743

Hector Mine Abe and
Suzuki (2009)

1.193 1.403

Mt. Etna Abe and
Suzuki (2017)

1.23 1.23

Russian Ruble/US
Dolar Usmanova et al.
(2018)

1.386 1.406

were unable to obtain satisfactory results for the Eyjafjallajokull
data because the scaling method did not work. In contrast, they
concluded that the seismic activity of Mt. Etna is non-Markovian
[18]. In addition, a study on the Russian ruble–US dollar parity was
conducted by Usmanova et al. [19]. In the above-mentioned studies,
data sets were analyzed for different parameter combinations. The
maximum and minimum values of the sum of the exponents
obtained for both distributions are given in Table 1 for comparison
with our results in Section 4.

The question of whether financial crisis processes that
occur in a certain period after a crash are Markovian is
intriguing. In Markovian processes, memory is short and
fluctuations are localized. However, in non-Markovian processes,
long-term memory and non-local fluctuations are observed,
reflecting the complexity of the system. Studies have shown that
volatility—specifically, the absolute value of returns—has long-term
memory [20, 21]. Volatility values above a certain threshold will be
referred to as events. These events correspond to shocks from an
earthquake perspective.

In this study, we aim to examine whether the crisis process
(bearish period) of Bitcoin (BTC) and Ethereum (ETH) after their
peaks in 2017 (BTC), 2018 (ETH), and 2021 (BTC and ETH) is
Markovian. At this point, the question of why cryptocurrencies
may come to mind. The most important reason is that, unlike
a traditional local stock exchanges, cryptocurrencies are traded
globally and around the clock. The second factor is that this market
is not regulated. Therefore, a piece of news (perhaps fake news)
that hits the market at a time when the traditional stock market
is closed may have an immediate impact on cryptocurrencies.
However, as the day progresses, new information may emerge that
calms the market and the news may even become irrelevant or
vice versa. Therefore, over a long time horizon, fewer events may
be observed compared to traditional markets. On the contrary, a
cumulative effect in the opening minutes of the traditional market
may manifest itself as a larger event than it should be. In addition,
assuming that a large portion of cryptocurrency investors are less
familiar with stock market dynamics, they might be more prone
to emotional decision-making. Moreover, some dynamics may be
easier to observe due to the higher volatility of cryptocurrencies
compared to traditional markets.

2 Data set

To understand the dynamics of the market crash in
cryptocurrencies, we analyzed the price movements of both BTC
and ETH over six different periods. The data consists of minute-
level candles, obtained from the Binance global exchange using
its application programming interface (API). The aftershock
regime in an earthquake is usually defined as the period following
a mainshock, characterized by a large number of aftershocks.
However, the Omori-Utsu Law does not dictate that the aftershock
must be smaller than the mainshock, which is an important
perspective. In financial markets, a crisis may begin with an
initial downturn, subsequent downturns can be even more severe.
Therefore, taking this into consideration and the classical approach
of aftershock dynamics into account, three different time periods for
both 2017 and 2021 cycles were prepared for the analysis. The first
approach assumes that the crisis ends when the price returns to the
same level. Second, we consider a scenario in which the crisis lasts
from the price peak to the subsequent trough. Finally, we consider
an interval after a large volatility. In this case, for 2017–2021 period,
we consider the following for BTC: 1) A full cycle starting at its
highest value (19,770.74 United States Dollar (USD)) on 17/12/2017
at 12:03 until 30/11/2020 at 23:52, when it returned to the same
value.The interval contains 1,547,686 data points. 2) Again, the data
interval starting on 17/12/2017 at 12:03 and ending at the trough
(3157.67 USD) on 15/12/2018 at 15:51, which contains 518,896
data points. 3) Finally, we analyzed the time interval of 86,400
steps (60 days) after the largest volatility peak in the early days of
the COVID-19 pandemic, which occurred on 12/03/2020 at 10:46.
Similar intervals for ETH are as follows: 1) A cycle from 10/01/2018
at 04:58 (1433 USD) to 25/01/2021 at 00:23. This interval consists
of 1,592,697 data points. 2) The interval from 10/01/2018 at 04:58
(1433 USD) to 15/12/2018 at 15:51 (82.03 USD) with 484,963 data
points. 3) A time interval of 86,400 steps (60 days) after the largest
peak in the early days of the COVID-19 pandemic, which occurred
on 12/03/2020 at 23:28. The data sets for the 2021–2024 cycle for
BTC are as follows: 4) A full cycle starting from its highest value
(69,000 USD) on 10/11/2021 at 14:16 and ending when it reached
the same value again on 08/03/2024 at 20:01. This cycle contains
1,222,826 data points. 5) The data set between the highest value on
10/11/2021 at 14:16 and the lowest value on 21/11/2022 at 21:51
(15,513 USD) contains 541,895 data points. 6) The last data set
for Bitcoin includes 86,400 data points (60 days), starting from the
highest volatility peak during the FTX crisis on 08/11/2022 at 19:34.
4) For ETH, there is no full cycle dataset after 2021 as it has not
yet reached its all-time high (ATH) value. 5) The ATH for ETH is
4865 USD on 10/11/2021 at 14:16 and the lowest value after the
ATH is 886 USD on 18/06/2022 at 20:11. The data set between
these two points contains 317,157 data points. 6) The last dataset
starts with the peak of volatility during FTX crisis on 10/11/2022 at
13:29 and includes 86,400 closing candles. These time intervals are
summarized in Table 2.

3 Methods

The scaling relation for singular Markov processes [16, 17]
considers two key quantities for a point process. The first one is
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TABLE 2 The time intervals and the amount of data for each data set.

BTC Start End Number of data

1 17/12/2017 12:03 30/11/2020 23:52 1,547,686

2 17/12/2017 12:03 15/12/2018 15:51 518,896

3 12/03/2020 10:46 11/05/2020 10:46 86,400

4 10/11/2021 14:16 08/03/2024 20:01 1,222,826

5 10/11/2021 14:16 21/11/2022 21:51 541,895

6 08/11/2022 19:34 07/01/2023 19:34 86,400

ETH

1 10/01/2018 04:58 25/01/2021 00:23 1,592,697

2 10/01/2018 04:58 15/12/2018 15:51 484,963

3 12/03/2020 23:28 11/05/2020 23:28 86,400

4 10/11/2021 14:16 — —

5 10/11/2021 14:16 18/06/2022 20:11 317,157

6 10/11/2022 13:29 09/01/2023 13:29 86,400

the distribution of the number of events in a time interval Δt.
This quantity corresponds to the Omori law for earthquakes and
is given by

n (t) = kt−p (1)

In Equation 1 k is a positive constant and p is an empirical
exponent that characterizes the rate at which the number of events
decreases with time. For earthquakes, this exponent usually takes
values between 0.5 and 1.5. To obtain exponents more clearly, the
cumulative number of eventsN(t)will be used, as previously used in
the analysis of stock market crashes in indices such as the Standard
& Poor’s 500 Index (SP500), the National Association of Securities
Dealers Automated Quotations (NASDAQ), and The New York
Stock Exchange (NYSE) [9–11]. N(t) is given as:

N (t) = k
1− p

t1−p. (2)

The use of the cumulative form of Omori law will be
discussed again in Section 4. The behavior for the aforementioned
scaling relation can be given asymptotically as follows:

N (t) ∼ t1−p t→∞. (3)

The second quantity is the waiting-time (i.e., interoccurrence
time or calm-time) distribution, which is the distribution of time
differences between successive events.This distribution is also in the
form of a power law and can be given as

P (τ) ∼ 1
τ1+μ

τ→∞. (4)

If the process is Markovian, the relationship between the
distribution of the number of events and the distribution of time

intervals between successive events can be expressed as shown by
Bardou et al. [16] and Barndorff-Nielsen et al. [17]

S (t) = P (t) +∫
t

0
dt′P(t− t′)S(t′) (5)

where S(t) can be expressed in relation to theOmori law, as described
by Abe and Suzuki [15],

S (t) =
dN (t)
dt
= t−p t→∞. (6)

The Laplace transform of the Equation 5 is given as

L [S] (s) =
L [P] (s)

1−L [P] (s)
. (7)

The relationship between the two exponents can be established
by employing the Laplace transforms of Equation 4 and Equation 6
within the context of Equation 7. It is only valid in the range 0 < p <
1 and 0 < μ < 1, and if the process is a singular Markov process, the
relationship can be given as:

p+ μ = 1. (8)

As can be seen from Equation 8, the scaling method has the
advantage of being easy to apply. However, the method is limited
by its sensitivity to the number of data and the requirement that the
exponents lie within the range (0,1).

4 Results

To analyze whether the crisis process for BTC and ETH is
Markovian, both the Omori law and the waiting-time distribution
are studied over different time intervals. For BTC and ETH, a total of
11 different time intervals are defined, and therefore 11 different data
sets are created and analyzed. These datasets consist of 1-min candle
closing prices (X(t)), as mentioned in Section 2, and the return
is given as:

R (t) =
X (t+ 1) −X (t)

X (t)
. (9)

The absolute value of the return (Equation 9) serves as a
measure of volatility. The standard deviations for each data set are
calculated separately to detect events. In this study, volatility and
threshold values q are presented in tables, expressed in units of
standard deviation σ. The 1-minute return and volatility of BTC
in data set 1 are shown in Figure 1. Volatility above a certain
threshold is considered an event, and these time steps are recorded.
Using this data, the distribution of the total number of events
exceeding a certain threshold is calculated. Figure 2a shows the
distribution of the total number of volatility events N(t) exceeding
the 3σ threshold for data set 1 of BTC. In the figure, the blue
dots represent N(t), while the red line represents the best fit to
Equation 2.

The existence of the Omori regime in financial crises was first
demonstrated by Lillo andMantegna [9]. Weber et al. concluded that
volatility has a memory, which is related to the Omori regime. It has
also been shown that after events (aftershocks) following amain event
(main shock) have their own Omori regime [11]. In these studies,
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FIGURE 1
One-minute volatility (a) and return (b) of BTC over an approximately 3-year period after the 2017 all-time high (17 December 2017). Both return and
volatility are measured in units of standard deviation σ, computed over the entire period.

volatility values were analyzed for a short time interval of 2 months.
It would be insightful to examine the results for longer time intervals.
On the other hand, since crashes are of primary interest, using returns
below a certain value can also be a reasonable option. For the return
threshold, we again use negative integer multiples of the standard
deviation of the volatility data set. As expected, the number of events
withunchangedbehavior ishalved for returns. It canbeconcluded that
the minute price movements during the crash are not characterized
by sharp falls and gradual rises, but rather by rises that are similar
in character to the falls. As shown in Tables 3, 4, the Omori law is
satisfied not only for a certain time interval after the highest volatility
value, but also for almost the 3-year cycle. At this point, let us return
to why we use a cumulative distribution as in Figure 3a. When a non-
cumulativedistribution is applied tofinancial data anda log–log plot is
plotted, as shown in Figure 3b, a power-law-like behavior is observed
in a very short interval. However, the possible Omori regime quickly
disappears or seems to be masked by background fluctuations. A
similarphenomenoncanbeobserved inearthquakes. Ingeneral, faults
within continents are reloaded slower than those at plate boundaries.
On such slow-loading faults, the number of aftershocks after the
main shock can decrease rapidly, and background seismicity becomes
dominant. However, on such faults, aftershocks can persist for more
than a century [22]. From a similar perspective, financial markets
can also experience sudden shocks, and it can take many years to
recover from a crisis situation. However, there are investors who
trade short-term trends, regardless of whether themarket is bullish or
bearish. Perhaps, a significant amount of trading is done by bots. The
orders placed by these accounts can trigger each other in the market,
creating mini-crashes or spikes. These mini-crashes can create a
background effect,masking a prolonged aftershock regime.Therefore,
one can check whether the crisis process is Markovian in order to see
whether there are background fluctuations in addition to crashes. As
mentioned earlier, Markovian processes are characterized by local
fluctuations and short-term memory. Assuming that background
events aremore localized, the fact that the process isMarkovianmeans
that background events dominate. On the contrary, the existence of

events with long-term interactions implies that the process is non-
Markovian. Therefore, the sum in Equation 8 is expected to deviate
from 1 in the second scenario.

Figure 2c shows the distribution of thewaiting time between two
successive BTC events. The distribution is in power-law form, and
logarithmic binningwas appliedwhen calculating the exponent [23].
In Figures 2b,d, the same graphs are shown for return. As can be
seen, the number of events has been approximately reduced by half,
but the behavior has not changed. In Figure 2d, the decrease in the
number of events appears as downward deviations from the fit curve
at small τ values (a few points at the beginning) and more distortion
at large τ values compared to the volatility graph. Although slight
distortions were observed in all return examinations, we did not
include the return values in the tables since the overall behavior
remained unchanged. However, to illustrate the return behavior, we
included it in Figure 2. Table 3 shows the p and μ exponents given
in Equation 3 and Equation 4, along with the sums of these two
exponents for the 2017–2021 period.

For the first two data sets in BTC, the Omori regime exponent p
increases gradually as the threshold increases, indicating that larger
events in the system end earlier and the system settles quickly.
On the contrary, μ decreases with increasing threshold, indicating
that the probability of observing longer waiting times between two
events increases. The sum of these two exponents indicates that
the process exhibits a non-Markovian character. However, as the
threshold increases, this sum approaches slightly closer to 1.

The Omori regime exponent p increases with the threshold as
expected for ETH. Similar to BTC, the system settles down faster due
to the smaller number of large events. In the ETH data set 1, which
spans for a period of approximately 3 years, μ decreases, while for
the shorter interval (about 1 year) it fluctuates. Considering the sum
of these values, the first volatility data set shows a negative deviation
from 1, while the second data set shows a positive deviation.

Since previous studies [9–11, 19] that show the existence ofOmori
regime behavior in financial markets focused on relatively short time
intervals, we considered a similar length of time. We examined a
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FIGURE 2
The cumulative number of events N(t) for volatility (a) larger than a threshold q = 3σ and return (b) less than a threshold q = −3σ are shown. Blue dots
represent the cumulative number of events N(t) and the red line represents the power-law fit to the data. The waiting-time distribution of volatility (c)
and return (d) are also displayed. Blue dots represent the waiting-time distribution and the red line represents the power-law fit to the data. Also, rsq
represents r2 statistics for each fit.

dataset of 86,400 min (60 days) following the initial days of high
volatility triggered by the COVID-19 pandemic to ensure similarity
with previous studies. Despite many instances of high volatility in the
3-year period following the ATH, we observed that in some cases,
without significant news affecting the market, the frequency of events
wasmonotonous, and the analysis did notwork for certain portions of
such datasets.Therefore, we focused on a crisis following an event that
profoundly impacted all markets, such as the COVID-19 pandemic.
Compared to the other two datasets, the number of events in this
2-month data set decreased sharply. This reduction leads to greater
dispersion in the tail of the waiting-time distribution and increased
fluctuations in the slopeμ.Nevertheless, the total value tends to remain
above 1, indicating non-Markovian behavior.

We also analyzed the period between 2021 and 2024.The number
of events did not increase sharply after ATH for data 4 (graphs for all
data sets areprovided in the supplementaryfile).However, in theother
datasets, events tend to occur more frequently after the onset of the

bearish season. This almost monotonic event frequency in data 4 not
only lowers the p slope but also reduces the μ value, as it suppresses the
occurrenceof consecutive eventswithin short intervals.Consequently,
unlike thepreviouscycle,BTC’s second full cycle,whichbegan in2021,
deviates negatively from 1.This pattern is similar to the first full cycle
of ETH. Additionally, since ETH has not yet reached its ATH again,
a full cycle period could not be studied for ETH and is therefore not
included in Table 4.

For the ATH to all-time low (ATL) values, data were examined
within the intervals mentioned in Section 2. It was observed that
events occurred relatively more frequently in the last quarter of the
data.This dominance significantly affects the value of the p slope. For
both BTC and ETH, p < 0 was observed for all q values. Therefore,
the analysis does not work for these data sets, and no values are
provided in Table 4 for dataset 5.

For the last dataset, a disruptive event in the cryptocurrency
markets—the collapse of the FTX exchange—was chosen, and the
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TABLE 3 The values of the exponents p and μ for both BTC and ETH from 2017 to 2021.

Data sets and
Thresholds

BTC ETH

p μ Sum p μ Sum

1

q = 3 0.6417 ± 0.0002 0.5202 ± 0.025 1.1619 ± 0.025 0.4682 ± 0.0001 0.4399 ± 0.036 0.9080 ± 0.036

q = 4 0.6755 ± 0.0002 0.4626 ± 0.020 1.1381 ± 0.020 0.5098 ± 0.0001 0.3709 ± 0.034 0.8807 ± 0.034

q = 5 0.6880 ± 0.0002 0.4323 ± 0.032 1.1203 ± 0.032 0.5301 ± 0.0002 0.3043 ± 0.050 0.8345 ± 0.050

q = 6 0.6925 ± 0.0002 0.4504 ± 0.065 1.1429 ± 0.065 0.5331 ± 0.0002 0.262 ± 0.068 0.7952 ± 0.068

2

q = 3 0.7052 ± 0.0004 0.5655 ± 0.0465 1.2706 ± 0.0469 0.6370 ± 0.0002 0.3943 ± 0.056 1.0312 ± 0.056

q = 4 0.7325 ± 0.0004 0.5053 ± 0.0547 1.2378 ± 0.0551 0.7058 ± 0.0003 0.4503 ± 0.041 1.1560 ± 0.041

q = 5 0.7475 ± 0.0004 0.4272 ± 0.0828 1.1747 ± 0.0832 0.7547 ± 0.0003 0.3446 ± 0.085 1.0993 ± 0.085

q = 6 0.7618 ± 0.0004 0.4064 ± 0.0926 1.1682 ± 0.0930 0.7896 ± 0.0003 0.4602 ± 0.15 1.2498 ± 0.15

3

q = 3 0.8042 ± 0.0005 0.6734 ± 0.14 1.4776 ± 0.14 0.7684 ± 0.0006 0.3387 ± 0.10 1.1070 ± 0.10

q = 4 0.8337 ± 0.0005 0.7403 ± 0.195 1.5740 ± 0.195 0.8145 ± 0.0004 0.3601 ± 0.132 1.1745 ± 0.132

q = 5 0.8599 ± 0.0004 0.0832 ± 0.150 0.9431 ± 0.150 0.8510 ± 0.0003 0.5944 ± 0.222 1.4453 ± 0.222

q = 6 0.8707 ± 0.0005 0.4779 ± 0.231 1.3486 ± 0.231 0.8747 ± 0.0003 0.4207 ± 0.4190 1.2954 ± 0.4193

TABLE 4 The values of the exponents p and μ for both BTC and ETH from 2021 to 2024.

Data sets and
Thresholds

BTC ETH

p μ Sum p μ Sum

4

q = 3 0.3977 ± 0.0004 0.4303 ± 0.029 0.8280 ± 0.029

q = 4 0.3930 ± 0.0004 0.2717 ± 0.059 0.6647 ± 0.059

q = 5 0.3854 ± 0.0004 0.2269 ± 0.040 0.6123 ± 0.040

q = 6 0.3761 ± 0.0004 0.1629 ± 0.071 0.5390 ± 0.071 — — —

5 — — — — — —

6

q = 3 0.8133 ± 0.0005 0.7126 ± 0.158 1.5259 ± 0.158 0.7060 ± 0.0004 0.4958 ± 0.141 1.2018 ± 0.141

q = 4 0.8300 ± 0.0006 0.3995 ± 0.192 1.2295 ± 0.192 0.7366 ± 0.0004 0.5335 ± 0.236 1.2701 ± 0.236

q = 5 0.8396 ± 0.0006 0.5376 ± 0.183 1.3773 ± 0.183 0.7459 ± 0.0003 0.2270 ± 0.232 0.9729 ± 0.232

q = 6 0.8446 ± 0.0006 0.5288 ± 0.227 1.3734 ± 0.227 0.7472 ± 0.0003 0.5551 ± 0.345 1.3023 ± 0.345

period following this event was examined. After news emerged
regarding FTX’s cash problems on 2 November 2022, a sharp
withdrawal that shook the cryptocurrencymarket occurred between
November 6 and November10. When examining the dataset of
86,400 steps after the highest volatility value during this collapse,
the p and μ values for BTC show a similar pattern to those
observed during the COVID-19 period. The total also shows a
deviation greater than 1. Therefore, non-Markovian behavior is
more pronounced during this period. In the analysis of ETH during
the same time frame, it was observed that the μ value exhibits

high volatility and significant error margins. Although there is a
tendency for the total to be greater than 1 for most q values, the high
error margins prevent any conclusions from being drawn regarding
non-Markovian behavior.

We also repeated the analysis for closing candles of different
lengths, such as 5 min, 15 min, 1 h, and 1 day. As expected, the
fluctuations in the waiting-time distribution increase as the amount
of data decreases, significantly affecting the margin of error in the
slope of the waiting-time distribution. Evenwith increasing q values,
the margins of error become larger than the slope itself. Again,
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FIGURE 3
Comparison between the cumulative number of events N(t) (a) and the log–log plots of the number of events (box sizes are 240 min) (b) after the 70σ
volatility event in March 2020. The length of the data is 16,000 min.

as the value of q increases, it was observed that μ falls outside its
definition range. For this reason, data from other candle closings
are not included in the tables. However, we observed that the sum
deviates negatively from 1 when the p and μ values remain within
their defined range for certain q values.

At this point, onemightwonderwhether traditional stockmarkets
exhibit similar behavior. The analysis was repeated for the Istanbul
Exchange 100 Index (BIST-100) during the crash period in 2008.
However, it isnotpossible todrawanyconclusionsaboutMarkovianity
for short time intervals because of very large fluctuations in the
waiting-time distribution. However, unlike BTC and ETH, theOmori
regime was not observed for the long time interval. For this reason,
the BIST-100 analysis and graphs are not provided.

5 Conclusion

The statistical characteristics of the bearish season in
cryptocurrencies were analyzed. It is shown that the scaling relation,
which is valid for a singular Markovian process, is violated. This
violation serves as evidence of the non-Markovian nature of the
crises process. This result is very important from a financial market
perspective, as it is indicates long-range memory and non-local
fluctuations. These effects may arise as a reflection of wild volatility
in cryptocurrencies. It should also be noted that this market is not
regulated. As the scaling method is not applicable to the BIST100
index, the results could not be compared to a regulated market. Both
the lack of comparability and the sensitivity to data size imply that
further studies are needed.

It is also shown that the distribution of the cumulative number
of volatilities and return events for BTH and ETH is consistent
with Equation 2 for both short and long time intervals. In the
literature, based on the existence of the Omori law, it has been
shown that such fluctuations exhibitmemory for short time intervals
in stock markets such as the S&P 500 and Nasdaq [10, 11]. Our
analyses show that both the COVID-19 pandemic and the FTX

crisis yield results consistent with these previous findings. These
analyses demonstrate that the behavior of bothBTCandETH is non-
Markovian, indicating that their volatility exhibits a memory effect.
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