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Shear strength, avalanches, and
structures of soft cohesive
particles under shear

Kuniyasu Saitoh*

Department of Physics, Faculty of Science, Kyoto Sangyo University, Kyoto, Japan

The physics of granular materials, including rheology and jamming, is strongly
influenced by cohesive forces between the constituent grains. Despite
significant progress in understanding the mechanical properties of granular
materials, it remains unresolved how the range and strength of cohesive
interactions influence mechanical failure or avalanches. In this study, we use
molecular dynamics simulations to investigate simple shear flows of soft
cohesive particles. The particles are coated with thin sticky layers, and both
the range and strength of cohesive interactions are determined by the layer
thickness. We examine shear strength, force chains, particle displacements,
and avalanches, and find that these quantities change drastically even when
the thickness of the sticky layers is only 1% of the particle diameter. We
also analyze avalanche statistics and find that the avalanche size, maximum
stress drop rate, and dimensionless avalanche duration are related by scaling
laws. Remarkably, the scaling exponents of the scaling laws are independent
of the layer thickness but differ from the predictions of mean-field theory.
Furthermore, the power-law exponents for the avalanche size distribution and
the distribution of the dimensionless avalanche duration are universal but do not
agree with mean-field predictions. We confirm that the exponents estimated
from numerical data are mutually consistent. In addition, we show that particle
displacements at mechanical failure tend to be localized when the cohesive
forces are sufficiently strong.
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1 Introduction

Mechanics of granular materials is of great importance in technologies for sands, foods,
and pharmaceutical products [1, 2]. Except for well controlled laboratory experiments,
granular materials in nature are usually “wet” with water [3]. Wet granular materials consist
of sticky particles, where interactions between them are cohesive due to liquid bridges
formed at their contact points [4]. It is known that cohesive interactions strongly influence
mechanical properties of granular materials [5]; the critical angle and the angle of repose for
landslides significantly increase with the increase of amount of water (or layer thickness),
the shear strength (stress) increases with the increase of suction1, the critical acceleration
for fluidization of vibrated granular beds increases with the increase of liquid content,
and segregation is suppressed and hysteresis is enhanced by the cohesive interactions.

1 The suction is defined as the pressure difference between a liquid bridge and air.
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Furthermore, it has been suggested that, if granular materials are
wet, jamming occurs at low packing fractions and inhomogeneity,
i.e., localization of particle motions, is more pronounced [3].

One of the fundamental problems of granular matter is
mechanical failure or avalanche which can be related to sediment
disasters and earthquakes [6–8]. In seismology, the frequency of
earthquake magnitude is explained by the celebrated Gutenberg-
Richter (GR) law [7, 8]. As the GR law, statistical properties
of mechanical failure are of central interest to physicists, where
statistics of avalanches have been studied in the context of self-
organized criticality (SOC) [9] or non-equilibrium phase transitions
[10]. The SOC indicated by power-law distributions of avalanche
(cluster) sizes is realized by a cascade of local failure. Associated
the cascade of local mechanical failure with the depinning transition
[11], power-law scaling of avalanche size distribution was suggested
by a mean-field (MF) theory [12–15]. The MF theory also predicts
several scaling laws for slip avalanches and its predictions (including
the power-law scaling of avalanche size distribution) have been
validated by many experiments of, e.g., granular materials under
shear [16–19], compressed nano-crystals [20, 21], bulk metallic
glasses [22–25], and light flux from a star [26]. Therefore, the
statistics of avalanches have been said to be universal, in the
sense that scaling exponents for the avalanche size distribution and
other quantities do not depend on any details of materials on a
microscopic scale.

In addition to experiments, the statistics of avalanches
in granular materials have widely been studied by numerical
simulations. Nevertheless, the avalanche size distributions
extracted from numerical data quantitatively differ from the MF
prediction. For example, the power-law exponents for avalanche
size distribution found in molecular dynamics (MD) simulations
of foams [27] and athermal quasi-static (AQS) simulations of
amorphous solids [28–32] aremuch smaller than theMF prediction.
Moreover, different from the MF theory, a mesoscopic elasto-plastic
(EP) model was developed on the basis of yielding transition [33].
The EP model includes a “quadrupolar” elastic propagator in its
governing equation and predicts a smaller power-law exponent for
avalanche size distribution [34]. Thus, there still exist discrepancies
in the theories, experiments, and simulations, and researchers have
carefully examined the roles of system size [35], strain rate [36–39],
particle inertia [40–43], friction [44, 45], and particle shapes [46, 47]
in the statistics of avalanches. However, much less attention has been
paid to the influence of cohesive interactions, which are crucial to
real granular materials.

In this paper, we carry out numerical simulations of soft cohesive
particles under shear. The main aim of our simulations is to
clarify effects of cohesive forces (between the particles) on the
statistics of avalanches. We employ a cohesive contact model which
has been used for the studies of rheology [48–52] and jamming
[53–55] of two-dimensional cohesive particles. We assume that our
system is in a pendular state, i.e., liquid bridges are formed at
contact points so that cohesive interactions are pairwise [4]. We
show that not only the statistics of avalanches but also mechanical
responses, force-chains, and particle rearrangements are affected by
the cohesive interactions even if their range is only 1% of particle
diameter. In the following, we explain our numerical methods
(Section 2), show our results (Section 3), and discuss our findings

(Section 4). All the details of our simulations and supporting data
are summarized in Supplementary Material (SM).

2 Numerical methods

In this section, we introduce our numerical methods. We
study simple shear deformations of soft cohesive particles in two
dimensions by MD simulations. Employing MD simulations, we
can easily control the range and strength of cohesive forces, and
directly calculate stress from numerical data. Thus, in contrast
to the EP model [33] and other continuum models [56], the
advantage of our method is that the effect of cohesive interactions
on avalanches can be unambiguously examined. In the following, we
explain our numerical model of soft cohesive particles (Section 2.1)
and show how the system is prepared and applied simple shear
deformations (Section 2.2).

2.1 Cohesive contact model

In ordinary MD simulations of soft frictionless particles [57],
a contact force between the particles, i and j, is modeled as f ij =
feijnij − ηvij. Here, nij = (ri − rj)/rij with the inter-particle distance,
rij = |ri − rj|, is the unit vector parallel to the normal direction,where
ri (rj) is the position of the particle i (j). In the contact force, −ηvij
represents viscous interaction, where η is the viscosity coefficient
and vij = ̇ri − ̇rj is the relative velocity between the particles in
contact. The magnitude of elastic force feij is given by a linear spring
as feij = kδij, where k is the stiffness and δij = dij − rij > 0 with the
sum of particle radii, dij ≡ Ri +Rj, represents an overlap between the
particles.

In contrast, soft cohesive particles are modeled by coating the
soft frictionless particles with sticky layers [48–55]. It is assumed
that every particle is covered by a thin sticky layer with the thickness
2aRi, where a is introduced as a small dimensionless parameter.
The interaction between the particles is attractive if two layers are
overlapped. In our MD simulations, we model the contact force as
f ij = f

c
ijnij − ηvij, where the magnitude of cohesive force fcij scaled by

kdij is given by

fcij
kdij
= {
−δ̂ij − 2a (−2a < δ̂ij < −a)
δ̂ij (−a < δ̂ij)

. (1)

Here, δ̂ij ≡ δij/dij is the scaled overlap [58]. As shown in Figure 1,
the interaction is attractive, i.e., fcij < 0, if the scaled overlap is in
the range, −2a < δ̂ij < 0, whereas it is repulsive, i.e., fcij > 0, if the
scaled overlap is positive, δ̂ij > 0. Note that a potential energy for the
cohesive interaction, Eq. (1), is a continuous and smooth function
of the inter-particle distance rij (see SM). In addition, the viscous
force −ηvij acts on the particle if −2a < δ̂ij, where either two layers or
particles are overlapped.

2.2 Simple shear deformations

We prepare our system as a 50:50 binary mixture of N soft
cohesive particles, where two kinds of particles have the same mass
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FIGURE 1
A schematic picture of the scaled magnitude of
cohesive force, Equation 1. If the scaled overlap is positive, δ̂ij > 0, two
particles (circles) are overlapped, where the interaction is repulsive, i.e.,
fcij > 0. If −2a < δ̂ij < 0, the particles are not overlapped, while two sticky
layers (shaded regions) are overlapped and the interaction is attractive,
i.e., fcij < 0. If δ̂ij < −2a, no force acts on the particles, i.e., fcij = 0.

m and different diameters, dS and dL = 1.4dS [59]. We randomly
distribute the particles in a L× L square periodic box such that
packing fraction of the particles is given by ϕ = π(d2S + d

2
L)N/8L

2.
Note that the area of sticky layers is not included in ϕ.

To apply simple shear deformations to the system, we employ
the Lees-Edwards boundary condition. In each time step, we replace
every particle position, ri = (xi,yi), with (xi +Δγyi,yi) (i = 1,…,N)
and numerically integrate equations of motion, m ̈ri = ∑j(≠i)f ij. We
use Δγ = 10−7 for the strain increment and Δt = 10−1t0 for the
time increment, where t0 ≡ η/k is a unit of time [60]. The shear
rate is defined as γ̇ ≡ Δγ/Δt = 10−6t−10 which we fix throughout the
simulation.

In the following, we analyze the system in a steady state, where
the amount of shear strain γ exceeds unity, i.e., γ > 1. In a steady
state, the energy injected by shear is dissipated by the viscous forces
between the particles, −ηvij. Therefore, the injection of energy and
the energy dissipation are balanced such that any observables, e.g.,
shear stress, are steady. We vary the number of particles (the system
size) N and the packing fraction ϕ in the ranges, 512 ≤ N ≤ 131072
and 0.8 ≤ ϕ ≤ 0.9, respectively. Furthermore, we scale every time and
length by the units, t0 and d0 = (dL + dS)/2, respectively.

3 Results

In this section, we show our numerical results of soft cohesive
particles under shear. First, we examine how the cohesive forces
alter force-chain networks (Section 3.1) and affect macroscopic
mechanical responses (Section 3.2). Second, we analyze the effect of
cohesive interactions on time-averaged stress (Section 3.3). Third,
we introduce slip avalanches and examine their dependence on the
cohesive interactions (Section 3.4).Then, we study how scaling laws
(Section 3.5) and statistics of avalanches (Section 3.6) are changed

by the cohesive forces. In addition, we show that localized non-
affine displacements are characteristic of avalanches in soft cohesive
particles (Section 3.7).

3.1 Force-chain networks

The structure of force-chain networks of soft cohesive particles
under shear is strongly influenced by the range of cohesive
interactions. Figure 2A displays snapshots of force-chain networks,
where the systems are sheared (as indicated by the horizontal
arrows in the top panel) and have reached steady states. In this
figure, a small system size, N = 512, is used for visualization, where
the dimensionless parameter for the cohesive forces is given by
a = 10−6 (top) and 10−2 (bottom). The packing fraction of the
particles is ϕ = 0.82 which is much smaller than the jamming
transition density, ϕJ ≃ 0.8433, for soft frictionless particles in two
dimensions [59]. If the thickness of sticky layers is sufficiently small
(Figure 2A top), the particles are homogeneously distributed and
the force-chain network (solid lines) is weak and homogeneous.
However, increasing a, we observe that the particles aggregate with
each other—as the “gelation” [61, 62] — and strong force-chains
are transmitted through the system (Figure 2A bottom). In other
words, if the range of cohesive interactions is sufficient, the system
is partially jammed and jammed regions percolate through the
system. Figures 2B, C show non-affine displacements of the particles
and changes of force-chain networks, respectively, which will be
discussed in later (Section 3.7).

3.2 Macroscopic mechanical responses

We quantify mechanical responses of soft cohesive particles to
simple shear deformations by shear stress. We calculate stress tensor
of the system according to the Born-Huang expression [63],

σαβ = −
1
L2
∑
i<j

fijrijnijαnijβ (α,β = x,y) . (2)

Here, fij = |f ij| is the magnitude of contact force between the
particles, i and j, and each component of the normal unit vector is
written as nij = (nijx,nijy). The shear stress is defined as the average
of off-diagonal elements, σ = (σxy + σyx)/2. Figure 3Adisplays stress-
strain curves, i.e., σ vs γ, where the shear stress is scaled by the
stiffness k. Increasing the strain γ from zero, we observe that σ
increases from zero and becomes steady when γ exceeds unity.
The steady state shear stress tends to be large if the thickness of
sticky layer or a increases (as indicated by the vertical arrow in
Figure 3A). In SM, we show our results of granular temperature,
pressure, and macroscopic friction coefficient [64–68] as functions
of γ. We find that, though the granular temperature and pressure p
exhibit similar dependence on the layer thickness a, themacroscopic
friction coefficient defined as μ = σ/p is less sensitive to a.

The influence of cohesive force fcij on the shear stress σ is
intuitively understood as follows. As shown in Figure 3B, we
consider typical configurations of the particles under shear. In
general, the system under simple shear deformations is compressed
along −45 degrees diagonal and decompressed along 45° diagonal
[69]. If the particles, i and j, are aligned in the compressive direction
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FIGURE 2
(A) Snapshots of soft cohesive particles under shear, where the particles (circles) are sheared along the horizontal arrows in the top panel. The system
size and packing fraction of the particles are given by N = 512 and ϕ = 0.82, respectively. The dimensionless parameters, a = 10−6 (top) and 10−2

(bottom), are used for the cohesive interaction, Equation 1. The solid lines represent force-chain networks, where their width is proportional to the
repulsive force, kδij > 0, between the particles in contact. The sticky layer (magnified by 10 times) is visualized by the shaded region around each
particle. (B) Non-affine displacements of the particles in single stress drop events, where ϕ and a are as in (A). The system size is N = 8192 and the
avalanche sizes are given by S ≃ 2.0× 10−4kd2

0 (top) and 2.2× 10−2kd2
0 (bottom). In the bottom panel, the green dashed circles show localized regions of

non-affine displacements. (C) Changes of force-chain networks during single slip avalanches, where ϕ, a, N, and S are as in (B). The red (blue) solid
lines represent the increase (decrease) of the repulsive force, kδij > 0, where their width is proportional to the magnitude of force changes. In the
bottom panel, the green dashed circles indicate the localized regions of force changes.

(Figure 3B left), the particles tend to be over-compressed such that
δ̂ij > 0, where the force is repulsive, i.e., f

c
ij > 0. In the compressive

direction, the product of x- and y-components of the normal unit
vector is negative, nijxnijy < 0, so that such a configuration increases
σ (see Equation 2). On the other hand, if the particles are aligned
in the decompressive direction (Figure 3B right), the particles tend
to be connected by the sticky layer, where the force is attractive,
i.e., fcij < 0. Since nijxnijy > 0 in the decompressive direction, such a
configuration also increases σ. Therefore, both cases contribute to
the increase of σ so that the stronger the cohesive interactions are,
the larger the shear stress is.

3.3 Mean shear stress and stress
fluctuations

To quantify the influence of cohesive forces on the shear stress
σ, we analyze the mean value of σ in a steady state. As shown in the

stress-strain curve (Figure 3A), σ fluctuates around its mean value
if the shear strain exceeds unity, γ > 1. Thus, we calculate the mean
shear stress ⟨σ⟩ as the average of σ in the strain interval, 1 < γ < 11.
Though previous works of the rheology of soft frictionless particles
focused on the divergence of viscosity near the jamming transition
[70–74], we show the dependence of ⟨σ⟩ on the range of cohesive
interactions a and packing fraction of the particlesϕ. Figure 4A plots
⟨σ⟩ as a function of a, where ϕ increases as listed in the legend. It is
obvious that ⟨σ⟩ increases with ϕ because the system becomes rigid
with the increase of density [2]. To describe the dependence of ⟨σ⟩
on a, we note that the magnitude of cohesive force is divided into
two parts as fcij = gij + hija, where gij and hij do not include a (see
Equation 1). According to the Born-Huang expression, Equation 2,
we find that the shear stress is decomposed as

σ = σ0 + σ1a, (3)

where σ0 and σ1 are independent of a (see SM). Our
numerical results of ⟨σ⟩ are well described by ⟨σ⟩ = ⟨σ0⟩ + ⟨σ1⟩a
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FIGURE 3
(A) Stress-strain curves, σ vs γ, where the system size is N = 131072 and the packing fraction is given by ϕ = 0.82. The range of cohesive interactions a
increases as listed in the legend (indicated by the vertical arrow). (B) Typical configurations of the particles aligned in the compressive (left) and
decompressive (right) directions, where the system is sheared along the x-axis (as indicated by the horizontal arrows). The i-th (large) and j-th (small)
particles are in contact, where the shaded regions represent sticky layers. The force is positive, fcij > 0, and the product of x- and y-components of the
normal unit vector is negative, nijxnijy < 0 (left), while fcij < 0 and nijxnijy > 0 (right). In both cases, − fcijrijnijxnijy > 0 so that the configurations not only in the
compressive direction (left) but also in the decompressive direction (right) contribute to the increase of σ (Equation 2).

(dashed lines in Figure 4A) if we use the coefficients, ⟨σ0⟩ and ⟨σ1⟩,
for fitting parameters.

In addition to the mean shear stress ⟨σ⟩, we analyze fluctuations
of the shear stress in a steady state.We quantify stress fluctuations by
the variance, ⟨δσ2⟩ = ⟨σ2⟩ − ⟨σ⟩2, where the ensemble averages ⟨… ⟩
are taken over the data in the strain interval, 1 < γ < 11. Figure 4B
shows the variance ⟨δσ2⟩ as a function of a, where the packing
fraction ϕ increases as in Figure 4A. As can be seen, the variance
is also a monotonically increasing function of a and ϕ. To explain
the dependence of ⟨δσ2⟩ on a, we substitute σ = σ0 + σ1a into ⟨δσ2⟩ =
⟨σ2⟩ − ⟨σ⟩2. Neglecting the correlation between σ0 and σ1 as ⟨σ0σ1⟩ ≈
⟨σ0⟩⟨σ1⟩, we find that the variance is quadratic in a as ⟨δσ2⟩ ≈
⟨δσ20⟩ + ⟨δσ

2
1⟩a

2 (see SM). Our numerical results are well described
by ⟨δσ2⟩ = ⟨δσ20⟩ + ⟨δσ

2
1⟩a

2 (dashed lines in Figure 4B), where ⟨δσ20⟩
and ⟨δσ21⟩ are used for fitting parameters.

3.4 Slip avalanches

In contrast to the mean shear stress and stress fluctuations
(Section 3.3), slip avalanches characterize plastic responses of the
system to simple shear deformations. Closely looking at the stress-
strain curve in a steady state (Figure 3A), one observes that the

shear stress increasing with the shear strain suddenly drops to a
lower value. Such a stress drop event, or slip avalanche, makes the
mean shear stress (in a steady state) ⟨σ⟩ constant such that the shear
stress fluctuates around it. A stress drop amplitude for a single slip
avalanche is introduced as

Δσ ≡ σ(γ0) − σ(γ0 +T) > 0, (4)

where the shear stress σ starts decreasing at the strain γ0 and stops
decreasing at γ0 +T. The duration of a slip avalanche is given by
dimensionless avalanche duration T and the so-called avalanche size
is defined as S ≡ L2Δσ [33].

We calculate an average of avalanche sizes as ⟨S⟩ when the
system is in a steady state (γ > 1). While previous studies paid much
attention to finite size effects on the mean avalanche size [29, 35,
75, 76, 77, 78, 79, 80], we focus on the dependence of ⟨S⟩ on the
range of cohesive interactions a and packing fraction of the particles
ϕ. Figure 4C displays double logarithmic plots of ⟨S⟩ and a, where
ϕ increases as listed in the legend of Figure 4A. In this figure, we
average S over 106 stress drop events in a steady state. Similar to
the mean shear stress and stress fluctuations (Figures 4A, B), ⟨S⟩ is
also a monotonically increasing function of a and ϕ. Substituting
the decomposition, Equation 3, into Equation 4, we find that the
avalanche size is decomposed as S = S0 + S1a, where S0 and S1 are
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FIGURE 4
Double logarithmic plots of (A) the mean shear stress, (B) variance of the shear stress, (C) mean avalanche size, and (D) mean maximum stress drop
rate as functions of the dimensionless parameter a. The packing fraction increases as listed in the legend of (A), where the system size, N = 131072, is
used for MD simulations. The dashed lines indicate fitting functions (see the main text and SM).

independent of a (see SM). Our numerical results are well fitted to
⟨S⟩ = ⟨S0⟩ + ⟨S1⟩a (dashed lines in Figure 4C) if we use ⟨S0⟩ and ⟨S1⟩
for fitting parameters.

The slip avalanche defined as Equation 4 can be rephrased
as the stress drop rate is negative, i.e., dσ/dγ < 0, in the strain
interval between γ0 and γ0 +T. Because the dimensionless avalanche
duration is finite, T > 0, we can calculate the maximum stress drop
rate asM ≡ (−dσ/dγ)max for each stress drop event. Figure 4D shows
double logarithmic plots of themeanmaximum stress drop rate ⟨M⟩
and a, where we took 106 ensemble averages of M in a steady state
and ϕ increases as listed in the legend of Figure 4A. Similar to the
mean avalanche size (Figure 4C), ⟨M⟩ also monotonously increases
with a and ϕ. Because of Equation 3, themaximum stress drop rate is
decomposed asM =M0 +M1a with the a-independent coefficients,
M0 and M1 (see SM). We find that our numerical results are well
fitted to ⟨M⟩ = ⟨M0⟩ + ⟨M1⟩a (dashed lines in Figure 4D) if we use
⟨M0⟩ and ⟨M1⟩ for fitting parameters.

Note that we cannot see a clear trend in the mean value of
dimensionless avalanche duration ⟨T⟩, where ⟨T⟩ slightly increases
with a (see SM).

3.5 Scaling laws of slip avalanches

It was predicted by the MF theory of slip avalanches that both
T and M scale as the square root of S, i.e., T ∼ S1/2 and M ∼ S1/2,
in the scaling regime [19]. To examine whether the MF predictions
are applicable to our system, we make scatter plots of S, T, and M
from the data of 106 slip avalanches in a steady state. Figure 5A
shows the scatter plots of S and T (left), and S andM (right), where
each dot corresponds to each slip avalanche. The symbols (circles)
are the averages of T and M in each bin of S. As can be seen,
both T and M tend to increase with S if the avalanche size is large
enough, e.g., S ≳ 10−4kd20 or S ≳ ⟨S⟩. In our MD simulations, the
lower bound of dimensionless avalanche duration is given by the
strain increment as T ≥ Δγ = 10−7. Therefore, if the dimensionless
avalanche duration is the smallest,T = Δγ, themaximum stress drop
rate is given by M = Δσ/Δt = S/(L2Δt), where M is proportional to
S. The solid line in Figure 5A (right) indicates the proportionality,
M∝ S, for sufficiently small avalanches.

We show that the scaling laws of S, T, and M can be confirmed
even if the cohesive forces exist. Figure 5B displays the averages
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FIGURE 5
(A) (Left) A scatter plot of the avalanche size S and dimensionless avalanche duration T, where each symbol (circle) represents an average of T in each
bin of S. (Right) A scatter plot of S and maximum stress drop rate M, where each symbol (circle) is an average of M in each bin of S. The dimensionless
parameter is given by a = 10−4. The solid line in the right panel indicates the proportionality, M∝ S. (B) Double logarithmic plots of T (left) and M (right)
as functions of S, where a increases as listed in the legend and indicated by the arrows. The solid line in the right panel indicates M∝ S. (C) Scaling laws
of T (left) and M (right), where the solid lines represent Equations 5, 6. The dimensionless parameter a (≥10−5) increases as listed in the legend. In (A–C),
the system size and packing fraction are given by N = 131072 and ϕ = 0.82, respectively.

of T (left) and M (right) in each bin of S, where we increase the
dimensionless parameter a as listed in the legend (indicated by the
arrows). One can see that bothT andMmonotonically increase with
S if the avalanche size is large enough as S ≳ ⟨S⟩. To examine the
scaling laws of S, T, andM, we plot T/⟨T⟩ andM/⟨M⟩ as functions
of S/⟨S⟩ in Figure 5C. We find that all the data in S/⟨S⟩ ≥ 1 are
nicely collapsed if the dimensionless parameter is not infinitesimal,
a ≥ 10−5. The solid lines represent scaling laws.

T
〈T〉
∼ ( S
〈S〉
)
μ
, (5)

M
〈M〉
∼ ( S
〈S〉
)
ζ
, (6)

where the exponents, μ ≃ 0.66 and ζ ≃ 0.24, estimated from the data
of a = 10−2 are different from the MF prediction, 1/2. Therefore, the
scaling laws, Eqs. (5) and (6), can be confirmed for a ≥ 10−5, where
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the exponents, μ and ζ, are quite insensitive to the range of cohesive
interactions. Note that the influence of cohesive forces is included in
the averages, ⟨S⟩, ⟨T⟩, and ⟨M⟩ (see Figure 4).

In SM, we show that Equations 5, 6 hold for large avalanches,
S/⟨S⟩ ≥ 1, regardless of the packing fraction ϕ, where we estimate
the exponents, μ and ζ, for each value of ϕ. We also examine
finite size effects on the scaling, Equations 5, 6, and confirm
that the scaling laws are well established if the system size is
large enough (see SM).

3.6 Statistics of slip avalanches

In contrast to the mean values, ⟨S⟩ and ⟨T⟩, the occurrence of
slip avalanches is quantified by the probability distribution functions
(PDFs) of avalanche sizes anddimensionless avalanche duration, i.e.,
P(S) and P(T). The MF theory predicts the power-law decay of the
PDFs as P(S) ∼ S−τ and P(T) ∼ T−κ in the scaling regimes, where the
power-law exponents are given by τ = 3/2 and κ = 2 [12–15]. The
power-law decay was validated by many experiments of granular
materials [16–19], metallic glasses [22–25], etc. However, some
simulations disagree with the MF predictions and there has been
much debate as mentioned in the Introduction (Section 1). Figure 6
shows double logarithmic plots of the PDFs, (a) P(S) and (b) P(T),
where the dimensionless parameter a increases as listed in the
legend of (a) (indicated by the arrows). Increasing a, we observe
qualitative changes in the shapes of the PDFs, e.g., their tails extend
to higher values of S and T. In addition, our numerical results are
clearly different from the MF predictions, P(S) ∼ S−3/2 and P(T) ∼
T−2 (dashed lines).

To analyze the shapes of P(S) and P(T), we scale them by
the mean values, ⟨S⟩ and ⟨T⟩, respectively. Figure 7A displays
the scaled PDFs of avalanche sizes. If the range of cohesive
interactions is not sufficiently small (a ≥ 10−5), the scaled PDFs are
well collapsed on top of each other. We describe the tails of the
scaled PDFs as

〈S〉P (S) ∼ ( S
〈S〉
)
−τ
e−S/Sc (7)

(solid line), where the cut-off value [32], Sc ≡ ⟨S2⟩/⟨S⟩, is extracted
from the simulation with a = 10−2. The power-law exponent in
Equation 7 is estimated from the data of a = 10−2 as τ ≃ 1.1 which
is smaller than the MF prediction, 3/2. Figure 7B shows the scaled
PDFs of dimensionless avalanche duration, where all the data are
nicely collapsed if a ≥ 10−5. The solid line indicates

〈T〉P (T) ∼ ( T
〈T〉
)
−κ
e−T/Tc (8)

with Tc ≡ ⟨T2⟩/⟨T⟩, where we find an extremely small exponent,
κ ≃ 1.1, from the data of a = 10−2. Thus, the power-law scaling of
the PDFs, Equations 7, 8, can be confirmed for a ≥ 10−5, where
the exponents, τ and κ, are almost independent of the range of
cohesive interactions. The influence of cohesive forces is included
in the averages, ⟨S⟩ and ⟨T⟩, and cutoff values, Sc and Tc (data are
not shown).

Though the power-law exponents, τ and κ, in Equations 7, 8
are smaller than the MF predictions, they are consistent with the
exponent μ for the scaling law, Equation 5. Let us derive a relation

FIGURE 6
Double logarithmic plots of the PDFs of (A) avalanche sizes, P(S), and
(B) dimensionless avalanche duration, P(T). The range of cohesive
interactions a increases as listed in the legend of (A) and indicated by
the arrows. The dashed lines represent the MF predictions, i.e., (A) S−3/2

and (B) T−2. The system size and packing fraction are as in Figure 5.

between the power-law exponents as follows. The probability that
the avalanche size is in the range between S and S+ dS is given by
P(S)dS. On the other hand, the probability that the dimensionless
avalanche duration is in the range between T and T+ dT is P(T)dT.
Assuming the one-to-one correspondence between S and T, we
equate these probabilities as P(S)dS = P(T)dT. This means that the
PDFs are related to each other as

P (S) = P (T) dT
dS
. (9)

Because the dimensionless avalanche duration T obeys the scaling
law, Equation 5, in the scaling regime, the derivative in Equation 9
scales as dT/dS ∼ μSμ−1. Thus, substituting the power-law decay,
P(S) ∼ S−τ and P(T) ∼ T−κ, into Equation 9, we find S−τ ∼ T−κ ×
μSμ−1 ∼ S(1−κ)μ−1.Therefore, the exponent τ is related to the others as

τ = (κ− 1)μ+ 1. (10)
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FIGURE 7
Double logarithmic plots of the scaled PDFs, (A) ⟨S⟩P(S) and (B)
⟨T⟩P(T), where the dimensionless parameter a ≥ 10−5 increases as
listed in the legend of (A). The solid lines are fits to the tails of the
scaled PDFs (see main text). The system size and packing
fraction are as in Figure 5.

The MF predictions, i.e., τ = 3/2, κ = 2, and μ = 1/2, satisfy
Equation 10, while our results, τ ≃ 1.1, κ ≃ 1.1, and μ ≃ 0.66, are also
consistent with (Equation 10)2.

In SM, we analyze the effect of packing fraction ϕ on the scaled
PDFs, where we estimate the exponents, τ and κ, and examine the
relation, Equation 10, for each value of ϕ.

In addition, we examine finite size effects on the tails of the
scaled PDFs, where Equations 7, 8 well explain our numerical results
unless the system size is extremely small (see SM).

3.7 Particle rearrangements during a slip
avalanche

On a microscopic scale, a slip avalanche is triggered by
rearrangements of the particles under shear. In ourMD simulations,
particle displacements (in each strain step) can be decomposed as

2 Substituting our estimates, κ ≃ 1.1 and μ ≃ 0.66, into Equation 10, we find

τ ≃ 1.066 which is approximately equal to our result, τ ≃ 1.1.

ui = Δγyiex + δui (i = 1,…,N), where ex is a unit vector parallel to
the x-axis. The first term Δγyiex represents an affine displacement,
whereas the second term δui is a non-affine displacement. The
non-affine displacements δui (i = 1,…,N) represent the particle
rearrangements under shear [81–83] and suppress the increase
of shear stress [84]. It is thus expected that the non-affine
displacements are relevant to the avalanche size S. To analyze
the particle rearrangements during a single slip avalanche, we
integrate the non-affine displacements over the strain interval
between γ0 and γ0 +T as δūi ≡ ∫

γ0+T
γ0

δui(γ)dγ. Figure 2B shows
spatial distributions of δūi (i = 1,…,N) (arrows), where the gray
scale indicates the magnitude of δūi. If the range of cohesive
interactions is small (a = 10−6), the spatial distributions of δūi
are homogeneous (Figure 2B top), where we observe “collective
rearrangements” of the particles everywhere in the system [81–83].
In contrast, if the range of cohesive interactions is large (a = 10−2),
the spatial distributions are typically localized (Figure 2B bottom),
where characteristic “quadrupole structures” of δūi can be seen in
the green circles [28, 29, 33].

Note that particle rearrangements are directly linked to
restructuring of force-chain networks [85, 86]. Because we calculate
the stress tensor by the Born-Huang expression (Eq. (2)), a
stress drop event is a consequence of restructuring of force-
chains. Figure 2C visualizes the changes of force-chain networks
during a slip avalanche. The red (blue) solid lines represent the
increase (decrease) of the repulsive forces, kδij > 0, where the
particles, i and j, are in contact before the slip avalanche. If cohesive
interactions are weak (top), the restructuring of force-chains is not
localized. However, if cohesive interactions are strong (bottom),
the restructuring is localized at which the cumulative non-affine
displacements δūi are localized (green circles).

To quantitatively compare the non-affine displacements with
the avalanche size S, we introduce the mean squared displacement
(MSD) during a slip avalanche [87] as

Δ2 ≡ 1
N

N

∑
i=1

δū2i . (11)

Figure 8A displays double logarithmic plots of the average of
MSD ⟨Δ2⟩ and the dimensionless parameter a, where we averaged
Equation 11 over 106 slip avalanches in a steady state. Similar to the
mean values in Figure 4, ⟨Δ2⟩ monotonously increases with a and
the packing fraction ϕ (symbols). We also quantify the localization
of particle rearrangements by the participation ratio,

pr ≡
(∑N

i=1
δū2i )

2

N∑N
i=1
|δūi|

4
. (12)

Figure 8B shows the mean participation ratio ⟨pr⟩ as a function
of a, where we took 106 ensemble averages of Equation 12 in a steady
state. Different from the average of MSD (and other averages in
Figure 4), ⟨pr⟩ decreases with the increases of a and ϕ (symbols). If
ϕ > ϕJ ≃ 0.8433 (see Section 3.1 for the jamming transition density
ϕJ), the mean participation ratio is extremely small, ⟨pr⟩ ≃ 0.1,
such that the rearrangements during a slip avalanche are localized
regardless of cohesive forces. However, if ϕ < ϕJ and the range of
cohesive interactions is small, the rearrangements are not localized,
e.g., ⟨pr⟩ ≃ 0.5 for ϕ = 0.82 and a ≤ 10−4. Interestingly, ⟨pr⟩ starts
decreasing if a exceeds 10−4 and drops to ⟨pr⟩ ≃ 0.1 if a = 10−2.
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FIGURE 8
Double logarithmic plots of (A) the average of MSD and (B) mean participation ratio as functions of the dimensionless parameter a. The packing
fraction increases as listed in the legend of (A), where the system size, N = 131072, is used for MD simulations. The dashed lines in (A) are guides to the
eyes (linear functions of a fitted to the data).

FIGURE 9
(A) Double logarithmic plots of the scaled avalanche size S/⟨S⟩ and scaled MSD Δ2/⟨Δ2⟩, where the solid line indicates the scaling law, Equation 13. (B)
Semi-logarithmic plots of S/⟨S⟩ and the participation ratio pr. In (A) and (B), the dimensionless parameter a increases from 10−5 as listed in the legend of
(A) and indicated by the arrow in (B). The system size and packing fraction are as in Figure 5.

Therefore, if the thickness of sticky layer increases to 1% of particle
diameter, the rearrangements during a slip avalanche are mostly
localized regardless of ϕ.

Finally, we show that the MSD is relevant to the avalanche size
S, while the localization of non-affine displacements is unrelated
to S. Figure 9A displays double logarithmic plots of the scaled
MSD Δ2/⟨Δ2⟩ and scaled avalanche size S/⟨S⟩, where each symbol
represents an average of Δ2 in each bin of S. As in the cases
of dimensionless avalanche duration T and maximum stress drop
rate M (Figure 5), all the data of Δ2/⟨Δ2⟩ in S/⟨S⟩ ≥ 1 are well

collapsed if the range of cohesive interactions is not infinitesimal,
a ≥ 10−5. From our numerical results, we find the scaling law of
MSD (solid line) as

Δ2

〈Δ2〉
∼ ( S
〈S〉
)
λ
, (13)

where the exponent estimated from the data of a = 10−2 is λ ≃ 1.30.
The positive exponent, λ > 0, means that a large avalanche, S ≥ ⟨S⟩,
is accompanied by a large amount of particle rearrangements. In
addition, Equation 13 may be explained by the scaling law of T

Frontiers in Physics 10 frontiersin.org

https://doi.org/10.3389/fphy.2025.1548966
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


Saitoh 10.3389/fphy.2025.1548966

(Equation 5) as follows. If themagnitude of non-affine displacement
in each strain step Δγ is given by l (on average), the magnitude
of non-affine displacement during a slip avalanche is Tl. The MSD
is then estimated as Δ2 ∼ (Tl)2. Substituting Equation 5, we find
Δ2/⟨Δ2⟩ ∼ (T/⟨T⟩)2 ∼ (S/⟨S⟩)2μ, where the exponent, 2μ ≃ 1.32, is
close to λ ≃ 1.30. In contrast, the participation ratio pr is flat over
the whole range of S/⟨S⟩ if a ≤ 10−4 (Figure 9B)3. If a ≥ 10−3, pr is
constant unless the avalanche size is extremely large and slightly
increases with extremely large avalanches (Figure 9B). However,
pr is much more sensitive to a and its correlation with S is
not significant.

In SM, we confirm that the scaling law, Equation 13,
holds in S/⟨S⟩ ≥ 1 regardless of the packing fraction ϕ.
We also show that, if ϕ > ϕJ, the cohesive interactions are
not important and the non-affine displacements during a
slip avalanche are mostly localized (pr ≃ 0.1) except for
extremely large avalanches, S/⟨S⟩ > 10. Furthermore, we examine
finite size effects on the scaling law and participation ratio
and find that Equation 13 is well established unless the system size is
too small (see SM).

4 Discussion and conclusion

In this study, we have examined mechanical responses of soft
cohesive particles to simple shear deformations by MD simulations.
In our cohesive contact model [48–50, 53, 54], the range of
cohesive interactions is controlled by the dimensionless parameter
a (Equation 1). We found that, if a is large enough, the particles
are locally jammed or aggregate each other as if the system exhibits
“gelation” (Figure 2A).The shear stress in a steady state, i.e., the shear
strength, and the averages of avalanche size and maximum stress
drop rate are increasing functions of a (and the packing fraction
of the particles ϕ) (Figure 4). Since the shear stress is given by a
linear function of a (Equation 3), the avalanche size and maximum
stress drop rate are also linear functions of a. We showed that the
scaling laws of dimensionless avalanche duration and maximum
stress drop rate (Equations 5, 6) are well established even if the
cohesive forces exist (Figure 5). In addition, another scaling law of
MSD (Equation 13) was confirmed as the consequence of the scaling
law of dimensionless avalanche duration. We also found that the
PDFs of avalanche sizes and dimensionless avalanche duration are
well described by the power-law scaling (Equations 7, 8). However,
the power-law exponents extracted from the data of PDFs do
not agree with the MF predictions but rather are consistent with
the scaling law of dimensionless avalanche duration (Equation 10).
Note that all the exponents for the scaling laws and the PDFs are
independent of the range of cohesive interactions (if a ≥ 10−5), while
the influence of cohesive forces is included in the averages and
cutoff values.

One of the characteristic features of soft cohesive particles
under shear is the localization of particle rearrangements. We
quantified the localization by the participation ratio of non-
affine displacements and found that, if the system is less dense

3 We confirmed that pr ≃ 0.5 over the whole range of S/⟨S⟩ even if a = 0 and

10−6 (data are not shown).

as ϕ < ϕJ, the particle rearrangements during a slip avalanche
are strongly dependent on the range of cohesive interactions
a (Figure 8B). Interestingly, the participation ratio does not
correlate significantly with the avalanche size (Figure 9B) and
the non-affine displacements, if localized, exhibit characteristic
quadrupole structures (Figure 2B). A further analysis is necessary
to unveil the mechanism of the localization, which is left for
future work.

In our MD simulations, we assumed that the system is in
a pendular state, where the cohesive force between the particles
is pairwise. However, if the liquid content increases, the system
transitions to a funicular or capillary state, where more than two
particles interact through the liquid [3,4]. We did not implement
such many body interactions into our model though their effects
on avalanches are interesting to know. In addition, in real granular
materials, cohesive forces are intrinsically history-dependent [57].
Therefore, the influence of hysteresis in cohesive contacts has to
be examined in future. Moreover, the effect of particle shapes [47]
and simulations in three dimensions are important for practical
applications of this work.

In conclusion, the shear strength, force-chains, and particle
rearrangements are strongly affected by cohesive forces if the system
is less dense. The statistics of avalanches, such as the scaling laws
and power-law distributions, are well established even if the system
is cohesive though the scaling exponents are distinct from the MF
predictions.
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