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With the advent of modern media platforms, the dissemination of information
has become faster and more far-reaching than ever before. These platforms
amplify susceptibility to societal influences, as individuals respond to widely
circulating information while being shaped by the perspectives of those around
them. By aligning with others’ opinions, individuals contribute to establishing
shared norms through both macroscopic and microscopic influences. This
paper explores the roles of these influences—social conformity at the
population-wide level and peer pressure at the localized level—in shaping
opinion dynamics within today’s information-rich environment. Building on
the Hegselmann-Krause opinion dynamics model, we introduce modifications
to incorporate peer pressure through three modes of dynamic social circles.
While conformity and peer pressure have been studied previously, we focus
specifically on how properties and behaviors evolve in an opinion-dependent
manner from both individual and social circle perspectives. Furthermore, we
incorporate radical agents, characterized by resistance to influence. However,
unlike radicals as referred to the stubborn agents commonly discussed in
previous literature, our radical agents adjust their behavior based on their
position in the opinion spectrum rather than remaining entirely fixed in their
views. Simulations reveal that removing agents with distant opinions from social
circles facilitates population convergence more than adding agents with similar
opinions. Ourmodel suggests that increasing the number of agents within social
circles accelerates opinion shifts. Similarly, broadening confidence bounds
fosters cluster formation. In addition, a higher initial number of radical agents
makes it more likely for non-radical agents to adopt radical views. Likewise,
when agents are influenced more by macroscopic rather than microscopic
forces, radicalization becomes more likely. Together, one or more of these
dynamics drive convergence between radical and non-radical agents.

KEYWORDS

opinion dynamics, social conformity, peer pressure, bounded confidencemodel, agent-
based simulation

1 Introduction

Contemporary media has redefined societal interactions, driving unprecedented
changes in the speed and breadth of information dissemination. Today’s social
media platforms connect to distant trends and diverse content, creating broader
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and more dynamic spheres of influence [1]. This rapid flow of
information has also been linked to the formation of echo chambers,
where selective exposure to similar viewpoints reinforces beliefs and
amplifies polarization [2, 3].

This shift suggests a heightened susceptibility to conform to
broader societal opinions, as people respond to information that
circulates widely across media platforms. As individuals consume
diverse and, at times, contradictory content, their opinions may
increasingly align with dominant narratives, fostering a sense
of shared outlook even among people who are geographically
or culturally distant. Research on homophily demonstrates that
individuals tend to cluster with those who share similar beliefs,
further amplifying dominant viewpoints [4–6]. Conversely, this
global information network provides those seeking to advance
specific viewpoints, such as political ideologies, with more extensive
means to engage with and sway public opinion [7, 8]. As a result,
voices that may have once remained marginal, including radical
perspectives, can now gain visibility and exert influence through
various media channels, amplifying their impact on society [9].

Amid the constant flow of information in modern society,
individuals rarely form opinions in isolation. Instead, opinions
are shaped by interactions with others, as individuals naturally
adjust their views in response to social cues [10, 11]. This process
aligns with Festinger’s social comparison theory, which suggests
that people evaluate their own opinions by comparing them with
others [12]. Beyond mere information absorption, individuals also
seek social approval and aim to align with the views of their peers,
contributing to establishing shared norms and influencing public
opinion on a broader scale [13]. This behavior is reinforced through
both normative social influence, where individuals conform to
meet social expectations, and informational social influence, which
occurs when people rely on others as a source of guidance [14].
This paper explores social conformity and peer pressure—the
tendency for individuals to adjust their opinions to match those of
others—and their role in shaping opinion formation within today’s
information-rich environment.

In social psychology, social conformity is defined as the
tendency for individuals to adjust their behaviors to align with
group norms, driven by a desire for social acceptance or to avoid
rejection, even when those judgements contradict personal beliefs
[15, 16]. Peer pressure refers to the influence exerted by peers to
encourage conformity within a social circle. Research has identified
mechanisms such as normative social influence, where individuals
conform to meet others’ expectations, and informational social
influence, where individuals rely on the group for guidance in
ambiguous situations [14].

In our model, we distinguish these influences by defining social
conformity as a macroscopic force that aligns individuals with
prevalent societal views, reflecting broad-scale normative pressures.
Peer pressure, by contrast, serves as a microscopic influence, shaped
by the dynamics of individual relationships and immediate social
circles. This distinction allows us to investigate how these two levels
of influence interact and contribute to opinion dynamics within
diverse social contexts [17].

Opinion dynamics explores how individual opinions change and
spread within a group on the basis of social interactions [18–20].
This field models complex social interactions where opinions
change through influence, selective exposure, and reinforcement

mechanisms and reveals how collective beliefs emerge from
individual perspectives [21–24]. Classical approaches, such as the
DeGroot model, illustrate how iterative averaging can lead to
consensus under certain conditions [25], while confidence bound
models capture how agents form opinion clusters when limited to
interacting within specific belief ranges [23, 26, 27]. Networked
frameworks in opinion dynamics simulate how social structures
and individual characteristics shape the stability or fragmentation
of group beliefs [25, 28, 29].

By integrating psychological literature with opinion dynamics
modeling, we incorporate social conformity and peer pressure
into an opinion dynamics model. We base our model on the
Hegselmann-Krause (HK) model of opinion dynamics, which
considers macroscopic influence. The HK model explores how
individuals form clusters of shared beliefs on the basis of confidence
bounds. It assumes that individuals only interact with others whose
opinions fall within this confidence range. Each agent averages its
opinion with those of neighbors within this confidence interval,
gradually moving toward a common position with agents holding
similar views while ignoring those with divergent opinions [26,
27, 30].

The confidence bound mechanisms in the HK model lead to
emergent patterns of opinion clustering, often resulting in either
a consensus, polarization or fragmentation, depending on the
confidence bound and initial distribution of opinions [26]. When
confidence bounds are broad, agents are more likely to achieve
consensus. Conversely, with narrower bounds, the population is
more likely to polarize [23].

However, the HK model does not consider microscopic
influence, which we also aim to incorporate. A similar approach
has been studied, but it is based on a network-based opinion
dynamics model [31]. This model examines the interplay between
network connections formed through personal acquaintances and
those formed between individuals with similar beliefs. While it
considers the interdependence of these two factors, our focus is on
the opinion-dependent evolution of social circles and individuals,
incorporating confidence bounds. Despite previous studies on
conformity at both macroscopic and microscopic levels in opinion
dynamics [32–35], this specific aspect has received little attention.
Therefore, our approach emphasizes how these evolving dynamics
shape opinion dynamics. Consequently, we modify the HK model
to include microscopic influence by assuming that agents are
influenced by both macroscopic and microscopic influences.

In particular, when dynamizing social circles, agents are added
or removed based on the closeness of opinions within the circle
at each timestep. From an individual perspective, an agent’s
behavior—both independently and within social circles—varies
depending on its opinion value.

Tomodel these dynamics, we firstmodify themodel to construct
social circles (referred to as “friend sets” in this paper) consisting of
a fixed number of friends. Within these friend sets, agents interact
with others in their circle and update their opinions on the basis of
their friends’ views. To allow agents to enter and leave friend sets,
we set up three modes of updating friend sets: Fermi-Birth, Fermi-
Death, and Random-out-random-in. In the Fermi-Birth mode, an
agent with a close opinion to the friend set is added while another
agent is removed at random. In Fermi-Death, a random agent is
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added, and an agent with a distant opinion is removed. In Random-
out-random-in, a random agent is added, and another random agent
is removed.

Second, wemodify the opinion-updating rules of theHKmodel.
In the original HK model, agents update their opinions if their
opinions are within a given confidence bound. While we remain
in this setup, we incorporate both macroscopic and microscopic
influences. In contrast to the HK model, which assumes agents
update solely on the basis of the opinions of the entire population
within the confidence bound, we assume that agents update on the
basis of both the population and their friend sets. We therefore
establish a ratio for how much agents are influenced by macroscopic
(population) and microscopic (friend set) influences.

Furthermore, we extend our model to include radical
opinions—extreme viewpoints resistant to influence. Studies by
[36, 37] show that radical agents often act as sources of stability for
fringe views and contribute to polarization within communities.
Their presence can lead to the formation of “opinion islands,”
where like-minded individuals cluster around extreme beliefs,
increasing fragmentation and preventing broader societal consensus
[29, 38, 39]. Experiments indicate that the stubbornness effect
of radical agents varies depending on the network topology of
communication and affinity [40]. To account for these effects,
we differentiate between radical and non-radical agents based on
the range of opinions they hold. While prior literature typically
defines “radical agents” as stubborn individuals whose opinions
remain fixed, our approach instead characterizes radicals by their
position in the opinion spectrum rather than their resistance to
change. Contrary to non-radical agents, radicals are less influenced
by macroscopic forces and instead respond more strongly to
microscopic interactions within their friend sets.

Our simulations demonstrate that the dynamics of friend sets
significantly influence opinion dynamics. Specifically, determining
whom to remove from friend sets, rather than whom to add, plays
a critical role in achieving consensus. Populations in the Fermi-
Death mode consistently exhibit convergence, while those in the
Fermi-Birth and Random-out-random-in modes exhibit a range
of opinion distributions—such as convergence, polarization and
fragmentation—depending on parameter settings.

Simulation results across parameter variations show that
increasing all parameter values accelerates cluster formation and
the speed of opinion dynamics. In other words, when agents have
more friends to interact with, the population is likely to changemore
rapidly and form clusters. Similarly, higher confidence bound values
lead to early cluster formation and faster consensus. Moreover,
with a higher initial number of radical agents or agents influenced
predominantly bymacroscopic rather thanmicroscopic forces, non-
radical agents are more likely to adopt radical views, and vice
versa. This dynamic fosters convergence between radical and non-
radical agents.

2 Models

We present our opinion dynamics model of social conformity
and peer pressure. Since our model is an extension of the HK
bounded confidence model, we will first introduce their model.

Then, we will explain the primary four parameters for agent
properties and three modes for dynamic interaction structures.

2.1 The original Hegselmann-Krause model

We will begin by giving an overview of the HK model.
In the HK model, there are N agents, indexed by i = 1…N,

who interact with each other in discrete time intervals. Each agent
i has an opinion, represented by si(t) on a topic at time t. Opinions
are expressed as real numbers within the interval [0,1]. The initial
opinions of all agents are assigned random values uniformly within
the interval [26].

Agents interact and adjust their opinions on the basis of those
of other agents within a certain confidence bound value, denoted
by ϵ ∈ (0,1). This value represents the degree of tolerance that agents
have towards differing opinions. Agents are assumed to interact with
others whose opinions are close to their own, specifically where
the absolute difference between an agent’s current opinion and the
opinions of their friends is less than a given confidence bound, ϵ. In
other words, if the distance between an agent’s opinion and others’
opinions exceeds the confidence bound ϵ, no interaction between
them occurs. Every agent interacts with everyone else only if their
opinion difference is within the confidence bound.The opinion of an
agent i at time t+ 1, is updated on the basis of the average opinions of
all agents whose opinions are within the confidence bound interval
ϵ of si(t). This is defined as:

si (t+ 1) = si (t) +
1
|N′i |
∑
j∈N′i

(sj (t) − si (t))

where N′i = {j‖sj(t) − si(t)| < ϵ}.
Note that in the original HK model, agents are represented as

nodes and are connected through interactions as links in a complete
graph. This implies that every agent is connected to all others in the
population, regardless of their opinion values. However, interactions
occur only when the opinions of agents fall within the confidence
bound; otherwise, their opinions remain unchanged [26].

2.2 Extension of the Hegselmann-Krause
model

We extend the HK model to model social conformity and
peer pressure within the interaction structure. We introduce
dynamic interaction graphs and modify agents’ properties.
The key differences between the HK model and our model
are shown in Table 1.

2.2.1 Friend set updating modes
The network structures of the HK model and our model are

illustrated in Figure 1. The HK model assumes that interactions
occur between agents on the basis of the similarity of their opinions
with all other agents [26]. In contrast, while our model also assumes
that agents are influenced by the opinions of all others, it also
introduces friend sets, where agents interact exclusively within their
own friend groups. Note that these friend relationships are not
necessarily symmetrical; for instance, while Agent A may consider
Agent B a friend, Agent B may not necessarily reciprocate this view.
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TABLE 1 Comparison of key elements between the original Hegselmann-Krause model and our model.

Hegselmann-Krause
model

Our model

Networks

Structure of links Complete graph Dynamic graph

The number of interaction
opportunities

N - 1 f × N where f is the proportion of friends
that each agent has

Friend set updating rule Not considered Three modes: Fermi-birth, Fermi-death,
and Random-out-random-in

Properties of agents

Opinion range [0, 1] [−1, 1]

β: Proportion of radical and
non-radical agents

Not defined [β: 1 - β] [Opinion range (−1 to 0: 0 to 1)]

c : The ratio of social conformity to
peer pressure influences acting on

agents

Symmetric and asymmetric
confidence intervals

Asymmetric confidence intervals: [0, c ×
(1 - β)] for non-radical agents
[0, c × β] for radical agents

ε : Range of confidence bound Constant ε [0, ε] Randomly uniform

Network Properties In the original HK model, agents are arranged on a complete graph. In contrast, our model assigns agents to a dynamic graph, assuming that every agent belongs to a social
circle, termed a “friend set”. Agents interact with a subset of others within their friend set, represented by the variable f, which indicates the proportion of friends in the proportion that each
agent has, multiplied by the total population N. Friend sets update on the basis of three rules: Fermi-Birth, Fermi-Death, and Random-out-random-in. (Fig. Fermi-Birth, Fermi-Death, and
Random-out-random-in modes) Agent Properties Our model introduces “radical” agents to explore how radical opinions affect the overall opinion distribution. Unlike the original HK model,
which assumes an opinion range of [0,1], we extend this range to [−1,1]. To simplify the analysis, agents with opinions in the range [−1,0] are classified as radical, while those in [0,1] are
considered non-radical. The initial proportion of radical agents is denoted as β, with the remaining proportion of non-radical agents given by 1− β. The original HK model assumes that agents
update their opinions on the basis of opinion similarity. In contrast, our model incorporates macroscopic influence (social conformity) from the entire population and microscopic influence
(peer pressure) from defined friend sets. To quantify the balance between these two influences, we define an influence ratio, c, which remains constant for each parameter setting. A higher c
indicates stronger social conformity and weaker peer pressure, while a lower c suggests the opposite. To capture the tendency of radical agents to resist non-radical influence, c values are
assigned randomly and uniformly within [0,c× β] for radical agents and within [0,c× (1− β)] for non-radical agents. Lastly, while the original HK model assumes a constant confidence bound
across all agents, our model assigns confidence bounds randomly within the range [0, ϵ] to reflect the natural variability in individual confidence levels observed in real-world scenarios.

FIGURE 1
Comparison of the network structures between the original Hegselmann-Krause model and our model Left: The original HK model is based on a
complete graph structure, where every agent is connected to every other agent, allowing influence from the entire population. Right: Our model
incorporates two types of influences on agents: macroscopic and microscopic. Macroscopic influence captures the effect of the entire population,
where each agent’s opinion is influenced by the average opinion of all agents, representing social conformity. Microscopic influence, on the other
hand, represents peer pressure, where agents are influenced through connections within a defined “friend set”. Each agent maintains connections with
f ×N friends, where f is the proportion of connected friends (other agents in the same group) per agent. This proportion ranges from 0 to 1.

To reflect the tendency for stronger ties with friends, our
model introduces dynamic adjustments of agents within these
friend sets. Let Ni(t) be Agent i’s friend set at simulation time
t and Ni(t) be a constant where |Ni(t)| = f ×N and f represents

network density. The dynamization of Ni(t) follows a one-out-one-
in rule. In other words, one friend exits the friend set while one
newcomer joins the friend set during each time step. Note that each
agent includes itself in its set of neighbors. We first consider the
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FIGURE 2
Friend set updating rules - Fermi-Birth mode, Fermi-Death mode, and Random-out-random-in mode This figure illustrates how agents enter and exit a
friend set in each mode. Agents are represented as small, cool-colored circles, with links indicating their connections. The orange circle denotes
immediate neighbors, referred to as the friend set in this paper. Each agent is assumed to have a fixed number of friends. (four in this example).
Interactions occur by adding one agent and removing another during each update. In the Fermi-Birth mode, an agent with an opinion similar to the
friend set joins, while a randomly chosen agent leaves. In the Fermi-Death mode, a randomly chosen agent joins, and an agent with an opinion distant
from the friend set leaves. In the Random-out-random-in mode, a randomly chosen agent joins, and another randomly chosen agent exits the
friend set.

Random-out-random-inmode, where both the leaving and entering
agents are randomly selected from the friend set. In addition, we
introduce two other agent updating modes: Fermi-Birth and Fermi-
Death (Figure 2).

In the Fermi-Death mode, an agent with a distant opinion is
removed from the friend set. In other words, the probability of a
friend j in Ni(t) exiting is determined by the formula pout(j|i) =
|sj(t) − si(t)|/∑j|sj(t) − si(t)|. Subsequently, a new random agent is
added to the friend set. In contrast, in the Fermi-Birth mode, one
friend is randomly chosen to leave the friend set, and an agent
whose opinion closely matches that of the friend set is added.
The probability of an agent j joining, denoted as pin(j|i) among all
where pin(j|i) = [smax − |sj(t) − si(t)]/∑j[smax − |si(t) − si(t)|], where
smax represents the theoretical maximum opinion distance.

2.2.2 Introduction of four parameters
The properties of agents in our model are defined in Table 1.

Agents are assumed to update their opinions on the basis of two
types of influences: social conformity and peer pressure. Social
conformity reflects a macroscopic perspective, representing the
overall opinion of the entire society. It is calculated as the average

opinion across all agents, denoted as M = ∑isi(t)/N, where M(t) is
the average opinion of the population at time t that we assume
social conformity covers the overall atmosphere. Peer pressure, on
the other hand, influences agents at amicroscopic level, representing
the pressure from surrounding peers with similar opinions. We
specifically introduce peer pressure by defining a friend set into the
originalHKmodel. Peer pressure is calculated as the average opinion
of the agents within the friend set who share similar opinions.

Toweigh these two types of influences, we introduce a parameter
c, which lies in the interval [0,1]. This parameter represents the ratio
of social conformity to peer pressure influences acting on agents.The
opinion of agent i is updated by combining the influence of social
conformity, weighted by ci, and peer pressure, weighted by 1− ci.
Therefore, the opinion update rule is given by:

si (t+ 1) = ciM+ (1− ci) ∑
j∈N′i (t)

sj (t)

|N′i (t) |

where N′i (t) = {j|j ∈ Ni(t) ∩ |sj(t) − si(t)| < ϵi}. Here, ϵi is a confidence
bound randomly assigned from a uniform distribution between 0
and ϵ, which remains constant throughout the simulation. The value
of ci is also randomly assigned from a uniform distribution between
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TABLE 2 Distributions of each parameter In this model, agents with opinion ranging from −1 to 0 are categorized as radical, while those with opinions
from 0 to 1 are categorized as non-radical.

Opinion range [−1, 0] [0, 1] Distribution

Agent proportion β (Proportion of radical agents in the initial condition) 1 - β Randomly uniform

Ratio of social conformity [0, c × β] [0, c × (1 - β)] Randomly uniform

Confidence bound [0, ε] Randomly uniform

Radical agents, represented by the proportion β, are influenced by social conformity within a range from 0 to c× β. In contrast, non-radical agents are influenced by social conformity within a
range from 0 to c× (1− β). The degree of social conformity is uniformly and randomly assigned to each agent on the basis of their classification as radical or non-radical. Regardless of opinion
value, each agent is assigned a confidence bound uniformly and randomly within the range of 0 to ϵ.

0 and c× ki and remains constant throughout the simulation, where
ki will be defined later.

This model introduces radical agents by extending the opinion
range from [0,1] to [−1,1] (Table 2). Radical agents are defined as
those with opinions between −1 and 0, while non-radical agents
have opinions between 0 and 1. Agents with an opinion value of 0
are included among non-radicals. The initial proportion of agents
with radical opinions is denoted by β, thus the initial proportion of
non-radical agents is denoted as 1− β. To model the tendency for
radicalized agents to maintain their opinions [41], we assume ki =
1− β for non-radicalized agents and ki = β for radicalized ones.

3 Simulation results and findings

We conduct simulations of our model using an agent-based
approach to compare two main aspects: three different friend set
updating modes and four parameters that may represent how social
conformity and peer pressure influence opinion dynamics. The
population size is set to N = 100 in Figures 3, 4 and N = 1000 in
Figures 5–8, with each simulation running for T = 1000 time steps.
Initial opinions are assigned randomly and uniformly. To observe
the overall outcomes, we generate heatmaps and box plots showing
the average, variance, andGini coefficient of the opinion distribution
under different parameter settings at the end time of each simulation
run. We then examine the opinion dynamics to analyze how the
population’s opinions evolve over time. Note that all agents’ opinion
values are increased by two to avoid negative valueswhen calculating
the Gini coefficient.

3.1 The overview of simulation results

First, we briefly present an overview of the simulation
results. The parameter spaces are defined as follows:
c ∈ [0.001,0.003,0.01,0.03,0.1], ϵ ∈ [0.1,0.2,0.3,0.4,0.5], f ∈
[0.003,0.01,0.03,0.1,0.3], and β ∈ [0.01,0.03,0.1,0.3,0.5]. Overall,
according to both the heat maps (Figure 3) and box plots (Figure 4),
the Fermi-Birth and Random-out-random-in modes produce
relatively similar simulation results, while the Fermi-Death
mode leads to different outcomes. In the Fermi-Death mode,
the population tends to converge. In contrast, the Fermi-Birth
and Random-out-random-in modes result in varying opinion
distributions, depending on the parameter settings. These trends

remain consistent across all three modes. However, changes in the
four parameters more significantly affect the population’s opinions
in the Fermi-Birth and Random-out-random-in modes than in
the Fermi-Death mode. Specifically, the range of changes in the
average opinion, opinion variance, and Gini coefficient is smaller
in the Fermi-Death mode, which also shows a narrower spread of
opinions than the other two modes.

Regardless of the friend set updating mode, simulating the
four parameters reveals some consistent patterns. Increasing c
reduces the average, variance, andGini coefficient of the population’s
opinions. Although ϵ shows no clear effect on the average, it
decreases both the variance and the Gini coefficient. An increase in
the parameter f causes either a slight decrease or stabilization in the
average and reduces variance, but it increases the Gini coefficient.
Lastly, β significantly lowers both the average and Gini coefficient,
while slightly increasing variance (Table 3; Figure 3).

3.2 Comparison of opinion dynamics
among three network modes

From the heat maps and box plots, all three modes show
similar overall trends in the average, variance, and Gini coefficient
of the population’s opinions as the values of the four parameters
change (Table 3; Figure 3). Despite these overall similarities, the
opinion distributions in the Fermi-Birth and Random-out-random-
in modes are more sensitive to changes in the four parameters. The
values for average, variance, and Gini coefficient of opinions in these
two modes tend to increase or decrease more significantly with
changes in the four parameters. In contrast, the average, variance,
and Gini coefficient in the Fermi-Death mode exhibit smaller
fluctuations when each parameter changes. Similarly, the range of
the average, variance, andGini coefficient is larger in the Fermi-Birth
and Random-out-random-inmodes while the Fermi-Death exhibits
a smaller range of thesemetrics, which indicates that the population’s
opinions are distributed more narrowly. The time series of opinion
distributions reveals different features across different parameters
and different modes (Figures 4–7). One notable observation is
that the Fermi-Death mode tends to lead to opinion convergence.
In contrast, the Fermi-Birth and Random-out-random-in modes
display relatively similar dynamics, with wider opinion distributions
that can result in outcomes such as consensus, polarization, or
fragmentation. In addition, agents in the Fermi-Death mode change
their opinions more rapidly than those in the Fermi-Birth and
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FIGURE 3
Heat maps of the average, variance, and Gini coefficient of the population’s opinions in three modes Heatmaps and box plots were generated to
illustrate the average, variance and Gini coefficient of the population’s opinions across different parameter values. Each box depicts the value of the
respective statistic, with lighter colors corresponding to higher values. Each simulation consisted of 30 iterations with varying random seeds, with N =
100 agents and T = 1000 time steps per iteration. The results are displayed as follows: Left: Fermi-Birth mode, Center: Fermi-Death mode, and Right:
Random-out-random-in mode. Top: Average of the population’s opinions, Middle: Variance of the population’s opinions, Bottom: Gini coefficient of
the population’s opinions. (a) shows the average, variance, and Gini coefficient of the population’s opinions based on varying confidence bound ϵ and
the ratio of social conformity to peer pressure influences acting on agents c. The ratio of social conformity is shown on the horizontal axis, while the
confidence bound is shown on the vertical axis. Other parameters are set to f = 0.03 and β = 0.1 for this heat map. As the confidence bound increases,
both the variance and Gini coefficient decrease. Similarly, a higher influence from social conformity results in lower variance and Gini coefficients.
These trends are more pronounced in the Fermi-Birth and Random-out-random-in modes than in the Fermi-Death mode. (b) explores the relationship
between the proportion of radical agents and the proportion of friends each agent has. The proportion of radical agents β is displayed on the horizontal
axis, while the proportion of friends f is shown on the vertical axis. For this heatmap, other parameters are set to c = 0.01 and ϵ = 0.3. As the number of
friends increases, the variance and Gini coefficient decrease. Conversely, a higher proportion of radical agents correlates with increased variance and
Gini coefficient. These trends are again more apparent in the Fermi-Birth and Random-out-random-in modes than in the Fermi-Death mode.

Random-out-random-inmodes. A second observation concerns the
behavior of agents with radical opinions, which differs between the
Fermi-Birth and Random-out-random-in modes and the Fermi-
Death mode. In the Fermi-Death mode, agents holding radical
opinions are more likely to shift toward the majority opinion. In
contrast, in the Fermi-Birth and Random-out-random-in modes,
these agents tend to retain their initial opinions. When they do shift,
they move more gradually toward neutral opinions than agents in
the Fermi-Death mode. Third, in some cases, particularly in the
Fermi-Birth and Random-out-random-in modes, radical opinion
shifts are observed. In these instances, clusters of agents holding
similar opinions form a majority, leading to a drastic opinion shift
under certain parameter conditions (Figures 7–9). The fluctuation
range of opinions hovers around 0.5. Note that this phenomenon
occurs only in the Fermi-Birth and Random-out-random-in modes
and not in the Fermi-Death mode.

In summary, the Fermi-Birth and Random-out-random-in
modes generate diverse opinion distribution patterns, including
consensus, polarization, and fragmentation, depending on
parameter conditions. In contrast, the Fermi-Death mode generally
leads to convergence. Another key difference lies in the behavior
of radical agents: in the Fermi-Birth and Random-out-random-
in modes, radical agents generally retain their opinions, whereas,

in the Fermi-Death mode, they are more likely to shift toward
the majority. Furthermore, radical opinion shifts are observed
in the Fermi-Birth and Random-out-random-in modes, a
phenomenon not seen in the Fermi-Death mode. These differences
in simulation outcomes may be attributed to mechanisms by
which agents are removed from their immediate friend sets.
Counterintuitively, it is the removal of agents, rather than the
addition of new ones, that plays a more significant role in shaping
opinion dynamics.

3.3 Comparison of four key parameters

Next, we will examine the effects of the four parameters on
opinion dynamics each by each.

First, we focus on c, which represents the ratio of social
conformity to peer pressure influences acting on agents.
As shown in Figure 5, an increase in c accelerates the shift of
radical agents towards less radical opinions and the shift of non-
radical agents towards more radical opinions, leading to quicker
convergence within the population than at lower values of c. In
other words, a higher c not only facilitates convergence but also
achieves it in a shorter time.
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FIGURE 4
Box plots of the average, variance, and Gini coefficient of the population’s opinions in three modes Each box plot represents the distribution of 30
iterations with different random seeds for the average, variance, and Gini coefficient of the population’s opinions. Each plot is organized as follows:
Left: Fermi-Birth mode, Center: Fermi-Death mode, and Right: Random-out-random-in mode. Top: Average of the population’s opinions, Middle:
Variance, and Bottom: Gini coefficient. The horizontal axis in each plot shows the parameter being varied, while the vertical axis shows the respective
metric. Overview The heat maps in Figure 3 indicate consistent overall trends in the average, variance, and Gini coefficient across the three modes and
four parameters. However, the box plots provide deeper insights into their distributions within each mode. The average typically ranges from -0.5 to 1,
while variance and Gini coefficient fall between 0 and 0.25. Compared to the Fermi-Death mode, the Fermi-Birth and Random-out-random-in modes
exhibit broader distributions for all metrics. Variance and Gini coefficient show more significant changes with the ratio of social conformity and the
proportion of radical agents than with confidence bounds or network density. Observations (a) Boxplot across different values of the ratio of social
conformity to peer pressure. The other parameters are set to ϵ = 0.3, f = 0.03, and β = 0.1. As social conformity increases, the average, variance and Gini
coefficient decrease. This indicates that as stronger conformity to macroscopic influences leads to opinion convergence and reduced opinion diversity.
(b) Boxplot across different values of confidence bounds. The other parameters are set to c = 0.01, f = 0.03, and β = 0.1. While no clear pattern is
observed for the average, higher confidence bounds reduce both variance and Gini coefficient. This indicates that tolerant populations are more likely
to converge on similar opinions. (c) Boxplot across different values of network density, defined as the proportion of friends that each agent has. The
other parameters are set to c = 0.01, ϵ = 0.3, and β = 0.1. No consistent pattern emerges for the average, but a higher network density (more
connections per agent) corresponds to lower variance and Gini coefficient. This indicates that well-connected populations share more similar
opinions. (d) Boxplot across different values of the proportion of agents with radical opinions. The other parameters are set to c = 0.01, ϵ = 0.3, and f =
0.03. As the proportion of radical agents increases, the average opinion decreases, while both variance and Gini coefficient diminish, especially in the
Fermi-Birth and Random-out-random-in modes.

Frontiers in Physics 08 frontiersin.org

https://doi.org/10.3389/fphy.2025.1551215
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


Shibata and Okada 10.3389/fphy.2025.1551215

FIGURE 5
Line Graphs of Changes in Population’s Opinions The line graphs illustrate the changes in the average, variance and Gini coefficient of the population’s
opinions. Left: Fermi-Birth mode, Middle: Fermi-Death mode, Right: Random-out-random-in mode. The vertical axis in both figures represents the
average opinion (Top), opinion variance (Middle), and Gini coefficient (Bottom). (a) The horizontal axis represents the ratio of social conformity to peer
pressure (c) influences acting on agents, while the color indicates different values of the confidence bound (ϵ). (b) The horizontal axis represents the
proportion of agents with radical opinions (β), with color representing network density defined as the proportion of friends that each agent has. These
simulation results offer an analysis from four perspectives 1. Overall tendencies across modes: Across all modes, the overall trends in the average,
variance, and Gini coefficient (whether they increase, decrease, or remain stable) are consistent when adjusting each parameter. 2. Differences across
modes: The Fermi-Birth and Random-out-random-in modes show more significant variations than the Fermi-Death mode. 3. Influence of Parameters:
Changes in the ratio of social conformity, the proportion of friends (network density), and the proportion of radical agents impact the population’s
opinions more than the confidence bound. 4. Sensitivity of Measures: The variance and Gini coefficient are more sensitive to changes in parameter
values than the average opinion. In other words, while the average opinion can remain stable, both the variance and Gini coefficient can fluctuate
considerably.

Second, we consider ϵ, which represents the tolerance of agents
towards different opinions. Figure 6 shows that when ϵ is high,
agents with similar opinions tend to form clusters that merge into
larger ones. This results in more agents belonging to the same
cluster than when ϵ is low. However, in certain cases, not all agents
join these clusters but rather keep their opinions, which impedes
overall convergence and results in fragmentation. Beyond its effect
on opinion distributions, a higher ϵ causes agents to change their
opinions more rapidly, allowing to reach a stable configuration
in less time.

Third, we examine f, which represents the proportion of
friends each agent has within the population, reflecting interaction
density among agents. As illustrated in Figure 7, a higher f value
significantly accelerates changes in opinion dynamics and facilitates
cluster formation.When f is low, the population’s opinions are likely
to fragment. However, increasing f can foster greater convergence.
Furthermore, at higher values of f, radical agents tend to shift
towards less extreme opinions, potentially leading to convergence
around extreme or less extreme opinions.

Finally, we consider β, which represents the proportion of agents
with radical opinions. As β increases, some non-radical agents
become more radical while some radical agents become less radical.
However, as not all agents agglomerate to one cluster, leading to
a more sparse opinion distribution, which causes polarization or
fragmentation between radical and non-radical agents (Figure 8). In
contrast, a smaller β tends to isolate radical agents from themajority
of non-radical agents.

3.4 Characteristics of specific parameters

An intriguing pattern emerges beyond the findings discussed
above: under certain parameter conditions, a subset of agents
undergoes radical opinion shifts, as shown in Figures 6–8. These
shifts are unique to the Fermi-Birth and Random-out-random-in
modes and do not occur in Fermi-Death mode. This phenomenon
is particularly pronounced when the value of f is low and ϵ is high.
In addition, a small value of c or a high value of β appears to
further increase the likelihood of these shifts. Conversely, when f is
sufficiently large or ϵ is sufficiently low, these radical opinion changes
do not occur.

While we have observed these opinion shifts to be more
frequent under parameter settings in the Fermi-Birth and
Random-out-random-in modes, no clear pattern has been
identified regarding the movement or direction of these shifts.
As agents begin to cluster, they experience rapid and radical
opinion changes, incorporating other agents in the process.
However, the trajectory of these radical opinion shifts remains
unpredictable.

4 Discussion and conclusion

Driven by an interest in how social conformity and peer pressure
shape society, we developed an opinion dynamics model to capture
individuals’ susceptibility to both influences. In our model, we
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FIGURE 6
Opinion Dynamics with Varying Ratios of Social Conformity to Peer Pressure influences Each panel represents the time series of the opinions for all
agents over a simulation with a population size of N = 1000 and T = 1000 time steps. Left: Fermi-Birth mode, Middle: Fermi-Death mode, Right:
Random-out-random-in mode. The ratios of social conformity to peer pressure, c, are set as follows: 0.001 (Top), 0.01 (Middle), and 0.1 (Bottom).
Other parameters are set to (ϵ, f,β) = (0.5,0.3,0.01). An increase in the ratio of social conformity c accelerates the shift of radical agents towards less
radical opinions while simultaneously pushing non-radical agents toward more radical opinions. This dynamic results in a faster convergence of
opinions within the population as c increases. In other words, a higher c leads non-radical agents to become more influenced by radical agents,
facilitating overall convergence.

assume that social conformity represents a macroscopic influence,
where individuals are swayed by the population at large, while peer
pressure represents a microscopic influence, where individuals are
affected by their immediate contacts such as friends. Thus, each
agent is influenced by both social conformity and peer pressure in
this model.

Our model builds upon the HK model, which assumes agents
update their opinions on the basis of confidence bounds. We
introduce three additional parameters to modify opinion-updating
rules: (i) the ratio of social conformity to peer pressure influences

acting on individuals, (ii) the proportion of friends each agent has
within a population, and (iii) the proportion of agents with radical
opinions. In our model, individual opinions are represented on a
continuous scale from −1 to 1, with agents holding opinions in the
range from −1 to 0 classified as radical and those holding opinions
from 0 to 1 classified as non-radical.

Beyond exploring how agents update their opinions on the
basis of these parameters, we set up “friend sets” to simulate
the peer pressure influence from immediate social circles. Friend
sets represent a social circle where a fixed number of agents is
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FIGURE 7
Opinion Dynamics with Different Confidence Bound Values Each panel illustrates the time series of opinions for all agents over a simulation with a
population size of N = 1000 and T = 1000 time steps. Left: Fermi-birth mode, Middle: Fermi-death mode, Right: Random-out-random-in mode. The
confidence bound value, ϵ, is set to 0.1 (Top), 0.3 (Middle), 0.5 (Bottom). Other parameters are set to (c, f,β) = (0.01,0.003,0.01). As the confidence
bound value increases, agents with similar opinions tend to form clusters more rapidly. These clusters can merge into large ones, leading to more
agents aligning their opinions within the same cluster than in scenarios with lower ϵ. However, not all agents join these clusters; some may choose to
maintain their individual opinions. This divergence can hinder overall convergence and result in fragmentation within the population. Moreover, a
higher confidence bound value accelerates the rate at which agents adjust their opinions. Thus, increasing the confidence bound impacts both the
dynamics of cluster formation and the speed of changing opinion dynamics.

connected through links, which update at each time step. This
allows agents to enter and leave friend sets dynamically. To observe
how different types of agents influence opinion dynamics, we
implemented threemodes of friend set updates: Fermi-Birth, Fermi-
Death, and Random-out-random-in modes. An overview of each
mode, along with its simulation results, key insights, and real-world
examples, is presented in Table 4.

In the Fermi-Birth mode, one agent with a similar opinion
joins the friend set, while a random agent leaves. This may foster

environmentswhere like-mindedindividuals formgroupswithsimilar
opinions. Examples of such real-world scenarios might include
political parties, religious congregations, and urban communities,
where people naturally gather around shared views. The Fermi-
Death mode, in contrast, accepts any agent into a friend set but
removes those with the most divergent opinions. This scenario may
resemble labor unions or school clubs,whichmay initiallywelcome all
individuals but gradually filter out those with contrasting viewpoints
over time. Lastly, the Random-out-random-in mode simulates an
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FIGURE 8
Opinion dynamics with different proportions of friends within a population that each agent has in three modes Opinion dynamics with different
proportions of friends within a population that each agent has across three modes. Each panel displays the time series of opinions for all agents over a
simulation with a population size of N = 1000 and T = 1000 time steps. Left: Fermi-Birth mode, Middle: Fermi-Death mode, and Right:
Random-out-random-in mode. The proportion of friends that each agents has, f, is set to 0.003 (Top), 0.03 (Middle), and 0.3 (Bottom). Other
parameters are held constant at (c, ϵ,β) = (0.01,0.3,0.01). Increasing the proportion of friends significantly influences consensus formation. Although
higher friend proportions do not create notable patterns in the average opinion of the population, they do affect the distribution of opinions. When the
proportion of friends each agent has increases, agents are more inclined to cluster together. Even agents with radical opinions tend to converge,
whether by shifting toward more neutral opinions or aligning with others holding similar radical opinions. In contrast, when friend proportions are
lower, opinion fragmentation is more likely to occur, with agents maintaining a range of divergent opinions. However, as friend proportions rise,
convergence becomes more feasible, leading agents to increasingly share similar opinions. In addition, increased friend proportions accelerate the
pace at which agents adjust their opinions, producing more rapid shifts in opinion dynamics.

environmentwhere agents are randomlyaddedor removed, regardless
of opinion. This may reflect situations where social interactions
occur more spontaneously and are not strongly influenced by shared
opinions, such as parks, markets, or other public spaces where
people of diverse perspectives interact without selection criteria based
on viewpoints.

Simulation results show that populations in Fermi-Deathmodes
tend to converge, while those in Fermi-Birth and Random-out-
random-in modes either converge, polarize, or fragment depending
on the parameter settings.This outcomemay be attributed to radical
agents being more likely to maintain their opinions in Fermi-Birth
and Random-out-random-in modes but more likely to conform
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TABLE 3 Summary of the simulation results in the average, variance, and Gini coefficient of the population’s opinions across different parameters This
table summarizes the effects of increasing each parameter on the population’s average opinion, the opinion variance, and Gini coefficient.

c: The ratio of social
conformity to peer
pressure influences
acting on agents

ϵ: Confidence bound
value

f: Network density-
The proportion of
friends (agents in the
same group) each
agent has within a
proportion

β: The proportion of
radicalized agents

Average opinion Decreases No clear patterns are observed.
However, high ϵ: Confidenc
slightly increases the average
opinion

Stable ∼ Decreases Decreases

Variance Decreases Decreases Decreases Increases slightly

Gini coefficient Decreases Decreases Decreases Increases

While there are some differences in the simulation results across the three modes, overall tendencies remain consistent. When agents are influenced more by social conformity than peer
pressure, the population’s average opinion decreases. This means that the population becomes more susceptible to radical agents with opinions in the −1 to 0 range. As social conformity
influence increases, both opinion variance and Gini coefficient decrease. Similarly, with an increased confidence bound, the opinion variance and Gini coefficient decrease. When networks
become denser, the opinion variance and Gini coefficient decrease. In contrast, increasing the proportion of radical agents leads to higher opinion variance and a higher Gini coefficient.

to the majority in Fermi-Death mode. These phenomena can be
explained by the underlying process of deciding who to include
or exclude within a group of friends. Intuitively, as in Fermi-Birth
mode, individuals with similar opinions are welcomed, reinforcing
shared views, which may create close-knit groups of like-minded
individuals. In the Fermi-Death mode, as agents with differing
opinions of the groups are excluded, agents may form groups of
relatively similar opinions. In the Random-out-random-in mode,
as agents with any opinions come and exit, agents may foster more
diverse groups.

Furthermore, the simulation of opinion dynamics in Fermi-
Birth and Random-out-random-in modes are more sensitive to
parameter variations, whereas the Fermi-Death mode tends to
converge in a greater number of cases.This suggests that the decision
of whom to remove from a friend set may be critical in attaining
population convergence. In other words, counterintuitively, it may
be more effective to focus on excluding individuals from the friend
set rather than determining whom to include. When designing
social systems to achieve consensus, it could be beneficial to
create mechanisms that facilitate the removal of individuals with
distant opinions.

In exploring the parameters, Table 5 summarizes the
characteristics of each, along with their simulation results, key
insights, and real-world examples.

This study demonstrates that opinion dynamics are profoundly
influenced by the number of friends and the presence of radical
individuals. Our model introduced a variable representing the
number of friends that each individual interactswith.The simulation
results show that a higher number of friends significantly enhances
both the likelihood of convergence and the speed of opinion
changes. In real-world contexts, increasing connections within a
community, such as local projects like public safety, may help
members find common ground. Personal bonds may encourage
people to align on priorities and cooperate on initiatives, reducing
disagreements and driving the group toward consensus [42, 43].

Regarding radical individuals, our simulation reveals that the
presence of individuals with radical opinions plays a crucial

role in opinion dynamics. In cases where there is a small
proportion of radical individuals, as described by the opinion
update process in the HK model, they tend not to interact
with non-radical individuals and maintain their radical opinions.
However, a higher proportion of radical individuals increases
interactions with non-radical individuals, influencing their opinions
and accelerating the migration between radical and non-radical
agents, which in turn leads to population convergence. For
instance, in corporate settings, an increase in radical individuals
who emphasize extreme growth-oriented leadership may influence
others to adopt similar competitive behaviors, sometimes at the
expense of ethical considerations. Conversely, a cult group with a
small number of extreme adherents may not significantly impact the
broader population.

The ratio of social conformity to peer pressure also affects
the overall convergence of opinions. Our model shows that when
individuals are more influenced by societal norms (macroscopic
influence) than by their immediate social groups (microscopic
influence), they are more likely to adopt the opinions of radical
individuals. Macroscopic influence refers to societal forces
(social conformity), while microscopic influence comes from an
individual’s close social circle (peer pressure), such as friend groups,
family, or coworkers. As the ratio of social conformity increases,
opinion differences across the population decrease, reducing both
variance and the Gini coefficient of the opinions. This suggests that
stronger macroscopic influences tend to homogenize opinions. In
real-world scenarios, such as the filter bubble effect on social media,
individualsmay perceive their environments as the norm, which can
reinforce specific ideologies and make them susceptible to extreme
views or misinformation.

Confidence bound values, representing an individual’s tolerance
toward differing opinions, also play a role in opinion dynamics
[23, 26, 27]. Our simulation results show that higher confidence
bound values lead to the early formation of opinion clusters and
expedite consensus. This may be observed in multicultural cities
where people with differing viewpoints form distinct clusters, with
limited interaction between different groups.
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FIGURE 9
Opinion dynamics with different proportions of agents with radical opinions in three modes Opinion dynamics with different proportions of agents
with radical opinions across three modes. Each panel presents the time series of opinions for all agents over a simulation with a population size N =
1000 and T = 1000 time steps. Left: Fermi-birth mode, Middle: Fermi-death mode, and Right: Random-out-random-in mode. The proportion of agents
with radical opinions is set to 0.01 (Top), 0.1 (Middle), and 0.3 (Bottom). Other parameters are fixed at (c, ϵ, f) = (0.1,0.5,0.003). As the proportion of
radical agents increases, some non-radical agents tend to adopt more radical positions, while certain radical agents shift toward less radical views. This
bidirectional adjustment increases the likelihood of convergence within the population. In addition, when the initial proportion of radical agents is
higher, these shifts occur more rapidly. Despite this increased likelihood of convergence, higher proportions of radical agents can also lead to
polarization or fragmentation. The opinion distribution becomes sparser as not all agents merge into a single cluster. This polarization creates distinct
clusters of radical and non-radical agents. This polarization may hinder population convergence. In contrast, when the proportion of radical agents is
low, they tend to remain isolated from the larger group of non-radical agents, resulting in fewer interactions and less influence between these groups.

For unique opinion dynamics, our simulations identify cases
where some agents shift toward less popular opinions in Fermi-
Birth and Random-out-random-in modes. This radical opinion
shift may be linked to the variance and Gini coefficient, especially
when comparing these modes with Fermi-Death. Such phenomena
are particularly evident when confidence bounds are high, the
number of friends is small, the ratio of social conformity is low,

or radical agents are fewer. The timing and dynamics of this
shift are unpredictable, but similar events occur in real life. For
example, controversial science-related issues can lead to the spread
of misinformation, causing the majority to adopt false beliefs [8,
44, 45]. This indicates that the number of social connections an
individual has may be a crucial factor in shaping opinion dynamics.
Insights from related research illuminate how network density
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TABLE 4 Overview and insights of simulation results of three modes This table provides an overview of the simulation results across three modes.

Fermi-Birth Fermi-Death Random-out-random-in

Friend Set Dynamics One agent with a similar opinion joins; one
random agent exits

One random agent joins; one agent with a
distant opinion exits

One random agent joins; one random agent
exits

Outcome Patterns The population tends to either converge,
polarize, or fragment depending on the
parameter settings

The population are more likely to converge in
a greater number of cases

The population tends to either converge,
polarize, or fragment depending on the
parameter settings

Insights Counterintuitively, focusing on who exits the friend set - rather than who joins - can have a significant impact on reaching consensus. This suggests
that designing social systems to remove individuals with distant opinions could be an effective way to promote agreement

Real-world examples Groups with similar opinions - political
parties, religious groups, and neighborhoods
where people naturally come together based
on shared views

Selective groups with initial openness - labor
unions or high school clubs which may
initially welcome everyone but tend to filter
out those with differing opinions

Open, diverse interaction spaces - parks or
markets

It illustrates the impact on opinion dynamics as agents form social circles, referred to as “friend sets” in this study. The model assumes that each time step involves adding one agent to and
removing another agent from each social circle, leading to distinct patterns in opinion dynamics. The simulation outcomes remain consistent regardless of the variation in the four key
parameters.

TABLE 5 Overview and insights of simulation results of four parameters The table provides an overview of the simulation results, highlighting the
effects of increasing each parameter on opinion dynamics.

f β c ϵ

Characteristics The proportion of friends
within a population that each
agent has

The proportion of agents with
radical opinions

The ratio of social conformity
to peer pressure influences
acting on agents

The degree of tolerance that
agents have towards differing
opinions

Results If each parameter
increases

• Accelerates more cluster
formation

• Accelerates the speed of
population opinion
dynamics

• Accelerates more cluster
formation

• Agents with radical and
non-radical opinions
interact more

• Increases the likelihood of
achieving consensus

• Accelerates the speed of
population opinion
dynamics

• Accelerates more cluster
formation

• Accelerates the speed of
population opinion
dynamics

Insights If each parameter
increases

A higher number of friends
significantly enhances both the
likelihood of reaching
consensus and the speed of
opinion changes

A higher proportion of radical
individuals increases
interactions with non-radical
individuals, influencing their
opinions and accelerating the
migration between radical and
non-radical agents, which in
turn leads to population
convergence

When individuals are more
influenced by societal norms
(macroscopic influence) than
by their immediate social
groups (microscopic
influence), they are more likely
to adopt the opinions of
radical individual. Stronger
macroscopic influences may
homogenize opinions

Higher confidence bound
values lead to the early
formation of opinion clusters
and expedite consensus

Real-world examples Increasing connections within
a community:
Local initiatives such as public
safety projects

In corporate settings, an
increase in individuals
advocating extreme,
growth-focused leadership can
lead others to adopt similarly
aggressive, competitive
behaviors, occasionally at the
expense of ethical standards

People might choose to
purchase certain products or
brand simply because they
observe a majority of others
doing so, conforming to the
prevailing culture instead of
being persuaded by friends

Multicultural cities where
individuals from different
backgrounds often form
separate clusters with limited
interactions across groups,
which can lead to distinct,
sometimes isolated
communities

Overall, the simulations indicate that each parameter uniquely influences the dynamics. Notably, these effects remain consistent across all three simulation modes, demonstrating robust
patterns of influence for each parameter.

and structure influences these dynamics, shedding light on the
mechanisms of collective behavior [46, 47].

While this study on opinion dynamics has developed a
theoretical model to explore how individual interactions and factors
such as friend set updating modes and exclusive interactions
among agents drive the societal consensus via social conformity

and peer pressure. The next challenge in applying it to real-
world scenarios lies in identifying the appropriate data to
represent each parameter [48]. We believe this can be achieved by
incorporating insights from related fields such as social sciences
and data science to better represent reality through modeling
and simulations.
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