
TYPE Original Research
PUBLISHED 25 April 2025
DOI 10.3389/fphy.2025.1551969

OPEN ACCESS

EDITED BY

Francisco Perez-Reche,
University of Aberdeen, United Kingdom

REVIEWED BY

Fajun Yu,
Shenyang Normal University, China
Vinicius F. Dal Poggetto,
University of Trento, Italy

*CORRESPONDENCE

Piotr Skrzypacz,
piotr.skrzypacz@nu.edu.kz

RECEIVED 26 December 2024
ACCEPTED 06 March 2025
PUBLISHED 25 April 2025

CITATION

He J-H, Bai Q, Luo Y-C, Kuangaliyeva D,
Ellis G, Yessetov Y and Skrzypacz P (2025)
Modeling and numerical analysis for MEMS
graphene resonator.
Front. Phys. 13:1551969.
doi: 10.3389/fphy.2025.1551969

COPYRIGHT

© 2025 He, Bai, Luo, Kuangaliyeva, Ellis,
Yessetov and Skrzypacz. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with
these terms.

Modeling and numerical analysis
for MEMS graphene resonator

Ji-Huan He1,2,3, Qingmei Bai3, Ye-Cheng Luo2,
Dilyara Kuangaliyeva4, Grant Ellis4, Yerkebulan Yessetov4 and
Piotr Skrzypacz4*
1School of Information Engineering, Yango University, Fuzhou, Fujian, China, 2School of Jia Yang,
Zhejiang Shuren University, Hangzhou, Zhejiang, China, 3School of Mathematics and Big Data,
Hohhot Minzu College, Hohhot, Inner Mongolia, China, 4School of Sciences and Humanities,
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This paper delves into the static and dynamic behavior of graphene cantilever
beam resonators under electrostatic actuation at their free tips. A rigorous
analysis of the system’s response is performed. The constitutive nonlinear
equation of the system is derived using the energy method and Hamilton’s
principle. An analytical solution to the nonlinear static problem is obtained.
The generalized stiffness coefficient for the lumped model of the cantilever
graphene beam under load at its tip is calculated, enabling a comprehensive
analysis of its dynamic behavior. A key focus is on investigating the dynamic
pull-in conditions of the system under both constant and harmonic excitation.
Analytical predictions are validated through numerical simulations. The system
exhibits periodic solutions when the excitation parameters are below a certain
threshold described by a separatrix curve, leading to sustained oscillations. On
the other hand, if the excitation parameters exceed this threshold, the system
experiences pull-in instability, causing the beam to touch down. Furthermore,
we explore the impact of excitation frequency on the dynamic response of the
graphene cantilever beam under harmonic load. The simulations reveal that
choosing the excitation frequency near the beam’s resonance frequency can
lead to structural collapse under certain parameter conditions.

KEYWORDS

MEMS, graphene resonator, dynamic pull-in, periodic solutions, singular MEMS
oscillators

1 Introduction

Microelectromechanical systems (MEMS) have revolutionized numerous fields
by enabling the creation of miniaturized devices with remarkable performance and
functionalities. MEMS devices are distinguished by their compact size, low power
consumption, and ability to integrate mechanical, electrical, and optical features on
a single chip [1]. Among the vital components of MEMS are microresonators that
are excited near their resonance frequencies. These microresonators find extensive
applications in mass and force sensors, including the detection of proteins [2],
molecules [3], electrons, and nanoparticles [4]. However, the sensitivity of these
sensors can be improved by addressing the weight of the microbeam, as the
minimum detectable quantity is often limited by the mass of the resonator. Therefore,
lightweight and high-strength materials are highly desirable to overcome this limitation.
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TABLE 1 Mechanical properties of graphene, steel, and silicon.

Material Young’s modulus
(GPa)

Tensile strength
(GPa)

Graphene 2000± 400 [7] 130± 10 [33]

Steel 200 [39] 0.25 [40]

Silicon 130− 169 [41] 7 [42]

In this context, graphene has emerged as a promising
material for MEMS and microresonators due to its light weight
and outstanding mechanical properties, including high Young’s
modulus and tensile strength. Table 1 shows the summary of
graphene’s mechanical characteristics compared to common MEMS
components such as steel and silicon.

Graphene is a single layer of carbon atoms tightly bound
together. The superior properties of graphene stem from its
carbon-carbon bond structure and sp2 hybridization [5]. Beyond
its exceptional mechanical properties, graphene also exhibits
remarkable electronic characteristics, making it a prime candidate
for spintronics and pseudospintronics applications in Pesin
and MacDonald [6]. This unique arrangement gives graphene
remarkable mechanical properties, including a high Young’s
modulus of 2 TPa [7] and a failure strength that is significantly
greater than that of the strongest steel [8]. It also grants it remarkable
ductility, making it stretchable by up to 20% [9]. Its possible uses
span several areas, such as the creation of transparent electrodes,
ultra-strong composites, and flexible, stretchable screens for display
or energy storage purposes [10]. Additionally, graphene’s topological
properties have been explored in the context of bound states and
conical singularities, which could further enhance its functionality
in next-generation nanodevices, as in Rüegg and Lin [11].

Interestingly, though graphene was not originally thought
to exhibit piezoelectric properties due to its symmetry, recent
advancements have enabled its application in the field of micro
and nano-electromechanical systems (MEMS/NEMS). This could
enable the development of new energy harvesting, actuation,
and transduction technologies [12]. Furthermore, graphene’s high
sensitivity and low mass make it an ideal candidate for high-
resolution mass sensing, and its high thermal conductivity suggests
potential use as a thermal management material [13]. Its thermal
conductivity at room temperature equals 500Wm−1K−1 [14]. It is
worth mentioning the importance of graphene’s adhesion energy
with substrates for the stable, long-term operation of micro and
nanodevices. Furthermore, the exceptional tribological properties
of graphene make it beneficial for reducing friction and offering
protection against corrosion [10, 15].

Graphene’s remarkable attributes offer opportunities for further
miniaturization of MEMS resonators and have led to a new wave of
research in this area. Utilizing graphene resonators inmass detection
has become a particularly compelling topic of study. For example,
in [16], it was found that nonlinear vibrations can enhance the
sensitivity of a graphene microbeam resonator. A related approach
involves studying nonlinear solutions, which have been widely
applied in mathematical models of wave propagation and stability
analysis in nonlinear systems in Li and Yu [17]. Natsuki et al.,
employing the continuum elasticity theory, have shown that the

mass sensors with double-layered graphene sheets (DLGSs) provide
higher sensitivity than single-layered graphene sheets (SLGSs) [18].
Another way to increase the detection sensitivity has been studied
by Karličić et al. [19]. The study associates it with the increase in
the magnetic field that results in the sensor’s frequency shift. Many
works study the potential applications of graphene microresonators
through experimental results. However, we are interested in the
mathematical analysis of such systems. For instance, Wei et al.
investigated the steady-state behavior of a graphene Euler beam
subjected to a constant load and provided analytical and finite
element solutions [20]. Using the Rayleigh–Ritz method with
Hermite cubic interpolation yielded approximate finite element
solutions, which were validated against analytical solutions.

Several studies have investigated the dynamic behavior of
electrostatically actuated systems made of graphene. Among the
notable research works are Anjum and He [21], Kadyrov et al.
[22], Skrzypacz et al. [23], Wei et al. [24], and Omarov et al. [25].
Recent studies on soliton dynamics in nonlinear Schrödinger-
type equations in Qing et al. [26] provide insights into analytical
approaches that could complement the study of nonlinear MEMS
resonators. Electrostatic actuation is widely preferred in the field of
microelectromechanical systems due to its simplicity and efficiency,
offering advantages over alternative actuation methods such as
electrothermal, piezoelectric, and electromagnetic actuation [1, 27].
When electrostatically actuated resonators are employed, the electric
load applied to a cantilever beam comprises both AC and DC
components. The DC component induces deflection of the beam
to its equilibrium position, while the AC component generates
vibrations around this equilibrium position. The equilibrium
position is attained when the restoring force of the beam matches
the electrostatic force [1].

However, if the DC polarization voltage is increased beyond a
certain threshold, exceeding the restoring force, the beam continues
to deflect until it contacts an adjacent structure or surface, resulting
in collapse. This phenomenon is known as the pull-in instability,
and the threshold voltage at which it occurs is referred to as the
pull-in voltage. Pull-in can be classified into two types: static pull-
in and dynamic pull-in. Static pull-in describes the occurrence of
pull-in solely due to DC actuation, while dynamic pull-in can arise
from AC harmonic excitation or the motion of the structure [1].
Analyzing and understanding pull-in is essential in the design of
MEMS resonators. It is crucial to tune the electric load parameters to
avoid pull-in instability, as it can lead to structural collapse and device
failure. Skrzypacz et al. [23] conducted a comprehensive investigation,
providing the necessary and sufficient conditions for the existence of
periodic solutions for a lumped mass model subjected to a constant
DC voltage.This study contributed valuable insights into the dynamic
behavior of themodel under a constant loading scenario.Additionally,
the pull-in phenomenon of the same lumpedmassmodel excited by a
harmonic load was explored in two separate research works: Kadyrov
et al. [22]andOmarovet al. [25].InOmarovet al. [25],Sturm’stheorem
was employed to identify periodic solutions of the lumped mass
model with general initial conditions, and their analytical results were
verified through numerical simulations implemented in the Python
programming language. Furthermore, thework ofAnjumandHe [21]
and Wei et al. [24] delved into the study of the nonlinear graphene
beam equation and the existence of several natural frequencies of the
system. These studies utilized the variational iteration method based
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FIGURE 1
A schematic of a graphene microresonator.

on a Laplace transform and the Pade technique to obtain approximate
solutions. Recent examples of approximation techniques for periodic
solutions toMEMSoscillators can be found inHe [28], while the pull-
down instability of the nonlinear quadratic oscillators is investigated
inHe et al. [29]. Studies on nonlinear wave equations have shown that
higher-order dispersion effects play a crucial role in the stability and
response of nonlinear systems, as in Li and Fajun [30].

This paper investigates the static and dynamic behavior of a
graphene cantilever beam subjected to electrostatic actuation at its
free tip. The same oscillator model proposed in Skrzypacz et al. [31]
is employed, comprising a low-mass graphene beam of length ℓ, an
inflexible platform acting as a movable electrode attached to the free
end of the beam, and a fixed electrode covered with a dielectric
layer of thickness h and dielectric constant εr, as shown in Figure 1.
The potential difference and gap between the two electrodes are
represented by V and d, respectively. The interaction of attractive
electrostatic force due to the potential difference and the nonlinear
restoring force of the beam is expected to lead to high-frequency
oscillations. The role of nonlocal interactions in phononic lattices,
which share similarities with graphene-based resonators, has also
been studied to understand their impact on bound modes and wave
propagation in Poggetto et al. [32].

The study is structured as follows: In Section 2, the constitutive
nonlinear equation governing the system is derived using the energy
method and Hamilton’s principle, and boundary conditions are
established. In Section 3, an analytical solution for the static problem
is computed. Section 4 presents the development of a lumped mass
model, which is employed to study the fundamental dynamics of
the system and also provides the calculation of the generalized
stiffness coefficient for the graphene cantilever beam under the
load at its tip. The pull-in phenomenon under both constant and
harmonic excitation is analyzed in Section 5. Simulation results for
dynamic pull-in and resonance are presented in Section 6. Finally,
conclusions are drawn in Section 7.

2 Mathematical model

This section focuses on deriving the constitutive nonlinear
equation for a cantilever beam made of graphene by employing

Hamilton’s principle, an essential concept in variational
mechanics.

2.1 Constitutive stress–strain equation for
graphene

It is theoretically and experimentally justified that the
stress–strain relationship for the classical Euler–Bernoulli beam
made of graphene can be written as

σ = Eε+D|ε|ε, (1)

where σ, ε, and E are the stress, strain, and Young’s modulus andD =
−E2/4σmax is the second-order elastic stiffness constant [33, 34].
The negative value of D is associated with reduced stiffness at high
tensile strains and increased stiffness at high compressive strains.
The values of E and D were determined by Khan et al. [35] through
the measurement of deformation in single-atomic-layer graphene
sheets using nanoindentation with an atomic force microscope. The
experimental findings yielded a value of E as 2.4± 0.04TPa andD as
−2.0± 0.4TPa. According to Lee et al. [33], the nonlinearity of the
stress–strain response of graphene arises from the third-order term
of a strain-dependent energy potential expressed as a Taylor series.
This characterization of the stress–strain behavior of graphene will
be utilized in the forthcoming modeling section.

2.2 Model equation for a Euler–Bernoulli
beam made of graphene

Here, we consider a cantilever beam subjected to a force applied
at the free end and analyze a small segment on the beam before and
after deflection (see Figure 2). In the following, w = w(t,x) denotes
the deflection of the beam at time t and axial position x. According
to the Euler–Bernoulli beam theory, the cross section of the beam
remains plane and perpendicular to the beam’s centerline [1]. To
analyze the behavior of the beam, it is necessary to determine the
axial strain at a specific point, denoted as point B, located at a
distance y from the centerline; see Figure 2. In the given figure, the
axial displacement of point B caused by pure bending is represented
as ub, and it is expressed as

ub = −yw′.

The axial strain εb can be calculated as

εb =
∂ub
∂x
= −yw″.

By integrating the stress–strain Equation 1with respect to strain,
we obtain the strain energy density, which represents the energy
stored per unit volume in the material. This energy density is a
measure of the potential energy stored within the beam due to
deformation. Integrating this quantity over the entire volume of the
beam allows us to determine the total potential energy of the system.
Thus, we get

U = 1
2
EεεT + 1

3
D|ε|εετ, (2)
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FIGURE 2
A segment of a beam before and after bending.

where U is the strain energy density, and ε = (εx,εy,εz,γxy,γxz,γyz)
is the strain, and where εx =

∂u
∂x

, εy =
∂w
∂y

, εz =
∂v
∂z

, γxy =
1
2
( ∂u
∂y
+ ∂w

∂x
),

γxz =
1
2
( ∂u
∂z
+ ∂v

∂x
), and γyz =

1
2
( ∂w

∂z
+ ∂v

∂y
) are the strain components.

For the Euler–Bernoulli beam, it is assumed that

εx =
∂u
∂x
= −yw″ = εb,

and

εy = εz = γxy = γxz = γyz = 0.

Therefore, Equation 2 simplifies to

U = 1
2
Eε2x +

1
3
D|εx|ε2x.

Then, the total potential energy Epot can be expressed as

Epot =
1
2
∫
V
Eε2x dV+

1
3
∫
V
D|εx|ε2x dV. (3)

Inserting the axial strain into Equation 3 yields

Epot =
1
2
∫
V
E(−yw″)2dV+ 1

3
∫
V
D| − yw″|(−yw″)2dV

= 1
2
∫
V
E(yw″)2dV

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
E(1)pot

+ 1
3
∫
V
D|w″|(w″)2y3dV

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
E(2)pot

. (4)

Note that y is the distance from the centerline. We have

E(1)pot =
1
2
∫
V
E(yw″)2dV = 1

2
∫
ℓ

0
∫
A
E(yw″)2dAdx

= 1
2
∫
ℓ

0
E(w″)2(∫

A
y2dA) dx,

(5)

where ℓ is the length of the beam, and A is the cross-sectional area.
Expressing the second moment of inertia of the cross section as

I1 = ∫
A
y2dA,

Equation 5 can be rewritten as

E(1)pot =
EI1
2
∫
ℓ

0
(w″)2dx. (6)

E(2)pot is expanded in the similar manner:

E(2)pot =
1
3
∫
V
D|w″|(w″)2y3dV = 1

3
∫
ℓ

0
∫
A
D|w″|(w″)2y3dAdx

= 1
3
∫
ℓ

0
D|w″|(w″)2(∫

A
y3dA) dx =

DI2
3
∫
ℓ

0
|w″|(w″)2dx,

(7)

where

I2 = ∫
A
y3dA

is the third moment of inertia of the cross section. Inserting
Equations 6, 7 into Equation 4 gives the following potential
energy equation:

Epot =
EI1
2
∫
ℓ

0
(w″)2dx+

DI2
3
∫
ℓ

0
|w″|(w″)2dx.

The kinetic energy of a beam can be calculated based on the
mass distribution along the length of the beam and the velocity of its
individualmass elements.The general formula for the kinetic energy
of a beam is given by

Ekin =
ρA
2
∫
ℓ

0
ẇ2dx,

where ρ is material density, and ẇ is the time derivative of the beam
deflection w(x, t). The work W done by the external force on the
cantilever beam at the free end can be written as

W = Fw (ℓ) ,

where w(ℓ) is the deflection of the beam at x = ℓ.

2.3 Hamilton’s principle

In order to derive the graphene beam equation of motion, we
need to use the Lagrangian energy functional I(w) and Hamilton’s
principle [1, 36]. The Lagrangian energy functional is defined by

I (w) = Ekin (w) −Epot (w) +W (w) .

Applying the Hamilton’s principle on the Lagrangian I(w) gives

∫
t2

t1
δI (w) dt = ∫

t2

t1
[]δEkin (w) − δEpot (w) + δW (w)] dt = 0, (8)

where t1 and t2 are two instants of time during which the system
experiences the variation, and δ is the variation operator. The
Hamilton’s principle requires calculating the variations of the
work of the external force (δW), the kinetic δEkin and potential
(δEpot) energies, simplifying and expressing in terms of variation
displacement δw. The variation of the kinetic energy and the work
is given as

δW = Fδw (ℓ) ,

and

δEkin = ρA∫
l

0
ẇδẇdx. (12)
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By applying integration by parts to the variation of the kinetic
energy expression by Equation 9, we can rewrite it in terms of the
virtual displacement δw as follows:

∫
t2

t1
(δEkin) dt = ∫

t2

t1
[ρA∫

ℓ

0
ẇδẇdx] dt = ρA∫

ℓ

0
[∫

t2

t1
ẇδẇdt] dx

= ρA∫
ℓ

0
[

[
ẇδw|t2t1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
=0

−∫
t2

t1
ẅδwdt]

]
dx

= ρA∫
ℓ

0
[−∫

t2

t1
ẅδwdt] dx.

(10)

The boundary term in time vanishes in Equation 10 due to
the boundary conditions imposed on the virtual displacement.
Specifically, it is assumed that the virtual displacement satisfies
δw(t1) = δw(t2) = 0. The variation of the potential energy Epot can
be written as

δEpot = EI1∫
ℓ

0
w″δw″dx+DI2∫

ℓ

0
|w″|w″δw″dx. (11)

To express Equation 11 in terms of displacement variation
δw, several integrations by parts need to be implemented as
shown below:

EI1∫
ℓ

0
w″δw″dx = EI1w

″δw′|ℓs0 − EI1w‴δw|
ℓ
0 +EI1∫

ℓ

0
w
⁗
δwdx, (12)

DI2∫
l

0
|w″|w″δw″dx = DI2|w″|w″δw′|

ℓ
0 −DI2 (|w

″|w″)′δw|ℓ0

+DI2∫
ℓ

0
(|w″|w″)″δwdx.

(13)

Substituting Equations 12, 13 into Equation 8 and grouping the
terms gives

∫
t2

t1
{∫

ℓ

0
[−ρAẅ−EI1w′′′′ −DI2(|w′′|w′′)

′′]δwdx

−[EI1w′′ +DI2|w′′|w′′]δw′|
ℓ
0

+[EI1w′′′ +DI2(|w′′|w′′)
′ + F]δw (ℓ)

−[EI1w′′′ +DI2(|w′′|w′′)
′]δw (0)} dt = 0.

(14)

According to the definition, the variation δw and δu are
arbitrary; therefore, each group of terms must be 0 in order
to satisfy Equation 14, which leads to the following equation of
motion and boundary conditions:

ρAẅ+EI1w
⁗
+DI2(|w″|w″)

″ = 0,

EI1w‴+DI2(|w
″|w″)′ = 0; or δw = 0 at x = 0,

EI1w‴+DI2(|w″|w″)
′ = −F; or δw = 0 at x = ℓ, (15)

EI1w
″ +DI2|w″|w″ = 0; or δw′ = 0 at x = 0,ℓ. (16)

Because the beam is fixed at x = 0, then

w (t,0) = w′ (t,0) = 0. (17)

Furthermore, Equations 16, 17 imply

EI1w
″ +DI2|w″|w″ = 0 at x = ℓ,

and from Equation 15 we can conclude that

EI1w‴+DI2(|w″|w″)
′ = −F at x = ℓ.

3 Analytic solution for static problem

Let F(x) = F be a point load at the free end of the beam.The beam
equation under the point load is expressed as follows:

EI1w
⁗
+DI2(|w″|w″)

″ = 0, 0 < x < l, (18)

subject to the boundary conditions.

w (0) = 0, (19)

w′ (0) = 0, (20)

(EI1 +DI2|w″|)w″|x=ℓ = 0, (21)

(EI1w‴+DI2(|w
″|w″)′)|x=ℓ = −F. (22)

Integrating Equation 18 twice and applying the boundary
conditions by Equations 21, 22, we get

(EI1 +DI2|w
″|)w″ = −F (x− ℓ) , 0 < x < l. (23)

The right-hand side of Equation 23 is positive, which implies
that the left-hand side of the equation is also positive for F ≥ 0. A
cantilever beam subjected to a positive load F at the free tip bends
down. This static response of the system is associated with a concave
shape of the deflection functionw(x).Therefore, we requirew″ to be
negative. Hence, Equation 23 can be expressed as

EI1w
″ −DI2(w″)

2 = −F (x− ℓ) ,

which yields

w″ =
EI1 ±√(EI1)2 − 4DI2F (x− ℓ)

2DI2
. (24)

The real solution of Equation 24 exists only if F is sufficiently
small; that is, F ≤ (EI1)

2

4|D|I2l
. Equation 24 satisfies the boundary

condition by Equation 21 only if

w″ =
EI1 −√(EI1)2 − 4DI2F (x− ℓ)

2DI2
. (25)

Integrating Equation 25 once and twice results in

w′ =
EI1
2DI2

x+
((EI1)2 − 4DI2F (x− ℓ))

3
2

12(DI2)2F
+C1,

and

w =
EI1
4DI2

x2 −
((EI1)2 − 4DI2F (x− ℓ))

5
2

120(DI2)3F2 +C1x+C2,
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where C1 and C2 are integration constants that can be found
using the boundary conditions by Equations 19, 20. It follows

C1 = −
((EI1)2 + 4DI2Fℓ)

3
2

12(DI2)2F
,

and

C2 =
((EI1)

2 + 4DI2Fℓ)
5
2

120(DI2)3F2 .

Thus, the analytic solution of the graphene beam equation under
the point load at the tip can be written as

w (x) =
EI1
4DI2

x2 −
((EI1)

2 − 4DI2F (x− ℓ))
5
2

120(DI2)3F2 −
((EI1)

2 + 4DI2Fℓ)
3
2

12(DI2)2F
x

+
((EI1)2 + 4DI2Fℓ)

5
2

120(DI2)
3F2 .

(26)

Note that when D approaches 0, the analytic solution provided
in Equation 26 coincides with the classical deflection equation
for a cantilever beam under a point load, where the beam is
assumed to be a linear elastic material and the deflection is small
compared to the length of the beam. It also assumes that the load
is applied perpendicular to the beam’s longitudinal axis and that
the beam has a uniform cross-sectional area. The calculation is
presented in Supplementary Appendix.

4 Galerkin approximation

4.1 Lumped mass model

Let us consider the deflection of the vibrating elastic beammade
of graphene at the axial position x ∈ [0,ℓ] at time t > 0, which can be
expressed as

ρAẅ (t,x) +EI1w
⁗
(t,x) +DI2(|w″ (t,x) |w″ (t,x))

″ = 0, (27)

with boundary and initial conditions given as follows.

w (t,0) = 0, (28)

w′ (t,0) = 0, (29)

(EI1 +DI2|w
″ (t,ℓ) |)w″ (t,ℓ) = 0, (30)

EI1w‴(t,ℓ) +DI2(|w″ (t,ℓ) |w″ (t,ℓ))
′ = −FE, (31)

and

w (0,x) = 0,

ẇ (0,x) = 0.

where FE is an electrostatic Coulomb force that can be expressed as
Skrzypacz et al. [31].

FE =
ε0V

2S

2(d+ h
εr
−w (t,ℓ))

2 .

We assume that the beam has a simple geometry and the
deformation is not too large. Therefore, to study the essential
dynamics of the graphene beam undergoing a point force at the free
tip, we use a one-mode Galerkin approximation,

w (x, t) ≈ X (t)Y (x) ,

where X(t) is an unknown time-dependent coefficient, and Y(x) is a
trial function that satisfies the boundary condition of the cantilever
beam (i.e., Y(0) = Y′(0) = 0). First, we derive a weak formulation
of the governing nonlinear differential Equation 27 by multiplying
both sides with the trial function and integrating over the interval
[0,ℓ]:

∫
ℓ

0
ρAẅ (t,x)Y (x) dx+∫

ℓ

0
EI1w
″ (t,x)Y″ (x) dx

+∫
ℓ

0
DI2 (|w″ (t,x) |w″ (t,x))Y″ (x) dx

+ (EI1w‴(t,ℓ) +DI2(|w
″ (t,ℓ) |w″ (t,ℓ))′)Y (ℓ)

− (EI1w″ (t,ℓ) +DI2|w″ (t,ℓ) |w″ (t,ℓ))Y′ (ℓ) = 0.

Employing boundary conditions by Equations 28–31 and
dividing both sides by Y(ℓ) yields

1
Y (ℓ)
∫
ℓ

0
ρAẅ (t,x)Y (x) dx+ 1

Y (ℓ)
∫
ℓ

0
EI1w
″ (t,x)Y″ (x) dx

+ 1
Y (ℓ)
∫
ℓ

0
DI2 (|w″ (t,x) |w″ (t,x))Y″ (x) dx = FE.

(32)

Then, the corresponding Galerkin equation for Equation 32
is given as

m1Ẍ (t) + k1X (t) + k2|X (t) |X (t) =
ε0V

2S

2(d+ h
εr
−X (t)Y (ℓ))

2 , (33)

where

m1 =
ρA
Y (ℓ)
∫
ℓ

0
Y2 (x) dx,

k1 =
EI1
Y (ℓ)
∫
ℓ

0
(Y″ (x))2dx,

k2 =
DI2
Y (ℓ)
∫
ℓ

0
|Y″ (x) |(Y″ (x))2dx.

(34)

The coefficientm1 can be considered an effective mass, while the
coefficients k1 and k2 are stiffness coefficients in the lumped mass
model for the clamped-clamped beam fabricated using graphene.

4.2 Dimensionless
single-degree-of-freedom model

Now, let us consider a choice of Y(x) for our Galerkin equation.
Skrzypacz et al. [37] used the following scaled first eigenfunction for
one-mode Galerkin approximation

Ŷ (x) = 1
2
(Ŷ3 (x,μ1) −

Ŷ1 (1,μ1)

Ŷ2 (1,μ1)
⋅ Ŷ4 (x,μ1)),
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where

Ŷ1 (x,μ1) = cosh(μ1x) + cos(μ1x) ,

Ŷ2 (x,μ1) = sinh(μ1x) + sin(μ1x) ,

Ŷ3 (x,μ1) = cosh(μ1x) − cos(μ1x) ,

Ŷ4 (x,μ1) = sinh(μ1x) − sin(μ1x) ,

and the spectral parameter μ1 is the first positive root of the
following transcendental equation:

1+ cosh(μ)cos(μ) = 0.

Here, Ŷ(x) is the solution of boundary eigenvalue problem

Ŷ
⁗
(x) = μ4Ŷ (x) , 0 < x < 1,

subject to boundary conditions

Ŷ (0) = Ŷ′ (0) = 0 and Ŷ″ (1) = Ŷ‴(1) = 0.

However, for our Galerkin ansatz, we choose Y(x) = Ŷ( x
ℓ
) for x ∈

[0,ℓ] such that

Y (0) = Y′ (0) = 0 and Y″ (ℓ) = Y‴(ℓ) = 0.

Now, let us compute m1, k1, and k2 in Equation 34. In
Skrzypacz et al. [37], it was shown that

∫
1

0
Ŷ2 (x) dx = 1

4
and ∫

1

0
(Ŷ″ (x))2dx = μ4

1∫
1

0
Ŷ2 (x) dx =

μ4
1
4
.

Then, one can show that

∫
ℓ

0
Y2 (x) dx = ℓ∫

1

0
Ŷ2 (x) dx = ℓ

4
,

and

∫
ℓ

0
(Y″ (x))2dx = 1

ℓ3
∫

1

0
(Ŷ″ (x))2dx =

μ4
1

4ℓ3
.

Employing the fact that Ŷ″(x) is convex in (0,1), and
subsequently Y″(x) is convex in (0,ℓ) and Y(ℓ) = 1, k2 can be
rewritten as

k2 = DI2∫
ℓ

0
(Y″ (x))3dx,

see Skrzypacz et al. [37]. Numeric integration in Mathematica
with μ1 = 1.87510406871196 gives ∫10(Ŷ

″(x))3dx = 8.02945400733,
and therefore,

∫
ℓ

0
(Y″ (x))3dx,= 1

ℓ5
∫

1

0
(Ŷ″ (x))3dx = 1

ℓ5
(8.02945400733) .

Thus, we can conclude that

m1 =
m
4
, k1 =

EI1μ
4
1

4ℓ3
, k2 = 8.02945400733 

DI2
ℓ5
, (35)

where μ1 = 1.87510406871196 andm is the mass of the beam. Notice
that the mass lumped model coefficients by Equation 35 differ from
those stated inWei et al. [24].Next, let us transformEquation 33 into
a nondimensional equation by introducing dimensionless variables:

τ = t
ℓ2
√EI1μ

4
1

ρA
and y = X

d+ h
εr

. (36)

Note that

Ẍ (t) =
d2X (t)
dt2
= (d+ h

εr
)
EI1μ

4
1

ρAℓ2
d2y (τ)
dτ2
= (d+ h

εr
)
EI1μ

4
1

ρAℓ2
  ̈y (τ) .

Substituting Equation 36 into Equation 33 gives

(d+ h
εr
)k1 ̈y+(d+

h
εr
)k1y+(d+

h
εr
)k2|y|y =

ε0K
2S

2(d+ h
εr
)
2 

1
(1− y)2
,

(37)

where K is a function of τ such that

K (τ) = V(τℓ2√
ρA

EI1μ
4
1
).

Then, dividing both sides of Equation 37 by (d+ h
εr
)k1 results in

the following nondimensional equation, which reads

̈y+ y+ α|y|y = λ
(1− y)2
,

subject to

y (0) = 0, ẏ (0) = 0, (38)

where ̈y is the second-order derivative of ywith respect to τ, whereas
α and λ can be expressed as

α =
k2

k1
(d+ h

εr
) and λ (τ) =

ε0K
2 (τ)S

2k1(d+
h
εr
)
3 .

5 Pull-in and resonance

5.1 Constant voltage

In this section, we investigate the dynamic pull-in phenomenon
of the lumped mass model Equation 48, considering a constant
voltage applied to the cantilever beam. Our analysis is based
on a phase diagram, which allows us to identify regions in the
parameter space where the system exhibits periodic behavior and
where pull-in occurs. Previous studies [23] have shown that the
nondimensional model

̈y+ y+ α|y|y− λ
(1− y)2

= 0, (39)

exhibits periodic solutions for small values of α ≤ 0 and λ > 0. To
construct the phase diagram of the dimensionless equation, we need
to express it in terms of the variables ẏ and y. Therefore, we multiply
both sides of Equation 55 by ẏ and integrate with respect to τ, leading
to the conservation of energy equation

E (τ) = 1
2
(ẏ (τ))2 + 1

2
y2 (τ) + 1

3
α|y (τ) |y2 (τ) − λ

(1− y (τ))
= C. (40)

The constant C in Equation 40 is determined by applying the
initial condition Equation 38, yielding C = − λ. Consequently, we
can rewrite Equation 40 as follows:

(ẏ)2 = −y2 − 2
3
α|y|y2 + 2λ

(1− y)
− 2λ. (41)
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FIGURE 3
The separatrix occurs when the potential function fα,λ(y) is tangent to
the horizontal axis.

Next, we focus on the phase diagram, which plays a crucial
role in understanding the system’s dynamics. The periodic solutions
of Equation 39 correspond to closed curves or loops in the phase
diagram, known as limit cycles. These limit cycles appear when
the right-hand side of Equation 41 has a root in the interval (0,1),
indicating periodic behavior; see Figure 3. In contrast, when there
are no roots in this interval, pull-in occurs. Of particular importance
is the curve that separates the regions with different dynamics of
the system, known as the separatrix. If the model and excitation
parameters of the system lie inside a certain region determined
by the separatrix, the solution is periodic; otherwise, it is not
periodic [1]. In order to determine the range of positive parameter
values of α and λ that lead to periodic solutions, we need to
analyze the separatrix, which occurs when the horizontal axis is
tangent to the right-hand side of Equation 41 within the interval
(0,1); see Figure 3. Let us denote this function as fα,λ(y).Then, fα,λ(y)
can be expressed as

fα,λ (y) = −y
2 − 2

3
αy3 + 2λ
(1− y)
− 2λ =

y( 23αy
3 − ( 23α− 1)y

2 − y+ 2λ)

1− y
.

(42)

Note that Equation 42 has at most four roots. One root is
negative and lies outside the interval (0,1), while another root occurs
at y = 0. Within the interval (0,1), there are at most two roots.
Moreover, the cubic function

hα,λ (y) =
2
3
αy3 −(2

3
α− 1)y2 − y+ 2λ (43)

intersects the horizontal axis at the same points as fα,λ(y),
except for 0. Equation 43 is tangent to the horizontal axis if both
hα,λ(y
∗
) = 0 and h′α,λ(y

∗
) = 0 for some y

∗
∈ (0,1). Then,

h′α,λ (y) = 2αy
2 − 2(2

3
α− 1)y− 1 = 0

FIGURE 4
Parameter regions for pull-in and periodic solutions.

yields

y∗1,2 =
( 2

3
α− 1) ±√( 2

3
α− 1)2 + 2α

2α
,

where only

y∗ =
( 2

3
α− 1) +√( 2

3
α− 1)2 + 2α

2α

lies within the interval (0,1). Consequently, the system exhibits an
oscillatory or periodic solution if hα,λ(y

∗
) ≤ 0 for some positive

parametric values of α and λ. This condition can be expressed as

hα,λ (y
∗) = 1

162α2 (−8α
3 + α (27− 6ν) − 9 (−3+ ν) − 2α2 (9+ 2ν− 162λ)) ≤ 0,

where

ν = √9+ 6α+ 4α2.

Rearranging the inequality and expressing λ in terms of α gives

λ ≤ − 1
324α2 (−8α

3 + α (27− 6ν) − 9 (−3+ ν) − 2α2 (9+ 2ν)) ≕ κ (α) .

(44)

The operational diagram for the MEMS graphene oscillator is
presented in Figure 4. The parameter values (α, λ) located above
the separatrix κ(α) defined by Equation 44 lead to pull-in solutions.
As a result, the exact formula for dynamic pull-in voltage can be
expressed as follows:

Vpull−in =
√2k1(d+

h
εr
)
3
κ (α)

ε0S
.

Another crucial parameter in MEMS devices is the pull-in time,
which represents the time required for the system to collapse. The
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FIGURE 5
Pull-in times for various values of parameter α.

pull-in time can be obtained from Equation 41, where we express
the velocity of the beam’s tip at a given position and parameter value
λ as follows:

ẏ =
dy
dt
= √−y2 − 2

3
αy3 + 2λ
(1− y)
− 2λ. (45)

Subsequently, the pull-in time, denoted as tpull−in, is
determined by

tpull−in = ∫
1

0

dy

√−y2 − 2
3
αy3 + 2λ

(1−y)
− 2λ
. (46)

The integration of this expression over the interval [0,1]
corresponds to the distance that the beam’s tip needs to travel in
order to reach the fixed electrode, thus leading to the occurrence of a
pull-in phenomenon. In Figure 5, the effect of excitation parameter
λ on the pull-in time is illustrated for various values of α. The pull-in
time by Equation 46 decreases with increasing λ at a fixed value of α.
Using a similar approach, we can determine the period of oscillation
T for our system by integrating dt fromEquation 45 over the interval
[0,ymax] and then multiplying the result by 2:

T = ∫
ymax

0

2dy

√−y2 − 2
3
αy3 + 2λ

(1−y)
− 2λ
. (47)

Here, ymax ∈ (0,1) represents the amplitude of oscillation, which
corresponds to the root of the function hα,λ(y). The amplitude of
oscillations is illustrated in phase diagrams and the corresponding
plots of the potential energy function; see Figures 6–9.

5.2 Time-dependent voltage

The pull-in phenomenon in a microelectromechanical system
(MEMS) with a parallel-plate capacitor under time-dependent

FIGURE 6
(a) Phase trajectories for α = −0.05 and various values of λ and (b)
corresponding potential energy functions.

voltage V(t) was studied by Kadyrov et al. [22], where V(t) is
expressed as

V (t) = VDC +VAC cos (Ωt) , (48)

with the forcing frequency Ω and excitation period T =
2π
Ω

. They proposed a theorem that states the following: for a
non-negative constant c, continuous real function h(x) defined on
(−∞,1], and a periodic real function V(t), the second-order nonlinear
differential equation

̈y+ cẏ+ h (y) −
V2 (t)
(1− y)2

= 0 (49)

has a periodic solution if the equation

h (y) =
V2
M

(1− y)2
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FIGURE 7
(a) Phase trajectories for α = −0.5 and various values of λ and (b)
corresponding potential energy functions.

has a root in (0,1), and it does not attain a periodic solution if
the equation

h (y) =
V2
m

(1− y)2

does not have any roots in (−∞,1), but h(y) has at least one real
root within the interval (−∞,1). Here, Vm and VM represent the
minimum and maximum amplitudes of V(t), respectively, given by

Vm =min
t≥0
|V (t) | and VM =max

t≥0
|V (t) |.

Our nondimensional model by Equation 39 is the
special case of Equation 49 with c = 0 and h(y) = y+ α|y|y. To prove
the existence of periodic solutions, let us denote

λM =max
τ≥0
|λ (τ) |.

According to the theorem, the second-order nonlinear and non-
autonomous differential equation

̈y+ y+ α|y|y−
λ (τ)
(1− y)2

= 0

FIGURE 8
(a) Phase trajectories for α = − 1.0 and various values of λ and (b)
corresponding potential energy functions.

has a periodic solution provided that

y+ α|y|y =
λM
(1− y)2

has a root in (0,1). Let us define the function f(y) as

fα (y) = (y+ α|y|y) (1− y)
2.

Note that for y ∈ (0,1),

(y+ α|y|y) (1− y)2 = (y+ αy2) (1− y)2,

Therefore,

fα (y) = (y+ αy
2) (1− y)2 in [0,1) . (50)

By solving f′(y) = 0,we canfind the critical points of Equation 50
that correspond to the values

y1,2 =
2α− 3±√4α2 + 4α+ 9

8α
and y3 = 1.

Then, using the second derivative test, we can find that fα(y) has a
localmaximumat the smallest critical point y1 =

2α−3+√4α2+4α+9
8α

which
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FIGURE 9
(a) Phase trajectories for α = −2.5 and various values of λ and (b)
corresponding potential energy functions.

belongs to the interval (0,1). It is worth noting that fα(y1) > 0 for all
α. Choosing 0 < λM ≤ fα(y1) =K(α) and recalling fα(1) = 0, we have

fα (1) − λM ≤ fα (y) − λM ≤ fα (y1) − λM,

where

fα (1) − λM < 0 and fα (y1) − λM ≥ 0.

Hence, the Intermediate Value theorem guarantees the existence
of some y

∗
in (y1,1) ⊂ (0,1) such that fα(y

∗
) − λM = 0. Then, based

on the theorem, it can be concluded that Equation 55 admits a
periodic solution. In order to have an oscillatory solution, the
following condition for a choice of α and λ must be satisfied:

λ ≤
(−3− 6α+ μ)2 (−3+ 2α+ μ)(5+ 2α+ μ)

4096α3 =K (α) ,

with μ = √9+ 4α+ 4α2.

FIGURE 10
Profiles of periodic and pull-in solutions for α = −0.05 and various
values of λ > 0 and tpull−in = 6.9161.

6 Simulation results

6.1 Constant voltage

In this section, we present numerical simulations of the
normalized deflection of the beam’s free tip, denoted as y(t), as a
function of nondimensional time t. We analyze the behavior of the
periodic solution y(t) under the various sets of parameters λ > 0 and
α < 0. The simulations were conducted using Maple™ software [38],
and the resulting deflection profiles are illustrated in Figures 10–13.
The observed trends demonstrate the dependency of the deflection
amplitude, frequency, and pull-in time on the excitation parameter
λwhile keeping the parameter α fixed. Specifically, an increase in the
value of λ leads to a higher amplitude and longer period of deflection.
Notably, the maximum deflection amplitude is attained when λ
approaches the threshold value κ(α). In Figures 10–13, the periodic
solutions with the highest amplitude correspond to excitation value
λ = κ(α) − 10−3. Furthermore, as we decrease the value of α, there is
a corresponding increase in both the amplitude and period of y(t),
while the parameter λ remains unchanged.

6.2 Time-dependent voltage

In this section, we will conduct an in-depth analysis of the
resonance phenomenon in a cantilever beam that is subjected
to a harmonic force. Depending on the frequency of harmonic
excitation, the dynamic behavior of the system can be classified
as primary and secondary resonance. Primary resonance refers to
a dynamic behavior observed in a system when it is excited by
a frequency that is close to its natural frequency. The dynamic
response of the system becomes significantly amplified under
primary resonance conditions, leading to large vibration amplitudes.
On the other hand, secondary resonance occurs when the system is
excited at frequencies that are different from its natural frequencies
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FIGURE 11
Profiles of periodic and pull-in solutions for α = −0.5 and various
values of λ > 0 and tpull−in = 3.0724.

FIGURE 12
Profiles of periodic and pull-in solutions for α = − 1 and various values
of λ > 0 and tpull−in = 4.2412.

and are located relatively far from them [1]. However, for our
analysis, we will specifically focus on primary resonance. For our
analysis, we fix the value of α = − 1.0. The corresponding threshold
value for excitation parameter λ

∗
with DC voltage VDC is

λ∗ = κ (α) = 0.08802549127.

Recall that

λ =
ε0V

2
DCS

2k1(d+
h
εr
)
3 .

FIGURE 13
Profiles of periodic and pull-in solutions for α = −2.5 and various
values of λ > 0, tpull−in = 3.5571, and tpull−in = 6.8102 for λ = 1/8 and λ =
1/16, respectively.

Let us denote

β =
ε0S

2k1(d+
h
εr
)
3 ,

and fix β = 0.01. Then, the corresponding pull-in voltage equals

VDC = √
λ∗

β
= 2.97. (51)

Thepull-in value ofDCvoltage indicates that, for the fixed values
of α and β, the system excited by harmonic voltage by Equation 48
should undergo a DC voltage less than the pull-in voltage from
Equation 51. Therefore, for dynamic analysis, we employ VDC = 2.5
and VAC = 0.1. Using Equation 47 and utilizing the fact that

Ω = 2π
T

yields for VAC = 0 the natural angular frequency of the system
as ωn = 0.7391982714. As the forcing frequency (Ω) approaches
the system’s natural resonant frequency, the system becomes
instable, and then pull-in occurs. The results depicted in Figure 14
demonstrate that when the excitation frequency Ω is selected
to be close to the natural frequency ωn, the amplitude of the
graphene cantilever beam’s vibration experiences a substantial
increase compared to its behavior under constant voltage conditions.
Letting the excitation frequency be precisely equal to the natural
frequency, resonance occurs and leads to a substantial increase in the
vibration amplitude of the graphene cantilever beam. However, this
increment is accompanied by the occurrence of a pull-in instability
scenario, wherein the free tip of the beam collapses into the fixed
electrode; see Figure 15.Figures 14, 15 show an oscillatory behavior
for the case of Ω = 0. The solution for Ω = 0 is periodic because the
point (α,λ) lies below the separatrix curve κ(α); see Figure 4.
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FIGURE 14
Dynamic response of a graphene cantilever beam under constant
voltage and harmonic excitation near natural angular frequency.

FIGURE 15
Dynamic response of a graphene cantilever beam under constant
voltage and harmonic excitation at natural angular frequency, tpull−in =
62.56.

7 Conclusion and outlooks

In this study, a comprehensive analysis of the static and
dynamic behavior of a graphene cantilever beam subjected to
electrostatic actuation at its free tip was conducted. First, an
analytical solution for the nonlinear static problem was derived, and
its consistency with the classical linear solution was demonstrated
in the limit where the second-order elastic stiffness constant D
approaches 0. Next, the dynamic pull-in conditions of the system
were investigated for two cases: under constant and harmonically

excited voltages. Analytical predictions were rigorously validated
through numerical simulations presented in Section 6. For the
case of constant voltage excitation, the system exhibited periodic
solutions when the parameter values α and λ lay below the separatrix
curve, as illustrated in Figure 4. Conversely, pull-in phenomena
occurred when these parameters exceeded the separatrix curve.
The dependency of the deflection amplitude, frequency, and pull-
in time on the excitation parameter λ for a fixed value of α was
demonstrated in this section. Additionally, it was observed that
the maximum deflection amplitude occurred immediately below
the separatrix value for the given α. Furthermore, simulations
of the cantilever beam under harmonic load excitation revealed
that selecting an excitation frequency near the resonant frequency
of the beam could lead to structural collapse even though
the parametric values were below the pull-in conditions. Our
findings in this paper can be useful in future MEMS design.
Experimental validations and comparative study of alternative
mass lumped models for graphene resonators are subjects of
future research work. Precise models are crucial due to graphene
resonators’ unique traits, and the homotopy perturbation method
[43–45] is ideal for complex situations. As problems get intricate
with non-linearities, it can break down equations, outperforming
traditional methods.
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