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Introduction: In the aviation field, drone search and rescue is a highly urgent
task involving small target detection. In such a resource-constrained scenario,
there are challenges of low accuracy and high computational requirements.

Methods: This paper proposes IYFVMNet, an improved lightweight detection
network based on YOLOv8. The key challenges include feature extraction
for small objects and the trade-off between detection accuracy and speed.
To address these, four major innovations are introduced: (1) Fasternet is
used to improve the bottleneck structure in the cross-stage feature fusion
backbone network. This approach fully utilizes all feature map information while
minimizing the computational and memory requirements. (2) the neck network
structure is optimized using the Vovnet Gsconv Cross Stage Partial module.
This operation also reduces the computational cost by decreasing the amount
of required feature map channels, while maintaining the effectiveness of the
feature representation. (3) he Minimum Point Distance Intersection over Union
loss function is employed to optimize bounding box detection during model
training. (4) to construct the overall network structure, the Layer-wise Adaptive
Momentum Pruning algorithm is used for thinning.

Results: Experiments on the TinyPerson dataset demonstrate that IYFVMNet
achieves a 46.3% precision, 30% recall, 29.3% mAP50, and 11.8% mAP50-95.

Discussion: The model exhibits higher performance in terms of accuracy and
efficiencywhen compared to other benchmarkmodels, which demonstrates the
effectiveness of the improved algorithm (e.g., YOLO-SGF, Guo-Net, TRC-YOLO)
in small-object detection and provides a reference for future research.
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1 Introduction

In the field of precision search-and-rescue and life detection, the use of unmanned
aerial vehicles is a crucial solution [1]. Whether in a boundless sea or in a complex urban
environment, drones are able to detect and provide precise search and rescue locations.
In these scenarios, the searched person appears as small object in a large scene [2].
Small-object detection is a long-term challenge in deep learning convolutional neural
network modelling, where such models are designed to identify and ascertain the
positions of small objects in low-resolution images. Such detection is used in a variety of
scenarios, such as autonomous driving, intelligent monitoring, and medical image analysis.
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Due to the inconspicuous features of small objects and high
requirements for positioning accuracy, achieving more accurate
small-object detection still faces the following challenges [3].

(1) Difficulty in feature extraction. Due to lower resolution and
limited actionable feature information of small objects, it
is difficult for traditional feature extraction methods to
extract discriminative features effectively, which increases the
difficulty of object detection.

(2) Data imbalance. In many practical applications, the number of
samples of small objects is much smaller than that for large
objects, which affects the efficiency of model training.

(3) Balance between detection accuracy and speed. In general,
improving detection accuracy requires developing more
complex network structures and using more computing
resources. However, this may come at the expense of reducing
detection speed. However, this could lead to a decrease
in detection speed, making it challenging to strike an
optimal balance.

Although there has been extensive research on small object
detection in recent years, most studies have focused on improving
accuracy or making specific improvements for particular scenarios,
often addressing only one of the aforementioned issues. This
paper, however, approaches the problem from two perspectives:
feature extraction and balancing accuracy and speed under
limited computational resources. YOLOv8, as the most advanced
model in object detection tasks, has been widely adopted due
to its high accuracy and speed. YOLOv8n, the most lightweight
model in the YOLOv8 series, features fewer parameters and
lower computational complexity, achieving the fastest convergence
speed. Although its accuracy is slightly lower than that of larger
models, it has become the preferred choice for addressing the
aforementioned challenges in resource-constrained scenarios such
as drone search and rescue. Therefore, based on the YOLOv8n
model, this paper proposes a lightweight small object detection
network, IYFVMNet. By incorporating a P2 detection head to enrich
small object features and utilizing the FasterNet and VoV-GSCSP
structures to balance efficiency and accuracy, the model achieves
significant improvements. The main contributions of this paper
are as follows.

(1) The cross-stage feature fusion (C2f) backbone network is
improved using the FasterNet module to reduce channel
sparsity. The structure is able to reduce both computational
and memory requirements by adopting partial convolution
(PConv), which performs convolution operations on only a
subset of the input channels.This improvement maximizes the
use of the feature map information while further lowering the
computational complexity of the model.

(2) The vovnet gsconv cross stage partial (VoV-GSCSP) structure
is adopted with the goal of creating a lightweight model. By
using group shuffle convolution (GSConv), the number of
parameters does not increase significantly while maintaining
high model accuracy.

(3) The minimum point distance intersection over union
(MPDIoU) loss function is used to minimize the distances
between the upper-left and lower-right corner of the predicted
bounding box and the ground truth bounding box, which

effectively solves the limitations of the existing loss function in
specific cases.

Through the aforementioned innovative designs, the proposed
IYFVMNet in this paper demonstrates significant advancements
over existing technologies in the following aspects. First, it achieves
higher detection accuracy while maintaining lower computational
complexity. Second, by incorporating lightweight design and
pruning strategies, it effectively addresses the challenge of real-
time detection in resource-constrained environments. Finally, the
optimized loss function enables more precise localization of small
objects, resulting in notable improvements in both accuracy and
efficiency, while also providing a more practical solution for real-
world applications. To validate the effectiveness of the improved
model, experiments were conducted on the TinyPerson dataset, and
comparisons were made with the baseline model YOLOv8n as well
as other lightweight detection networks. The experimental results
show that, compared to YOLOv8n, IYFVMNet reduces the number
of model parameters by half while improving detection accuracy by
1.2%, increasing recall by 1.1%, and boosting mAP50 by 0.7%. This
demonstrates clear advantages in both computational efficiency and
detection accuracy.

The remainder of the paper is structured as follows.
Section 2 describes some relevant work on YOLOv8 in recent
years. Section 3 provides a detailed description of the baseline
model. Section 4 describes the process of improving the model.
Section 5 comprehensively verifies the validity of the model
improvement method by performing comparison and ablation
experiments. Section 6 gives the conclusions and future research
directions.

2 Related works

With the continuous improvement of computer hardware, deep
learning technologies havemade significant progress in small-object
detection, such as in the fields of remote sensing and medical
imaging [4]. At present, deep learning object detection models are
mainly divided into two major categories: one stage (SSD, YOLO
series, etc.) and two stage (FastRCNN, etc.). Two-stage methods
use region proposal networks to generate candidate regions, and
then apply classification and localization networks to these regions
to perform further classification and bounding box regression.
However, when using these methods it possible that small objects
are overlooked in the candidate regions generated by the region
proposal network, and it difficult for them to identify small objects in
the subsequent classification and localization process. Consequently,
these methods suffer from performance loss when applied to
small targets. One-stage approaches predict the bounding box and
categories directly on an image for end-to-end object detection,
which are more suitable for real-time detection of small objects and
they have higher computational efficiency. As an example, the YOLO
series has received extensive research attention in this field [5].

In recent years, YOLOv8 has been widely applied in various
fields and continuously driven breakthroughs in innovative
technologies [6]. Gunawan et al. [7] compiled a self-built long-
distance face recognition dataset and achieved good results. Zhao
et al. [8] proposed the Z-YOLOv8s network, which improved the
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YOLOv8 model by integrating the RepViT and C2f modules to
enhance spatial feature extraction, and introduced the LSKNet and
SPD Conv modules to improve small-object detection accuracy.
Zhong et al. [9] proposed the SPD-YOLOv8 algorithm for small-
object detection in complex scenes. In this algorithm, traditional
convolution and pooling layers are replaced with the SPD-Conv
module, and the MPDIoU loss function is used to optimize box
fitting, thereby improving small-object detection accuracy. Xu et al.
[10] proposed an improved YOLOv8 object detection algorithm,
aiming to enhance performance in complex environments for
drones through multi-scale feature fusion, conditional convolution,
andWise-IoU loss function optimization. In addition, YOLOv8 has
been extensively applied in various fields such as rocket detection,
circuit board defect detection, cell instance segmentation, reflective
vest detection, and drone detection. Recently, Jovanovix et al.
[11] utilized YOLOv8 to handle the morphological changes of
rockets at different distances and angles, combining multi-scale
feature fusion technology, demonstrating high robustness and
real-time performance in complex backgrounds. Jovanovix et al.
[12] employed a lightweight YOLOv8 model for circuit board
defect detection, ensuring accuracy while reducing computational
resources. Kang et al. [13] proposed the ASF-YOLO model for
cell instance segmentation in overlapping cells and complex
backgrounds, using multi-scale features and attention mechanisms
to improve precision. Milanovic et al. [14] utilized a highly
generalized pre-trained YOLOv8 model to achieve real-time
detection of reflective vests under complex lighting conditions.
Petrovic et al. [15] leveraged YOLOv8’s multi-scale detection
module to identify small targets in complex backgrounds for
drone detection, showing significant advantages. These studies
demonstrate the powerful object detection capabilities of YOLOv8
and its potential for future applications in more fields.

Current research has made significant contributions to
improving accuracy. However, achieving real-time monitoring
remains a critical issue due to limited resources and largemodel sizes
in small-object detection tasks. A significant amount of research
has been dedicated to lightweight network models. Cao et al. [16]
proposed the lightweight GCL-YOLO network, which requires
fewer parameters, has less computational complexity, and accurately
predicts the position and localization of high-density small targets
by using the GhostConv module, a new prediction head, and the
Focal EIOU loss function. Wu et al. [12] introduced SEConv, a
lightweight convolution that replaces standard convolution (SC),
reducing the network’s parameter count and accelerating the
detection process in remote sensing images. Guo et al. [17] proposed
the lightweight YOLO-SGF algorithm, which uses the GCFVoV
lightweight fusion network as the neck and combines ShuffleNetV2-
block1 with C2f for feature extraction, providing new ideas for
lightweight networks. Du et al. [18] proposed the STD-YOLOv8
flame detection algorithm, which fuses the BiFPN bidirectional
feature pyramid network and uses the NWD loss function to
enhance model robustness. Guo et al. [19] proposed an underwater
object detection network that uses the FasterNet module, GSConv,
and PConv to ensure accuracy while being lightweight. The
methodsmentioned above have enhanced the original YOLOmodel,
contributing to advancements in the domain of object detection.
However, there is limited research on improving networks from
both the perspectives of small target features and lightweight design.

Based on this, this paper proposes the IYFVMNet model, which
leverages the powerful feature representation and computational
complexity reduction capabilities of the FasterNet network structure
and the VoV-GSCSP module. This approach enhances detection
efficiency with relatively less sacrificing the accuracy of small target
detection. Additionally, the use of the P2 detection head further
enriches the feature information of small targets, demonstrating
excellent performance in small target detection.

It is worth noting that the hybrid approach combining
metaheuristic algorithmswithmachine learninghas recently garnered
significant attention in the research community and has achieved
remarkable results across variousfields. For instance,Antonijevic et al.
[20] employedmetaheuristic algorithms such as genetic algorithms to
automatically adjust key parameters of models, providing effective
technical support for the security of metaverse IoT systems. Nandal
et al. [21] utilized theWhale Optimization Algorithm to optimize the
YOLOv8 algorithm for detecting driving behavior. Elgamily et al. [22]
applied six metaheuristic optimization algorithms in combination
with YOLOv7 and YOLOv8 for remote sensing object detection.
This novel research field successfully integrates machine learning
with swarm intelligence methods. In future research, the aim is to
introduce metaheuristic algorithms to fine-tune model parameters,
further enhancing the model’s performance and adaptability.

3 The benchmark model

Compared with previous versions, YOLOv8 represents a new
breakthrough in network architecture due to its improved accuracy
and speed. To meet the needs of different scenarios, different
network widths and depths have been designed. Based on different
scaling factors, the network model structures, ranging from small
to large, include five versions: YOLOv8n, YOLOv8s, YOLOv8m,
YOLOv8l, and YOLOv8x. In particular, YOLOv8n is widely used
due to its low parameter and calculation requirements. The overall
structure of YOLOv8 is composed of three main components: the
backbone network, the neck network, and the head network. These
three parts are respectively used for feature extraction, feature
fusion, and detection. Each part has its own responsibilities in terms
of specific functions and design optimization.The network structure
is illustrated in Figure 1.

3.1 Backbone network

The left side of Figure 1 illustrates YOLOv8’s backbone network,
which is responsible for extracting features from the input image.
The backbone network replaces YOLOv5’s C3 module with the
C2f module, improving gradient flow and reducing the network’s
weight. The cross stage partial (CSP) mechanism is used to divide
the feature map into two parts for processing. One part is used for
residual connections, while the other is employed for feature fusion,
enhancing feature expression and reducing computational load.
The structure consists of multiple stacked Conv modules and C2f
modules. The SPPF module is preserved in the backbone network,
mapping the input feature map to multiple fixed-size feature spaces
throughmulti-scale pooling, allowing the network to process images
of varying sizes.
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FIGURE 1
YOLOv8 network structure.

3.2 Neck network

Themiddle section of the network structure diagram represents
the neck network, which fuses features of different scales

extracted by the backbone network. This part is composed of
Path Aggregation Network (PANet) [23], which includes Feature
Pyramid Network (FPN) [24]. First, features are passed upwards
layer by layer through an upsampling operation, facilitating the
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fusion of low-level and high-level feature maps. Second, features
are passed down layer by layer using downsampling operations,
merging high-level and low-level feature maps. Finally, horizontal
connections between paths are established to boost performance.
The fusion of features at different scales through these three paths
enhances small-object detection.

3.3 Head network

The right section of the network structure diagram represents
the head network, responsible for the final detection stage.
The head has multiple convolutional layer branches. The first
classification branch is responsible for predicting the object
category probability; the second bounding box regression branch
is responsible for predicting the bounding box position and the
third is a confidence branch, used to predict the confidence.
By combining these three parts, an anchor-free design is used
to simplify the detection process. In addition, by predicting the
center point, height, and width, high-precision object detection is
achieved.

3.4 Loss function

YOLOv8 utilizes multiple loss functions to optimize accuracy,
including classification loss, bounding box regression loss, and
distribution focal loss (DFL).

In the classification loss component, YOLOv8 employs binary
cross-entropy (BCE) loss, calculated as Equation 1:

BCE = −(y log (p) + (1− y) log (1− p)), (1)

where y denotes the true label and p denotes the predicted
probability.

For bounding box regression, YOLOv8 employs the complete
intersection over union (CIoU) as the loss function. Compared
to traditional IoU, CIoU considers the overlapping region, the
distance between box centers, and the aspect ratio, aiming
to enhance the convergence speed and accuracy of bounding
box predictions. The CIoU loss function, LCIoU is calculated
as Equation 2:

LCIoU = 1− IoU+
ρ2(Bgt,Bprd)

C2 + αV, (2)

where Bgt denotes the center point of ground truth box, Bprd denotes
the center point of the prediction box, ρ(Bgt, Bprd) represents the
Euclidean distance between the center point of ground truth box
and prediction box, and C is the diagonal length of the concatenated
region formed by the two rectangular boxes. V is used to compute
the difference in aspect ratio between the two rectangular boxes
calculated as Equation 3, while α is a weighting factor, calculated
as follows Equation 4:

V = 4
π2
(arctan wgt

hgt
− arctan wprd

hprd
)
2
, (3)

α = V
1− IoU+V

. (4)

DFL is introduced to further enhance the precision of bounding
box regression. DFL directs the model’s focus towards more
challenging samples by adjusting the loss based on the prediction
distribution and the ground truth box distribution.DFL is calculated
as follows Equation 5:

DFL = (1− pt)
γ ·BCE, (5)

where pt is the predicted probability value and γ is a
moderation factor.

The final loss function in YOLOv8 is the weighted sum of the
CIoU, BCE, and DFL components, expressed as Equation 6:

TotalLoss = λbox ·CIoU+ λcls ·BCE+ λdfl ·DFL. (6)

4 Improved algorithm

4.1 Improved network architecture

To balancing detection accuracy and speed in small-object
detection, an improvednetwork structure, IYFVMNet, is introduced
as an enhancement of YOLOv8. The C2f-faster architecture
of the model uses FasterNet to improve the C2f bottleneck
structure and PConv to improve the conventional convolution,
which enhance the diversity of feature representation while
maintaining efficient computation and utilizing the information
of all channels. Second, The slim-neck design of the model
incorporates the VoV-GSCSP module, built on GSConv, to refine
the neck network by integrating SC and depthwise separable
convolution (DSC). The design has strong feature extraction
and feature fusion capabilities while significantly minimizing
parameters and computation. Additionally, MPDIoU is used for
model traing. This addressed the problem of prediction boxes and
ground truth boxes having the same aspect ratio but differing
in width and height. Finally, the LAMP algorithm is employed
to achieve network slimming by incorporating a scaling factor
within the batch normalization layer. The network design is
illustrated in Figure 2.

4.2 FasterNet structure

FasterNet [25], a new network structure based on PConv,
replaces the C2f bottleneck structure, and is displayed in Figure 3.
The network structure consists of one PConv layer and two
pointwise convolutions (PWConv), which together form the
residual structure. The structural features of the PConv layer enable
FasterNet to maintain high accuracy while being much faster than
other networks, being crucial for boosting the performance of
various visual tasks.

PConv is an efficient feature extraction technique, which
selectively processes input channels, thus decreasing computational
cost and memory consumption. The PConv module also enhances
feature representation, making it richer and more robust, as
illustrated in Figure 4. Compared to conventional convolution,
PConv exhibits selectivity in channel volume, performing
calculations only on a subset of input channels, which results in
reduced computational complexity.
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FIGURE 2
Improved IYFVMNet network structure.

4.3 VoV-GSCSP structure

VoV-GSCSP [26], a multi-scale partial network module, is
used to optimize the neck network structure in YOLOv8n by
incorporating VoVNet and GSConv, which enhance learning
capability through multi-scale feature fusion and cross-scale
connections. The VoV-GSCSP module is composed of multiple
GSConv layers and feature aggregation operations, enriching and
strengthening feature robustness through feature fusion at different
scales. A structural diagram of VoV-GSCSP is illustrated in Figure 5.

The GS bottleneck module includes GSConv, which reduces
the computational cost by decreasing the amount of feature map
channels and maintaining effective feature representation. GSConv
is a new lightweight convolution technique that combines the
benefits of SC and DSC, achieved with a “shuffle” operation in
the network. GSConv first generates channel-dense feature maps

using SC, and then evenly mixes this feature information into each
section of the sparse feature maps created by DSC through the
shuffle operation. This mixing strategy allows the output feature
maps of DSC to be as close as possible to the feature maps of SC,
significantly improving the accuracy of the model while keeping the
computational cost low. The GS includes a GSConv layer for feature
extraction and channel expansion, followed by a convolution layer
for channel compression. This design reduces network parameters
and computation, illustrated in Figure 6.

4.4 MDPIoU loss function

To optimize bounding box detection, a loss function is essential.
YOLOv8 uses a CIoU-based loss function. This function takes
into account both the center point distance and aspect ratio when
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FIGURE 3
FasterNet block structure.

aligning the predicted box with the ground truth box, which has
been shown to have strong performance [27]. However, it measures
the aspect ratio in relative terms. When the height and width values
are inconsistent, the CIoU loss function will lose its effectiveness. To
address this issue, Intersection over Union with Minimum Points
Distance (MDPIoU) [28] was designed to address this limitation,
which is calculated as Equation 7:

MPDIoU = IoU−
d21

w2 + h2
−

d22
w2 + h2
, (7)

where w and h denote the width and height of the input image,
respectively, d21 denotes the sum of the squared distances of the top-
left points calculated as Equation 8, and d22 denotes the sum of the
squared distances of the bottom-right points calculated as Equation
9. Specifically:

d21 = (x
B
1 − x

A
1 )

2 + (yB1 − y
A
1 )

2, (8)

where (xA1 ,y
A
1 ) denotes the top-left corner of the ground truth box

and (xB1 ,y
B
1) denotes the top-left point of the predicted box, and:

d22 = (x
B
2 − x

A
2 )

2 + (yB2 − y
A
2 )

2, (9)

where (xA2 ,y
A
2 ) denotes the bottom-right point of the ground truth

box and (xB2 ,y
B
2)denotes the bottom-right point of the predicted box.

MDPIoU, as a bounding box loss function, is defined
as follows Equation 10:

LMPDIoU = 1−MPDIoU. (10)

Compared to CIoU, MDPIoU introduces a new method that
uses the distance between two points to measure similarity, which
simplifies the computational process regardless if the bounding
boxes overlap.

4.5 LAMP pruning algorithm

The Layer-wise Adaptive Momentum Pruning (LAMP) [29]
method is a pruning approach for neural networks, which considers
the differences in weight magnitudes across layers and reduces
the model’s parameters and computational complexity, while
simultaneously maintaining or enhancing its accuracy. Compared
to other compression methods, LAMP is more effective at reducing
redundancy and preserving key feature information, which makes
it very useful in the field of network compression. The essence of
the LAMP approach is the adaptive strategy to pruning, which is
based on customizing the pruning rate to the weight magnitudes
within each layer instead of the entire network and sorting from
high to low. LAMP uses the strength of each weight in all layers
to decide which weights to keep and which to remove. This is a
major improvement over traditional pruning techniques, in that
LAMP focuses on preserving weights that are important for the
model’s predictions and reducing the drop in performance that
usually happens during pruning. This can be summarized into two
main steps.

Step 1. Calculate the pruning threshold. For each layer l,
first calculate the absolute value of all weights and determine
the pruning threshold Γl based on the set pruning ratio pl
calculated as Equation 11:

Γl = percentile(|Wl|,100× pl), (11)

where percentile(·,p) denotes the p percentile of the weight
magnitude.

Step 2. Perform the pruning. Set all weights with an absolute
value less than the threshold Γl in layer l to zero.

In this way, LAMP can effectively identify weights that
have a minimal impact on model performance and prune. The
pruned network is then fine-tuned to restore or improve the
model’s accuracy.

5 Experiments

5.1 Experimental environment

The experimental environment was set up with the an Intel(R)
Xeon(R) Platinum 8358P CPU, and an RTX 3090 (24 GB) GPU.
All experiments were conducted under consistent conditions
using Python 3.8 and PyTorch 1.10.0 to ensure fairness. The
experimental parameters were set based on literature [10]. The
specific experimental parameters are provided in Table 1.
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FIGURE 4
PConv module.

FIGURE 5
VoV-GSCSP module.

5.2 TinyPerson dataset

TinyPerson is an open image dataset focused on small-
object detection. The dataset includes annotated images from
various natural scenes and lighting conditions, designed to test
an algorithm’s small-object detection and model generalization
under occlusion and varying object densities. Images were extracted
manually every 50 frames, for two specific categories: people in
ocean and earth-based scenes, denoted “sea_persons” and “earth_
persons,” respectively [30]. The images contain small objects, all

FIGURE 6
GS bottleneck module.

smaller than 20 pixels. The dataset comprises 794 training images
and 816 validation images, totaling 1,610. The example of dataset
is shown in Figure 7.

5.3 Evaluation metrics

To access the model comprehensively, the precision (P),
recall (R), and mean average precision (mAP) among other
metrics are used.

Precision quantifies the ratio of true positives to total positive
predictions calculated as Equation 12:

P = TP
TP+ FP

. (12)

Frontiers in Physics 08 frontiersin.org

https://doi.org/10.3389/fphy.2025.1553224
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


Yang et al. 10.3389/fphy.2025.1553224

TABLE 1 Experimental parameter settings.

Parameter name Parameter values

Epochs 300

Optimizer SGD

Image Size 640

Momentum 0.937

Learning rate 0.01

Recall represents the ratio of true positives to all actual positive
instances calculated as Equation 13:

R = TP
TP+ FN

. (13)

mAP represents the average of AP values across all categories, with
AP defined as the area under the precision-recall (P-R) curve. A
higher AP score reflects superior model performance.

5.4 Comparison of YOLOv8 series models

Firstly, to determine which YOLOv8model structure to adopt as
the baseline model, experiments were conducted on the TinyPerson
dataset using five structures: YOLOv8n, YOLOv8s, YOLOv8m,
YOLOv8l, and YOLOv8x. The BoxLoss, ClaLoss, DflLoss, and
TotalLoss were calculated for each model, and the convergence
process was visually represented, as shown in Figure 8. YOLOv8n
is represented in blue, YOLOv8s in orange, YOLOv8m in green,
YOLOv8l in red, and YOLOv8x in purple. Figure 8a shows the
comparison of BoxLoss, Figure 8b shows the comparison of ClaLoss,
Figure 8c shows the comparison of DflLoss, and Figure 8d shows
the comparison of TotalLoss.The results of eachmodule concerning
parameter quantity, computational complexity (GFLOPs), and
detection performance metrics are shown in Table 2.

From the results shown in Figure 8 and Table 2, it can be
observed that YOLOv8n, as the most lightweight model, achieves
relative convergence around 50 epochs in various loss calculations,
particularly in BoxLoss, with the fastest convergence speed.
However, this comes at the cost of reduced accuracy. Since this
study primarily focuses on lightweight design for model selection,
YOLOv8nwas chosen as the baselinemodel for experiments tomeet
the requirements of high efficiency in real-time devices.

5.5 Comparison of backbone network
improvement

The backbone network’s performance greatly influences the
algorithm’s overall effectiveness. To illustrate the effectiveness of
C2f-faster, five different backbone network modules were selected
for comparative experiments: C2f-faster, Adaptive Convolution
(AKConv) [31], Receptive Field Attention Convolution (RFAConv)
[32], Spatial and Channel Reconstruction Convolution (SCcConv)

[33], and All-dimensional Dynamic Convolution (ODConv) [34].
The results for each module in term of parameter quantity,
computational complexity (GFLOPs), and detection performance
metrics are shown in Table 2. The convergence process is visually
represented in Figure 9. C2f is shown in blue, C2f-faster in orange,
AKConv in green, RFAConv in red, SCcConv in purple, and
ODConv in brown.

As shown in Table 3, the C2f-faster module offers notable
benefits in terms of parameter count and computational complexity,
featuring 2,300,838 parameters and 6.3 GFLOPs. The accuracy
and recall of C2f-faster are slightly lower than those of the best-
performing RFAConv and SCcConvmodules, but it uses 82,000 and
33,000 fewer parameters, respectively. Moreover, its computational
complexity is cut down by one to two GFLOPs. In comparison to
the AKConv and ODConv modules, the amounts of GFLOPs are
similar, but the C2f-faster module uses 23,000 and 77,000 fewer
parameters, and has an improved accuracy of 2.0% and 1.5%,
respectively. From Figure 9, it can be observed that the improved
model exhibits a similar trend in Loss across different modules.
However, the BoxLoss converges the fastest at around 50 epochs,
albeit at the cost of some accuracy. These results indicate that
the structure can leverage global information to capture detailed
features. From the perspective of balancing precision and efficiency,
C2f-faster is the more suitable choice as it demonstrates outstanding
computational efficiency.

5.6 Comparison of neck network
improvement

Building upon the backbone network improvements, this
section further validates the performance enhancement of slim-
neck. This structure is used in object detection tasks and is referred
to as C2f-faster-lightweight. This structure was compared with
four other neck network structures: Global Feature Pyramid
Network (GFPN) [35], High-level Screening-feature Fusion
Pyramid Networks (HS-FPN) [36], Asymptotic Feature Pyramid
Network (AFPN-P345) [37], and Bidirectional Feature Pyramid
Network (BiFPN) [38]. Table 4 presents the results of the neck
network modules, including parameter count, computational
complexity (GFLOPs), and detection performance metrics. The
convergence process is visually represented in Figure 10. C2f-
faster-lightweight is shown in blue, C2f-faster-GFPN in orange,
C2f-faster-HSFPN in green, C2f-faster-AFPN-P345 in red, and
C2f-faster-BiFPN in purple.

According to the data displayed in Table 4, the C2f-faster-
lightweight module requires 2,512,310 parameters and 6.4 GFLOPs.
Both metrics are at moderate levels but demonstrate good
computational efficiency. Compared to C2f-faster-GFPN, C2f-
faster-HSFPN, C2f-faster-AFPN-P345, and C2f-faster-BiFPN, the
C2f-faster-lightweight module achieved the highest accuracy, being
higher than the other modules by 3.2%, 3.7%, 1.8%, and 3.3%,
respectively. Compared to C2f-faster-HSFPN, which has the lowest
computational requirements, YOLOv8-lightweight, which requires
slightly more computations, has significantly better detection
performance. Compared to GFPN (8.3 GFLOPs) and BiFPN (7.1
GFLOPs), YOLOv8-lightweight exhibits higher detection precision
while having a similar computational complexity. From Figure 10,
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FIGURE 7
Dataset example.

FIGURE 8
Comparison of Training Loss of the YOLOv8 series models. (a) BoxLoss, (b) ClsLoss, (c) DflLoss, (d) Total Loss.

TABLE 2 Comparison of the parameters and performance of the YOLOv8 series models.

Backbone Parameters GFLOPs P R mAP50 mAP5-95

YOLOv8n 3,006,038 8.1 0.444 0.283 0.275 0.116

YOLOv8s 11,126,358 28.4 0.498 0.318 0.324 0.145

YOLOv8m 25,840,918 78.7 0.533 0.321 0.342 0.153

YOLOv8l 43,608,150 164.8 0.517 0.342 0.356 0.163

YOLOv8x 68,125,494 257.4 0.546 0.323 0.352 0.161
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FIGURE 9
Comparison of Training Loss of backbone network. (a) BoxLoss, (b) ClsLoss, (c) DflLoss, (d) Total Loss.

TABLE 3 Comparison of the parameters and performance in the backbone network.

Backbone Parameters GFLOPs P R mAP50 mAP50-95

C2f 3,157,200 8.9 0.451 0.289 0.286 0.121

C2f-faster 2,300,838 6.3 0.439 0.275 0.258 0.113

AKConv 2,531,076 7.2 0.419 0.266 0.25 0.105

RFAConv 3,120,410 8.8 0.443 0.301 0.29 0.125

SCcConv 2,630,086 7.2 0.44 0.271 0.258 0.109

ODConv 3,070,570 5.7 0.424 0.276 0.258 0.109

it can be observed that the C2f-faster-lightweight model exhibits
faster convergence in BoxLoss, demonstrating its strong capability
in predicting bounding boxes. Overall, the C2f-faster-lightweight
module performs excellently across the various metrics.

5.7 Loss function comparison

The traditional IoU loss function has some shortcomings when
dealing with detection box regression tasks. This section aims to

analyze the performance of theMDPIoU3 loss function in YOLOv8,
by comparing it with the commonly used DIoU [39], EIoU [40], and
SIoU [41] loss functions. Table 5 presents the results of different loss
functions across various object detection tasks.

As shown in Table 5, the MDPIoU3 loss function demonstrates
advantages in precision (P), recall (R), and mean average precision
at an IoU threshold of 0.50 (mAP50) and across thresholds of
0.5–0.95 (mAP50-95). Due to the further optimization in scale
and position regression, the MDPIoU3 loss function is better at
balancing precision and recall. MDPIoU3 outperforms the other
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TABLE 4 Comparison of the parameters and performance in the neck network.

Neck Parameters GFLOPs P R mAP50 mAP50-95

C2f-faster-lightweight 2,512,310 6.4 0.464 0.305 0.297 0.126

C2f-faster-GFPN 2,929,654 7.4 0.432 0.238 0.23 0.09

C2f-faster-HSFPN 1,576,182 5.9 0.427 0.192 0.219 0.073

C2f-faster-AFPN-P345 2,241,803 7.5 0.446 0.26 0.287 0.113

C2f-faster-BiFPN 1,635,138 6.2 0.431 0.213 0.233 0.083

FIGURE 10
Comparison of Training Loss of neck network. (a) BoxLoss, (b) ClsLoss, (c) DflLoss, (d) Total Loss.

loss functions, enhancing model performance and demonstrating
greater practicality.

5.8 Pruning rate comparison

The LAMP method was used for network pruning. Table 6
shows the model’s performance variations at different pruning rates,
including metrics such as the number of parameters, GFLOPs,
precision (P), recall (R), mAP50, and mAP50-95.

From Table 6, it can be observed that when the pruning rate
exceeds 1.7, the model’s performance declines significantly. At
a pruning rate of 1.6, the model achieves the highest precision
(0.463) and recall (0.3), while mAP50 and mAP50-95 are 0.293 and
0.118, respectively. The number of model parameters reduced to
1,563,194, and the amount of GFLOPs decreased to 5.8.These results
demonstrate optimal overall performancewhilemaintaining a lower
computational load. Compared to the other pruning rates, the 1.6
pruning rate is the most effective to reduce the complexity of the
model significantly without sacrificing performance.
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TABLE 5 Results of the different loss functions.

LossFuction P R mAP50 mAP50-95

MDPIoU3 0.468 0.307 0.298 0.127

DIoU 0.463 0.302 0.296 0.122

EIoU 0.465 0.304 0.297 0.125

SIoU 0.467 0.305 0.298 0.125

5.9 Ablation study

IThis section presents an ablation study of the four proposed
improvements, assessing the contribution of each to the model’s
performance. The improvements—C2f-faster, slim-neck-P2,
MDPIoU, and LAMP pruning strategy—were incorporated
sequentially and are labeled as A, B, C, and D, respectively.
The baseline model is YOLOv8n. All ablation experiments were
conducted based on this baseline model, and these improvements
were gradually introduced. Table 7 presents the results of the
ablation experiments.

As shown in Table 7, incorporating C2f-faster (A) significantly
reduces the model’s parameters and computational cost, but leads
to a decrease in accuracy and recall. On the other hand, slim-neck-
P2 (B) enhances the model’s performance overall, particularly in
recall (increasing to 0.317) and mAP50 (improving from 0.286 to
0.307). These results show that slim-neck-P2 reduces the model
size while capturing multi-scale features more effectively. Using
C2f-faster with slim-neck-P2 (A + B) makes the model lighter
and faster. Adding MDPIoU (C) does not change the outcome
much, but when combining it with A + B, the recall improves
to 0.307 and mAP50 improves to 0.298, meaning the model
performs better overall. The addition of the LAMP pruning strategy
(D) slightly reduces the mAP50 and mAP50-95 scores, but it

also lowers the accuracy and recall rates. This suggests that
LAMP pruning can make the model lighter without significantly
harming the entire performance. Overall, each enhancement
module optimizes the model’s efficiency while allowing it to
maintain good performance, which demonstrates the viability and
practicality of these improvements.

5.10 Comparison with other models

To further validate the effectiveness of the proposed network,
the Guo Net [19], YOLO-SGF [17], YOLO-SE [42], and TRC-
YOLO [43] models were selected for comparison. The results are
provided in Table 8.

As shown in Table 8, the improved IYFVMNet, model presented
in this paper outperforms the other models across various
indicators. Despite the reduction in the number of parameters, the
accuracy remains high, demonstrating the network’s strong feature
representation capability. Overall, the improved model presented
in this paper outperforms the other algorithms across various
performance indicators.

5.11 Visual analytics

The heat map shows the attention distribution of the model
during target detection. Select two maps to display the heat map,
as shown in Figure 11. It can be seen that the key areas of the heat
map display are concentrated on small target people, indicating that
the model can effectively capture image features.

To assess the performance of the enhanced YOLOv8 model in
small-object detection, two images from the test set were chosen for
visual analysis, as shown in Figure 12.

In Figure 12, the original YOLOv8 model detected only seven
earth_persons and mistakenly identified one sea_person in the
first image, whereas the improved IYFVMNet model successfully

TABLE 6 Pruning results with different pruning rates.

Pruning rate Parameters GFLOPs P R mAP50 mAP50-95

1.5 1,667,873 5.9 0.456 0.298 0.291 0.116

1.6 1,563,194 5.8 0.463 0.3 0.293 0.118

1.7 1,470,829 5.6 0.25 0.133 0.137 0.05

1.8 1,388,728 5.5 0.437 0.251 0.275 0.096

1.9 1,315,268 5.2 0.452 0.295 0.289 0.114

2.0 1,249,155 5.1 0.138 0.113 0.119 0.04

2.1 1,189,338 4.9 0.454 0.285 0.287 0.112

2.2 1,134,959 4.7 0.453 0.292 0.287 0.111

2.3 1,085,309 4.4 0.445 0.25 0.278 0.108

2.4 1,039,796 4.1 0.45 0.269 0.282 0.1
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TABLE 7 Results of the ablation study.

Base model Combination P/% R/% mAP50/% mAP50-95/%

YOLOv8n − 0.451 0.289 0.286 0.121

YOLOv8n +A 0.439 0.275 0.258 0.113

YOLOv8n +B 0.489 0.317 0.307 0.134

YOLOv8n +A + B 0.464 0.306 0.298 0.126

YOLOv8n +C 0.455 0.293 0.289 0.123

YOLOv8n +A + B + C 0.468 0.307 0.298 0.127

YOLOv8n +A + B + C + D 0.463 0.3 0.293 0.118

TABLE 8 Comparison of results obtained with various models.

Model Parameters GFLOPs P R mAP50 mAP50-95

IYFVMNet 1,563,194 5.8 0.463 0.3 0.293 0.118

Guo-Net 1,637,319 6.3 0.417 0.252 0.238 0.087

YOLO-SGF 2,045,000 6.1 0.453 0.285 0.288 0.103

YOLO-SE 2,726,297 7.2 0.464 0.303 0.306 0.11

TRC-YOLO 1,780,000 2.9 0.327 0.211 0.207 0.07

FIGURE 11
The display of the heat map.

detected 12 earth_persons with no false sea_person detections.
This indicates that the enhanced model achieves a higher recall
rate, making it more effective at detecting small objects within a
scene.Moreover, the refinedmodel demonstrates superior precision,
with more accurate object localization and a decrease in the false
detection rate. For the second image, there are numerous small
objects. The baseline model identified 10 earth_persons and 62
sea_persons, while the improved model detected 11 earth_persons
and 63 sea_persons. The total counts are similar, but the enhanced
model showsmore consistent performance in this complex scenario,
with fewer misidentifications and a slight improvement in recall
rate. Overall, the improved model has bolstered overall detection
capabilities relative to the other models.

6 Conclusion and future research

The utilization of drones for detecting people in myriad scenes
has become an essential component of contemporary search-and-
rescue frameworks. In this context, studies of the real-time detection
of small-person objects can greatly boost the efficiency and success
rate of rescuemissions.This paper presents IYFVMNet, an enhanced
and lightweight detection network based on the YOLOv8 model. It
achieved an accuracy of 46.3% on the TinyPerson dataset, with a
recall rate of 30%, mAP50 of 29.3%, and mAP50-95 of 11.8%. The
model achieves higher accuracy while using only half the number of
parameters compared to the original model. Regarding the balance
between computational complexity and precision, themodel ismore
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FIGURE 12
Visualization analysis results.

appropriate for environments with constrained resources than other
improved models.

The proposed IYFVMNet model has significant policy
implications, particularly in the context of search-and-rescue
operations and disaster management. By enabling accurate and
efficient detection of small objects, such as individuals in distress, the
model can significantly enhance the effectiveness of rescuemissions,
potentially saving lives in critical situations.

Despite the promising results achieved by the proposed model,
there are still several limitations that need to be addressed
in future research. From a theoretical perspective, the model’s
performance remains constrained by the inherent challenges of
small-object detection. For instance, the limited feature extraction
capabilities make it difficult to fully capture and represent object
information. From a practical standpoint, deploying the model
on resource-constrained devices continues to pose significant
challenges. Additionally, the diversity and quality of the dataset
remain crucial factors influencing the model’s performance. The
TinyPerson dataset used in this study cannot fully represent real-
world scenarios, such as extreme weather conditions affected by
climate changes.

Future research will be aimed at refining the feature extraction
and detection mechanisms to enhance the model’s efficiency.
Additionally, the goal is to enable faster detection on machines
with limited resources, providing rescue teams with precise
locations of individuals in need. Another promising direction is the
integration of metaheuristic optimization algorithms to fine-tune
the model’s hyperparameters, thereby improving both accuracy and
computational efficiency. Future research will focus on these aspects
and explore new methods to enhance the model’s performance
and applicability. This would significantly enhance the safety and
effectiveness of rescue missions.
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