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Real-time prediction model of
public safety events driven by
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To address the challenge of efficiently integrating multi-source heterogeneous
data to improve the accuracy of public safety event prediction, this study
proposes and validates a novel public safety event prediction model, GATPNet,
based on multi-source heterogeneous data. The model integrates Graph
Attention Networks (GAT), Spatiotemporal Transformers, and Proximal Policy
Optimization (PPO) to achieve effective data fusion, spatiotemporal feature
extraction, and real-time decision support. Through experiments conducted on
the Los Angeles Crime Data and CrisisLexT26 datasets, this study demonstrates
that GATPNet outperforms other baseline models. On the Los Angeles
Crime Data dataset, GATPNet achieved an accuracy of 90%, recall of 89%,
Spatiotemporal Prediction Accuracy (STPA) of 80%, and a response time of 1.9 s,
showing a 5% improvement in accuracy and a 10% improvement in STPA over
the best baseline method. On the CrisisLexT26 dataset, it achieved an accuracy
of 89%, recall of 88%, STPA of 78%, and a response time of 2.1 s, showing a 4%
improvement in accuracy and a 6% improvement in STPA over the best baseline
method. Additionally, ablation experiments further indicate that each module
plays a critical role in improving overall performance. Despite the model’s high
computational complexity when handling large-scale heterogeneous data and
the limited coverage of the datasets, GATPNet still demonstrates its broad
application potential in public safety event prediction andmanagement, offering
effective technical support for social governance and emergency management.

KEYWORDS

public safety event, deep learning, real-time prediction, multi-source data fusion, graph
neural networks (GNN), data integration, intelligent decision support

1 Introduction

In today’s society, the frequent and complex nature of public safety incidents has
made effective monitoring and prediction a critical issue. The occurrence of public
safety events, such as crimes, natural disasters, and emergencies, often has significant
impacts on social stability and economic development [1]. Traditional methods for
monitoring public safety typically rely on a single data source or expert experience for
predictions. These approaches are not designed to accommodate or leverage multiple
data sources/types and cannot efficiently handle large volumes of information, which
makes them inadequate in addressing the growing complexity and diversity of data in the
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modern era [2]. Therefore, constructing an intelligent system
capable of analyzing multi-source heterogeneous data and
predicting public safety incidents in real time is of great significance.

Public safety event data is highly heterogeneous and comes
from diverse sources, such as real-time updates from social media,
environmental data collected by sensors, historical crime records,
news reports, and more [3]. These data sources are not only
interconnected but also exhibit considerable differences. Effectively
integrating and utilizing these multi-source data remains a major
challenge in current research [4]. In recent years, the study of
multi-source data fusion has gained increasing attention, especially
with the use of GNN. By representing different data types as
nodes and edges in a graph, GNNs can effectively capture the
complex relationships between them [5]. However, issues such as
data heterogeneity, noise, and redundancy in multi-source data
fusion still pose significant challenges to existing techniques [6].

In addition to the fusion of multi-source heterogeneous data,
public safety events have clear temporal and spatial characteristics.
The occurrence of an event is influenced not only by a specific
location but also by dynamic temporal factors [7]. This requires
predictive models to have the capability to capture spatiotemporal
features in order to improve the perception and prediction of
event dynamics. Spatiotemporal Transformers, as a novel tool for
modeling spatiotemporal sequences, can simultaneously handle
temporal and spatial dependencies, making them well-suited for
feature extraction in complex dynamic scenarios [8]. In public safety
prediction, using transformers to capture spatiotemporal features
can enhance the model’s sensitivity to complex spatiotemporal
patterns and improve its predictive capability.

Predicting public safety events requires not only high accuracy
but also real-time response capabilities to enable timely intervention
and minimize potential losses [9, 10]. Therefore, effectively
integrating decision optimizationmodules into themodel to achieve
real-time prediction and emergency management is a key issue in
public safety research. Deep Reinforcement Learning (DRL), due
to its ability to optimize strategies in dynamic environments, has
become an ideal solution for real-time prediction and decision
support [11, 12]. In particular, the Proximal Policy Optimization
(PPO) algorithm, known for its excellent performance in complex
scenarios, can be used to improve decision efficiency in real-time
responses [13].

Based on these considerations, this study proposes a novel public
safety event predictionmodel, calledGATPNet (Graph-Transformer
Proximal Network). Different from the existing technology, the
GATPNet model has achieved important technical breakthroughs
in multi-source data fusion, spatiotemporal feature extraction
and real-time decision support by combining the graph attention
network (GAT), spatiotemporal transformer and proximal policy
optimization (PPO). The graph attention network (GAT) is used
to process heterogeneous data from different data sources, and
effectively captures the complex associations between data nodes
through the graph structure; the spatiotemporal transformer can
dynamically capture the spatiotemporal dependencies in the data,
improving the ability to predict the evolution of events; the PPO
algorithm optimizes the decision-making efficiency of the model
in real-time response through deep reinforcement learning to
ensure accurate and timely predictions and effective management
of crises/events. The technical innovation of GATPNet is not only

reflected in the combination of methods, but also in how to
solve the shortcomings of traditional methods in multi-source data
fusion and spatiotemporal feature modeling through collaborative
optimization between modules.

The main contributions of this study are as follows:

• Proposing a framework for predicting public safety events by
integrating multi-source heterogeneous data, overcoming the
limitations of traditional single data source analysis.

• Innovatively combining Graph Attention Networks with
Spatiotemporal Transformers to effectively capture complex
spatiotemporal features.

• Using Deep Reinforcement Learning to optimize real-time
decision support, offering a new solution for the dynamic
response to public safety events.

Through these innovative designs, our research not only
provides a new idea for public safety event prediction, but also
provides scientific technical support for emergency management
and social governance. Next, this paper will introduce the
architecture design, experimental process and results of the
proposed model in detail.

2 Related work

2.1 Multi-source heterogeneous data
fusion techniques

With the rapid development of information technology, the
data sources in the field of public safety have become increasingly
diversified and complex. The fusion of multi-source heterogeneous
data has become one of the key technologies for effectively
predicting public safety events [14, 15]. These data sources include
social media texts, sensor data, historical records, geospatial
data, and more, each offering insights into events from different
perspectives. For instance, social media data can reflect public
sentiment toward an event, while sensor data can provide real-time
detection of environmental changes. The challenge lies in how to
effectively fuse these diverse and format-different data sources into
a comprehensive predictive model for public safety events [16, 17].

Graph Neural Networks (GNN) have gradually emerged as
one of the main methods for multi-source heterogeneous data
fusion due to their unique advantages in modeling complex data
structures. By representing multi-source data as nodes and edges
within a graph, GNNs can capture the intricate dependencies
and interactions between various data sources. Specifically, GNNs
model the interactions between data sources through the edges
connecting different nodes [18, 19]. Interactions between data
sources can also be represented at the node level, where a node can
contain multiple attributes originating from different data sources.
For example, GNNs can model how trending topics on social
media influence crime rates in specific areas or how sensor data
correlates with public sentiment. In particular, the GAT, which
adaptively assigns attention weights to different nodes, effectively
highlights the influence of key nodes, improving the accuracy
of fusion and the model’s interpretability. In recent years, partial
multi-label learning has received increasing attention in the field of
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recommendation systems. In particular, it can effectively improve
the accuracy of recommendations by mining the correlation
between instances and labels [20]. This method can achieve more
accurate label predictions by utilizing the intrinsic correlation
between data, thereby improving the multi-label prediction ability
of the recommendation system. This method has shown great
advantages when processing data with complex label structures,
especially in the context of multi-source data fusion.

The application of self-supervised contrastive learning in
itinerary recommendations has also gradually attracted the attention
of researchers. In this field, researchers have further improved
the performance of recommendation systems under limited label
conditions by designing self-supervised tasks and using unlabeled
data for learning [21]. Through contrastive learning, the model can
better capture the potential characteristics of the data and show
strong generalization ability in multiple tasks [22]. This method has
important reference significance for the prediction of public safety
events, especially in the absence of complete label information.

Despite the powerful capabilities of GNNs in multi-source data
fusion, there remain several challenges in this domain. Multi-
source data is often heterogeneous, with differences in data formats
and features that make direct fusion difficult. Additionally, data
quality issues, such as noise and redundant information, can
negatively impact the fusion process. For example, false information
and irrelevant content on social media may lead to model
misjudgments [23]. Furthermore, computational complexity is a
significant issue, especially when processing large-scale graph data.
Balancing prediction performance with computational efficiency
remains a critical challenge [24]. To address these issues, this
paper combines GAT with Spatiotemporal Transformers and Deep
Reinforcement Learning to effectively tackle the challenges inmulti-
source heterogeneous data fusion.

2.2 Spatiotemporal prediction models

In public safety events, both temporal and spatial characteristics
are crucial factors influencing the occurrence, spread, and evolution
of events. Therefore, capturing the spatiotemporal dependencies
within data is key to improving prediction accuracy [25].
Spatiotemporal prediction models aim to understand the dynamic
changes of events from both temporal and spatial dimensions,
enabling more accurate predictions of potential public safety
incidents [26]. Traditional spatiotemporal prediction methods
typically employ statistical methods or Recurrent Neural Networks
(such as LSTM) to handle time series data, but these methods have
limitations when capturing complex, long-range spatiotemporal
dependencies.

In terms of spatial dependency, traditional GNN methods
represent spatial relationships in data by constructing a graph
structure, where each node represents a data point (such as a region
or location), and the edge represents the relationship between nodes
(such as distance or similarity). In this way, GNN can effectively
capture spatial dependencies and help understand the interactions
between different locations [27]. For example, GNN can effectively
capture spatial features by modeling the relationship between
regions by learning the edge weights between different nodes.

This process enables GNN to provide accurate spatial dependency
modeling when processing data with spatial structure.

In recent years, Spatiotemporal Transformers have attracted
growing attention from researchers. This model, based on attention
mechanisms, can effectively capture long-range spatiotemporal
features without suffering from the long-term dependency issues
associated with traditional RNNs.The attention mechanism enables
the model to flexibly select the most relevant temporal and
spatial information for the current prediction, thereby improving
the understanding of the dynamic changes in events [28]. For
example, in urban crime prediction, a Spatiotemporal Transformer
can combine historical crime data, geographical information,
and social media data to effectively identify the spatiotemporal
evolution patterns of crime hotspots. Although Spatiotemporal
Transformers show significant advantages in capturing complex
spatiotemporal features, they also face several challenges. The
diversity and dynamics of spatiotemporal data demand that the
model exhibit a high degree of adaptability, and adjusting the
model structure and parameters for different scenarios remains
a problem to be solved [29]. Additionally, the computational
complexity of the attentionmechanism can be high, especially when
dealing with large-scale spatiotemporal data, potentially leading
to excessive resource consumption. Therefore, the application
of Spatiotemporal Transformers requires balancing prediction
accuracy with computational efficiency.

This paper uses the Spatiotemporal Transformer module
to extract the spatiotemporal features of public safety events,
combining them with the fusion results from GNNs to enhance the
model’s ability to perceive and predict dynamic public safety events.
This approach not only effectively fuses multi-source data but also
captures the spatiotemporal variations in the data, providing a more
precise solution for predicting public safety events.

2.3 Applications of deep reinforcement
learning in public safety

Real-time response and intelligent decision-making present
another key challenge in public safety event prediction, particularly
when dealing with complex, dynamic environments where
traditional static models often fail to respond effectively to
emergencies. Deep Reinforcement Learning (DRL) has gradually
become an important research direction in public safety due to its
ability to optimize strategies in dynamic environments [30–32].
By using DRL, a system can learn the optimal strategy through
continuous interaction with the environment, thus improving its
efficiency in responding to sudden events and its decision-making
capability.

Proximal Policy Optimization (PPO), an advanced algorithm
in DRL, is particularly well-suited for real-time decision-making
scenarios in public safety due to its computational stability and
efficient policy updates. PPO limits the magnitude of policy
updates to prevent instability caused by excessive changes, achieving
high stability and convergence speed. In public safety event
prediction, PPO can help the model quickly adjust its prediction
and decision-making strategies after acquiring new data, ensuring
timely responses to dynamic risk situations. However, applying
DRL in public safety also presents challenges, such as dealing with
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high-dimensional state spaces and continuous decision problems,
as well as addressing low sample efficiency during training [3, 33].
Moreover, the real-time requirements necessitate high efficiency in
both training and inference processes to ensure that the system
can make decisions at the moment an event occurs. To address
this, this paper employs a strategy that combines DRL with
edge computing, offloading some inference tasks to edge nodes
for processing, thereby reducing latency and improving real-time
response capabilities [34, 35].

Deep Reinforcement Learning, particularly PPO, has shown
significant potential in the real-time prediction and emergency
decision-making of public safety events [36–38]. By applying PPO
to the real-time decision module of GATPNet, this study ensures
that the model not only predicts public safety events accurately
but also makes rapid and reasonable decisions in complex dynamic
environments. Through this combination, the research offers a new
solution for intelligent response and risk management in public
safety events.

3 Methods

3.1 Overview of the model: GATPNet net

To achieve accurate prediction and real-time decision
support for public safety events, this paper proposes a novel
public safety event prediction model, GATPNet (Graph-
Transformer Proximal Network). The model combines Graph
Attention Networks (GAT), Spatiotemporal Transformers, and
the Proximal Policy Optimization (PPO) algorithm, aiming to
extract effective features from multi-source heterogeneous data,
capture complex spatiotemporal dependencies, and provide real-
time decision support. Figure 1 illustrates the overall architecture of
GATPNet, which consists of three core modules: the multi-source
data fusion module, the spatiotemporal feature extraction module,
and the real-time decision module.

As shown in Figure 1, the overall process of GATPNet flows
from data input to final prediction output. Data from multiple
sources, including social media texts, sensor data, and historical
crime records, are preprocessed and input into the multi-source
data fusion module. In this module, Graph Attention Networks
(GAT) are used to construct these heterogeneous data into a
graph structure, where nodes represent different data types, and
edges represent the relationships between them. Through the graph
attention mechanism, the model assigns appropriate weights to
each edge and node, emphasizing the influence of key nodes and
effectively addressing the challenge of fusing heterogeneous data.

We preprocessed each data appropriately. Social media text data
was first cleaned by removing noise, stop words, and punctuation,
and then a pre-trained BERT model was used to convert each tweet
into a 768-dimensional vector representation. For historical crime
data, we standardized the location information and discretized the
time data by hour. Sensor data was cleaned and normalized to ensure
compatibility between different data sources. In this way, GAT is
able to fuse data from different sources in a graph and capture the
complex relationships between different data sources.

After the multi-source data fusion, the embedded features
generated by the graph are fed into the spatiotemporal feature

extraction module. The core of this module is the Spatiotemporal
Transformer, which captures the temporal and spatial dependencies
in public safety events. Time and space are two crucial dimensions
in public safety events, often exhibiting specific spatiotemporal
patterns, such as the trend of increased crime rates in a particular
area during certain time periods. The Spatiotemporal Transformer,
through the attention mechanism, flexibly selects the most relevant
time points and geographical regions, allowing it to effectively
extract long-range dynamic features and enhance sensitivity to
complex spatiotemporal patterns.

The features extracted by the Spatiotemporal Transformer are
then passed to the real-time decision module, which is based on
the Proximal Policy Optimization (PPO) algorithm from Deep
Reinforcement Learning. The introduction of the PPO algorithm
ensures that themodel can respond quickly to dynamically changing
environments. By continuously interacting with the environment,
the PPO model refines its strategies, enabling the system to provide
timely warnings and action suggestions in the face of sudden public
safety incidents. Additionally, to improve the speed of real-time
response, some inference tasks are deployed to edge nodes, utilizing
edge computing to reduce latency and ensure the model can react
immediately when an event occurs.

Figure 1 also shows the feedback loop mechanism, where the
prediction results are used to further adjust and optimize the
parameters of each module. This feedback mechanism allows
GATPNet to not only adapt to current data changes but also
continuously learn and improve, enhancing both prediction
accuracy and real-time responsiveness. The multi-source data
fusion, spatiotemporal feature extraction, and real-time decision-
making modules work in synergy, forming a powerful public
safety event prediction system with strong analytical and real-
time response capabilities. Through the coordinated operation of
these three core modules, GATPNet addresses the key challenges
in public safety event prediction, including multi-source data
fusion, capturing spatiotemporal dependencies, and providing real-
time responses, making it a promising intelligent prediction and
decision-making system with broad applications in the field of
public safety.

3.2 Multi-source data fusion module (GAT)

In GATPNet, the multi-source data fusion module forms the
foundation of the entire model. It is responsible for effectively
integrating data from different sources, providing a unified
representation for subsequent spatiotemporal feature extraction
and decision optimization. Figure 2 shows the specific structure
of the multi-source data fusion module, where we use the Graph
Attention Network (GAT) to perform multi-source data fusion and
representation learning. The goal of this module is to construct a
graph structure that connects data nodes of different types, and use
the attention mechanism to assign different importance weights to
each node, enabling efficient fusion of multi-source data.

As shown in Figure 2, each node represents a data source, such
as social media data, sensor data, or historical crime data.The edges
between nodes represent the potential relationships between these
data sources [39]. After constructing the graph structure, the graph
attentionmechanism is used to learn the relationships between each
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FIGURE 1
Overall architecture of GATPNet.

FIGURE 2
Multi-source Heterogeneous Data Fusion Process Using Graph Attention Network (GAT). This diagram includes the representation of each data node,
the process of attention weight calculation, and the multi-head attention mechanism, illustrating the complete process from input to fused
feature output.

node and its neighbors, focusing on the nodes that play a key role
in the prediction task. The graph attention network calculates the
attention weight between node i and its neighboring node j using
the following formula:

αij =
exp(LeakyReLU(aT [Whi‖Whj]))

∑
k∈N (i) exp(LeakyReLU(a

T [Whi‖Whk]))

where W represents the feature transformation matrix, a is
the weight vector used to compute the attention coefficients,
‖ denotes vector concatenation, and N (i) represents the set of
neighbors of node i. By calculating the attention weights [40],
the model can focus on neighboring nodes that are highly
correlated with the current node, enabling effective data
fusion.
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The feature update for each node is performed through a
weighted sum, using the following formula:

h′i = σ( ∑
j∈N (i)

αijWhj)

where σ is the nonlinear activation function, such as ReLU.Through
this process, the feature of each node not only contains its own
information but also integrates information from its neighboring
nodes, achieving a comprehensive representation of multi-source
heterogeneous data.

To further improve the model’s expressive power, we employ a
multi-head attention mechanism for node feature updates. We use
K different attention heads to calculate the relationships between
nodes, and the attention computation for each head is as follows:

h′′i = ‖
K
k=1σ( ∑

j∈N (i)
α(k)ij W

(k)hj)

With the multi-head attention mechanism, the model can
model node relationships frommultiple perspectives, enhancing the
robustness and accuracy of the fused features.

At the end of themulti-source data fusionmodule, the generated
fused features are further input into the spatiotemporal feature
extraction module to capture the spatiotemporal dependencies of
public safety events. In this way, the Graph Attention Network
achieves efficient fusion of heterogeneous data, not only improving
the utilization of data but also providing more accurate and
comprehensive inputs for subsequent spatiotemporal feature
extraction and real-time decision-making.

3.3 Spatiotemporal feature extraction
module (spatiotemporal transformer)

In the GATPNet model, the spatiotemporal feature extraction
module is one of the core components of the system. Its objective is
to effectively capture the temporal and spatial dependencies from
the data after multi-source fusion. Figure 3 illustrates the specific
structure of the spatiotemporal feature extraction module, where
we use a Spatiotemporal Transformer to handle the temporal and
spatial features of the data, efficiently capturing dynamic changes
over long time spans and across spatial dimensions through the
attention mechanism.

As shown in Figure 3, the feature representations output by the
multi-source data fusion module are input into the spatiotemporal
feature extraction module. The model first encodes the input
fused features, representing the data at each time step as a high-
dimensional vector, denoted as X ∈ ℝT×D, where T is the number
of time steps and D is the feature dimension at each time step.
The Spatiotemporal Transformer models the dependencies of these
features across both temporal and spatial dimensions using a self-
attention mechanism.

The Spatiotemporal Transformer module retains the temporal
order information using positional encoding [41, 42], which is
formulated as follows:

PE (t,2i) = sin( t
100002i/D

), PE (t,2i+ 1) = cos( t
100002i/D

)

where t represents the time step, and i is the index of the
feature dimension. The positional encoding adds temporal order
information to the features, allowing the transformer to capture the
temporal changes in the data.

Next, the input features undergo multi-head self-attention,
extracting the importance of features across both time and space.
For each time step t, the self-attention weight is calculated as:

Attention (Q,K,V) = softmax(
QKT

√dk
)V

where Q, K, and V represent the query, key, and value matrices,
respectively, and dk is the dimension of the keys. Using multi-
head attention, the model projects the input features in different
ways and computes the mutual influence of features from multiple
perspectives:

MultiHead (Q,K,V) = Concat(head1,…,headh)WO

where each headi is an independent attention head that captures
different spatiotemporal patterns. This approach allows the model
to model spatiotemporal features from multiple angles, ensuring
sensitivity to complex dynamic changes.

To further enhance the model’s expressive power, the features
after attention computation undergo a nonlinear transformation
using a feed-forward neural network (FFN):

FFN (x) = ReLU (xW1 + b1)W2 + b2

The feed-forward network allows for further nonlinear
combination of the attention output features, improving the feature
representation. Each layer of the Spatiotemporal Transformer
includes residual connections and layer normalization to ensure
smooth information flow and network training stability:

y = LayerNorm (x+Attention (Q,K,V))

z = LayerNorm (y+ FFN (y))

By stacking multiple layers of Spatiotemporal Transformers, the
model progressively extracts deeper spatiotemporal features from
the input data.The resulting feature representation not only captures
the temporal evolution patterns of the data but also identifies spatial
dependencies.

Finally, the output features of the spatiotemporal feature
extraction module are input into the real-time decision module,
which is used to make dynamic decisions in response to public
safety events. The Spatiotemporal Transformer effectively models
both temporal and spatial information, allowing GATPNet to better
capture the complex dynamic features of public safety events,
providing rich and accurate input features for the subsequent real-
time decision module.

3.4 Real-time decision module (proximal
policy optimization)

In GATPNet, the real-time decision module is a critical
component for implementing model prediction and emergency
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FIGURE 3
Spatiotemporal feature extraction module based on spatiotemporal transformer.

FIGURE 4
Real-time Decision Module Based on Proximal Policy Optimization (PPO). The PPO algorithm optimizes the policy by using a clipped objective
function, ensuring stable learning.

response. Its primary goal is to quickly take the optimal action after
detecting potential risks of public safety events, thereby minimizing
the negative impacts of such events. Figure 4 illustrates the structure
of the real-time decision module, which employs the Proximal
Policy Optimization (PPO) algorithm. By continuously interacting
with the environment, PPO learns the optimal strategy in dynamic
scenarios, enabling efficient responses to public safety incidents.

The real-time decision module first receives the input features
from the spatiotemporal feature extraction module, represented as a
state vector st ∈ ℝd, where t denotes the time step and d represents
the feature dimension. The PPO algorithm learns a policy function
πθ(at|st), which generates an optimal action at from the state st to
minimize future risk [43]. The optimization of the policy function
is achieved by maximizing the expected cumulative return J(θ) [44],
as shown in the following formula:

J (θ) = 𝔼t[
T

∑
t=0

γtrt]

where rt is the reward received at time step t, and γ is the discount
factor that controls the importance of future rewards.

To ensure the stability of policy updates, PPO introduces a
probability ratio constraint and optimizes the policy using a clipped
objective function, limiting the magnitude of policy updates. This
is defined as:

LPPO (θ) = 𝔼t [min(rt (θ) Ât,clip(rt (θ) ,1− ϵ,1+ ϵ) Ât)]

where rt(θ) =
πθ(at|st)
πθold(at|st)

is the ratio of the new policy to the old policy,

Ât is the advantage function, and ϵ is the hyperparameter for the
clipping range. By clipping the policy ratio, PPO ensures that each
update does not deviate too far from the original policy, thereby
improving the stability of policy training.

In the real-time decision module, estimating the advantage
function Ât is crucial for improving the efficiency of policy learning.
This study uses Temporal Difference (TD) methods to estimate the
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TABLE 1 Overview of the Los Angeles Crime Data and CrisisLexT26 Datasets, showing the source, data type, scale, and specific use of each dataset
in the model.

Dataset name Source Data type Dataset size Use in model

Los Angeles Crime Data Los Angeles Public Data Platform Historical crime records, location, time 200,000 records Spatiotemporal analysis and prediction
of crime events

CrisisLexT26 Social Media Platform Text data (tweets), sentiment labels 1,000,000 tweets Event social response and sentiment
analysis

advantage function:

Ât = rt + γVϕ (st+1) −Vϕ (st)

where Vϕ(st) is the value estimate function for state st, which is
estimated by a neural network with parameters ϕ.

The PPO module uses a policy network and a value network to
make decisions and evaluate the value of states. The policy network
is responsible for generating the optimal action, while the value
network estimates the long-term return for each state. Together,
these networks enable the model to make real-time decisions by
continuously interacting with the environment, considering both
short-term and long-term rewards to choose the optimal action.
This stability and efficiency enable GATPNet to make quick and
reasonable decisions when facing sudden events, thus reducing the
potential harm of the events.

4 Experiment

4.1 Datasets

In this paper, we selected two publicly available datasets for
experimental validation: Los Angeles CrimeData andCrisisLexT26,
which cover different aspects of public safety events, including
crime data and social media data. Table 1 summarizes the basic
information about the two datasets.

The Los Angeles Crime Data is a crime dataset from the public
data platform of the city of Los Angeles, containing historical crime
records from recent years, specifically from 2018 to 2022. This
dataset provides detailed information on crime types, time, location,
etc., with a total of approximately 200,000 records [45]. Using this
data, we can analyze the spatiotemporal distribution characteristics
of crime events and identify high-crime areas and time periods.This
information helps the model make efficient predictions in public
safety and identify crime hotspots.

CrisisLexT26 is a social media dataset primarily consisting of
tweets related to public safety from Twitter. This dataset includes
tweets from 26 major crisis events, covering various types such
as natural disasters, social unrest, etc., with a total of about
1 million tweets [46]. These tweets span from 2011 to 2020,
corresponding to the timeframes of the respective crisis events. The
dataset is labeled with sentiment and crisis-related tags, which can
be used to capture public sentiment and reactions to emergencies.
This information provides crucial input for the model’s application
in emergencymanagement, allowing themodel to better understand
social responses and assist in decision-making.

In the data preprocessing stage, the Los Angeles Crime Data
and CrisisLexT26 datasets were first denoised. For the crime
dataset, location information was standardized, and the latitude
and longitude were rounded to six decimal places to ensure
geographic precision. The time data was discretized by segmenting
the crime events by hour to capture temporal pattern changes.
For the CrisisLexT26 dataset, tweet data was first cleaned by
removing URLs, punctuation, and stop words. Then, a pre-trained
BERT model was used to encode the tweets, converting them
into 768-dimensional vector representations for input into the
Graph Attention Network. To further improve the data quality, a
threshold method was applied to filter out noisy data. In the Los
Angeles Crime Data, records with incomplete location information
(such as events missing latitude and longitude) were removed,
totaling approximately 2% of the data. In the CrisisLexT26 dataset,
extremely short tweets (less than 5 characters) or tweets lacking
useful information were deleted. After cleaning, the dataset size was
reduced to about 950,000 tweets. The preprocessed datasets were
then input into the Graph Attention Network (GAT) for multi-
source data fusion, capturing the complex relationships between the
data sources.

4.2 Experimental setup and metrics

The hardware environment for this experiment uses high-
performance GPUs for acceleration, specifically employing the
NVIDIA Tesla V100 to handle the complex computations in
model training. The software environment is based on the
Python programming language and the PyTorch framework for
implementing deep learning models. Additionally, for handling
graph-structured data, the model utilizes DGL (Deep Graph
Library) to build the graph neural network components. In terms of
training parameters, the model uses an initial learning rate of 0.001,
a batch size of 64, and 200 training epochs. The Adam optimizer
is employed to ensure fast convergence. For the PPO module, a
clipping range of ϵ = 0.2 and a discount factor of γ = 0.99 are used to
ensure stable policy updates.

Table 2 summarizes the hardware and software environment,
along with the parameter settings, for clarity and reproducibility of
the experimental process.

To evaluate the model’s performance, the following key metrics
were selected:

Accuracy is used to assess the overall correctness of the model
in predicting public safety events:

Accuracy = TP+TN
TP+TN+ FP+ FN
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TABLE 2 Experimental environment and parameter settings.

Item Setting

Hardware Environment GPU: NVIDIA Tesla V100 (32 GB)

Software Environment Operating System: Ubuntu 20.04

Programming Language Python 3.8

Framework PyTorch 1.9.0, CUDA 11.3

Graph Neural Network Library DGL 0.7.2

Learning Rate Initial Learning Rate: 0.001

Batch Size 64

Training Epochs 200

Optimizer Adam

PPO Clipping Range ϵ = 0.2

Discount Factor γ = 0.99

Recall measures the model’s ability to correctly identify actual
public safety events. The higher the recall, the better the model is at
capturing real public safety incidents

Recall = TP
TP+ FN

Spatiotemporal Prediction Accuracy (STPA) evaluates the
model’s accuracy in predicting events in both time and space, based
on the deviations between predicted and actual locations and times:

STPA = 1− 1
N

N

∑
i=1
(
| ̂ti − ti|
T
+
‖ ̂li − li‖

L
)

where ̂ti and ti represent the predicted and actual times for the i-th
event, ̂li and li represent the predicted and actual locations, and T
and L are the maximum scales for time and space, respectively.

Real-time Response Time measures the time it takes for the
model to process input data and make a prediction, in seconds.
Shorter response times indicate quicker predictions and decision-
making.

These evaluation metrics cover the model’s prediction accuracy,
event recognition ability, spatiotemporal prediction accuracy, and
real-time performance. Together, they provide a comprehensive
assessment of GATPNet’s performance in predicting public safety
events. By examining the results of these metrics, we can gain a
deeper understanding of the model’s performance across various
aspects and further optimize the model.

4.3 Results analysis

Figure 5 shows the training and validation loss curves of the
GATPNet model on the Los Angeles Crime Data and CrisisLexT26
datasets, with the blue and orange solid lines representing the

FIGURE 5
Training and validation loss curves on Los Angeles Crime data and
CrisisLexT26 datasets.

training losses, while the blue and orange dashed lines represent the
validation losses.

As shown in the figure, the training and validation losses on
both datasets gradually decrease with the increase in training epochs
and stabilize in the later stages. This indicates that the model’s
learning process is effective and has gradually reached a stable state.
During the first 50 epochs, the loss decreases relatively quickly,
which reflects the model’s ability to rapidly learn significant features
from the data in the initial stages, leading to a quick reduction in
training error. As training continues, the rate of loss reduction slows
down, and after approximately 150 epochs, it stabilizes, indicating
that the model has gradually converged. Further observation of the
curves reveals that the overall trends of training and validation losses
on both datasets are consistent, suggesting that the model has good
generalization performance in both training and validation phases,
without significant overfitting.

In particular, on the Los Angeles Crime Data, the training
and validation losses remain very close throughout, indicating that
the model has strong generalization ability in predicting crime
data. On the CrisisLexT26 dataset, although the training loss is
slightly lower than the validation loss, the gap between the two
is minimal, suggesting that the model can maintain reasonable
prediction performance on complex social media data.

However, noise in the loss curves is present throughout the
entire training process. This is likely due to the heterogeneity and
complexity of the data. The CrisisLexT26 dataset, sourced from
social media, is often characterized by high randomness and noise,
which can cause fluctuations in the loss during training. Despite
some fluctuations, the overall loss trend continues to decrease, and
the amplitude of the fluctuations gradually reduces in the later stages,
reflecting the model’s gradual adaptation to and learning from these
complex data features.The overall decrease and gradual convergence
of the loss curves show that the training process on both datasets
is effective and stable, successfully minimizing both training and
validation errors during the parameter optimization process.

Table 3 presents the performance comparison between the
GATPNet model and other baseline models on the Los Angeles
Crime Data and CrisisLexT26 datasets. Through the comparative
experiments, it can be observed that GATPNet outperforms other
models across all evaluation metrics.
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TABLE 3 Performance comparison of GATPNet model and other baseline models on Los Angeles crime dataset and CrisisLexT26 dataset (bold font
indicates the best result).

Models Los Angeles Crime data CrisisLexT26 dataset

Accuracy Recall STPA Response time Accuracy Recall STPA Response time

SVM [47] 0.72 0.65 0.56 3.8 0.70 0.68 0.54 4.1

Random Forest [1] 0.78 0.73 0.60 3.5 0.76 0.72 0.57 3.9

LSTM [48] 0.81 0.79 0.64 2.9 0.80 0.77 0.61 3.0

GCN [49] 0.82 0.80 0.67 2.6 0.81 0.79 0.64 2.8

GAT [50] 0.85 0.83 0.69 2.4 0.84 0.82 0.68 2.7

ST-GCN [51] 0.86 0.84 0.72 2.3 0.85 0.83 0.70 2.5

Transformer [52] 0.84 0.82 0.68 2.7 0.83 0.80 0.67 2.9

ST-Transformer [53] 0.87 0.86 0.74 2.2 0.86 0.85 0.72 2.4

GCN + LSTM [51] 0.88 0.87 0.75 2.1 0.87 0.86 0.73 2.3

CNN + LSTM [7] 0.84 0.83 0.70 2.5 0.83 0.82 0.69 2.6

GAT + LSTM [54] 0.89 0.88 0.77 2.0 0.88 0.87 0.75 2.2

Hybrid-GCN + GRU [55] 0.87 0.85 0.73 2.3 0.86 0.84 0.71 2.5

GATPNet 0.90 0.89 0.80 1.9 0.89 0.88 0.78 2.1

In terms of Accuracy and Recall, GATPNet performs better
than the other baseline models on both datasets. On the Los
Angeles Crime Data dataset, GATPNet achieved an accuracy
of 0.90 and a recall of 0.89, which are significantly higher than
the other models. For example, compared to the hybrid model
GCN + LSTM, GATPNet’s accuracy and recall were improved
by 2% and 2%, respectively. This indicates that GATPNet is
better at capturing the complex dependencies between different
data sources, effectively fusing multi-source information, and
improving the prediction accuracy of public safety events.
Traditional machine learning methods, such as SVM and
Random Forest, have relatively lower accuracy, indicating that
traditional models lack sufficient feature extraction and data fusion
capabilities when dealing with highly heterogeneous and complex
data.

In terms of STPA, GATPNet also achieves significant
advantages.The STPA for GATPNet on the Los Angeles Crime Data
and CrisisLexT26 datasets are 0.80 and 0.78, respectively, which
are significantly higher than those of other models. In contrast,
graph-based models like GCN and GAT, due to their lack of in-
depth modeling of temporal dynamics, have slightly lower STPA.
While time series models like LSTM can effectively handle temporal
dependencies, they fall short in capturing spatial features. Hybrid
models such as ST-Transformer and GAT + LSTM enhance the
STPA by combining both spatial and temporal feature extraction,
but they still lag behind GATPNet. GATPNet, by integrating Graph
Attention Networks, Spatiotemporal Transformers, and the PPO-
based real-time decision mechanism, effectively addresses the

challenges in modeling spatiotemporal dependencies, resulting in
the best performance in the STPA metric.

In terms of Response Time, GATPNet also demonstrates
outstanding performance. The response times on the Los Angeles
Crime Data and CrisisLexT26 datasets are 1.9 s and 2.1 s,
respectively, which are significantly lower than those of other
models. This is primarily due to GATPNet’s strategy of integrating
edge computing, which offloads some inference tasks to edge
nodes, thus reducing response latency and improving real-time
performance. In comparison, traditional deep learning models
like LSTM and Transformer have response times over 2.7 s, while
hybrid models such as GCN + LSTM and Hybrid-GCN + GRU also
have response times exceeding 2.0 s. This indicates that GATPNet
has a distinct advantage in real-time performance, especially in
emergency scenarios, enabling faster responses to potential risks,
thereby providing stronger support for public safety management.

Furthermore, hybrid models such as GAT + LSTM and ST-
Transformer perform better than single models across multiple
metrics because they can leverage both graph-based features and
time series features, allowing for better modeling of complex
relationships in the data. However, GATPNet, by integrating the
three core modules (multi-source fusion, spatiotemporal feature
extraction, and reinforcement learning-based decisionmaking), not
only performs excellently in accuracy and recall but also significantly
improves spatiotemporal prediction accuracy and response time,
showcasing a complete and efficient solution.

In the ablation experiments, we sequentially removed certain
key modules from the GATPNet model to assess the contribution of
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TABLE 4 Ablation experiment results of GATPNet model on Los Angeles crime dataset and CrisisLexT26 dataset (bold font indicates the best result).

Models Los Angeles Crime data CrisisLexT26 dataset

Accuracy Recall STPA Response time Accuracy Recall STPA Response time

Full Model (GATPNet) 0.90 0.89 0.80 1.9 0.89 0.88 0.78 2.1

w/o GATModule 0.85 0.83 0.72 2.5 0.84 0.83 0.70 2.6

w/o S-Transformer 0.86 0.85 0.74 2.3 0.85 0.84 0.73 2.4

w/o PPOModule 0.88 0.87 0.76 2.4 0.87 0.86 0.75 2.3

each module to the overall performance. The experimental results
are shown in Table 4.

By progressively removing different modules (including the
GAT module, Spatiotemporal Transformer module, and PPO
decision module), the results demonstrate that the complete
GATPNet model outperforms all other configurations across all
metrics. On the Los Angeles Crime Data dataset, GATPNet achieves
an accuracy of 0.90, a recall of 0.89, an STPA of 0.80, and the
shortest response time of 1.9 s. A similar trend is observed on
the CrisisLexT26 dataset, where the complete model outperforms
all configurations where any module is removed. This indicates
that each module plays a critical role in improving GATPNet’s
performance, and the combination of all modules achieves the best
synergistic effect.

After removing the Graph Attention Network (GAT) module,
the model’s performance significantly declined, especially in
terms of accuracy and spatiotemporal prediction accuracy,
which showed substantial degradation. The role of the GAT
module is to enhance the model’s ability to handle multi-source
heterogeneous data by using the attention mechanism to capture
complex relationships between data nodes, thus improving the
prediction accuracy of public safety events. After removing the
Spatiotemporal Transformer module, the STPA dropped from 0.80
to 0.74, indicating that the Spatiotemporal Transformer plays a
key role in modeling the temporal and spatial dependencies of
public safety events. The Spatiotemporal Transformer enables the
model to effectively capture spatiotemporal dynamics, allowing
for a better understanding of the event evolution process.
Additionally, removing the PPO decision module resulted in a
drop in recall to 0.87, indicating that the PPO decision module
is essential for improving the model’s response capability in
dynamic environments. By leveraging reinforcement learning,
PPO enables the model to adapt to sudden changes in the
environment.

The ablation experiments demonstrate that the collaborative
function of each module in the GATPNet model is crucial
for achieving the best performance, and removing any module
leads to a decline in overall performance. This validates the
contribution of each module to GATPNet and proves the
rationality of the model’s design. The complete design of GATPNet
results in significant improvements in accuracy, spatiotemporal
prediction accuracy, and response speed, fully demonstrating its
potential in the application of public safety event prediction and
management.

FIGURE 6
Spatiotemporal heatmap for Los Angeles Crime data.

FIGURE 7
Spatiotemporal heatmap for CrisisLexT26 datasets.

Figures 6, 7 display the spatiotemporal distribution prediction
results of the GATPNet model on the Los Angeles Crime Data and
CrisisLexT26 datasets, respectively.

In Figure 6 (Los Angeles Crime Data), the geographic
distribution of crime events across Los Angeles is clearly visible.
The red-marked areas represent locations with a high frequency
of crime events, while the blue areas indicate locations with fewer
incidents. The concentration of event intensity is highly correlated
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FIGURE 8
Predicted emotion fluctuation for Los Angeles Crime data.

with specific regions of the city, particularly densely populated
areas, where event intensity tends to be higher. This suggests that
the GATPNet model can accurately identify high-crime areas
when processing crime data with geographic features, revealing
the geographical dependency of events. By identifying these high-
risk areas, the model provides valuable insights for police force
deployment, enhancing the efficiency of urban management in
public safety.

In Figures 7 (CrisisLexT26), the spatiotemporal distribution
of events shows clear heterogeneity. The heatmap, with different
color markers representing event intensity, indicates that red
corresponds to higher event intensity and blue to lower intensity.
Areas with higher event intensity are concentrated in specific
geographical regions, and their distribution shows a certain degree
of concentration. This demonstrates that the GATPNet model
successfully captures the geographic distribution characteristics
of social crisis events in the CrisisLexT26 dataset and effectively
distinguishes between high-intensity and low-intensity events.
This has significant practical implications for emergency response,
helping managers quickly locate high-risk areas and take
timely actions.

Combining the spatiotemporal distribution maps of both
datasets, the GATPNet model excels at capturing the spatial
heterogeneity of event intensity. This is due to the effective
integration of the Spatiotemporal Transformer and GAT modules
in the model. The Spatiotemporal Transformer module captures the
temporal dynamics in the data, while the GAT module handles the
complex spatial dependencies of multi-source heterogeneous data,
significantly enhancing the accuracy and detail in spatiotemporal
predictions.

Figures 8, 9 present the predicted emotion fluctuation results
of the GATPNet model on the Los Angeles Crime Data and
CrisisLexT26 datasets.The variation in emotion intensity reflects the
emotional fluctuations of the public during the development of the
events, with the vertical axis representing emotion intensity and the
horizontal axis representing training epochs. By analyzing these two
figures, we can further understand GATPNet’s ability to capture the
emotional evolution pattern when handling time-series data.

In the figure for the Los Angeles Crime Data dataset, the
emotion intensity exhibits clear cyclical fluctuations. The emotion

FIGURE 9
Predicted emotion fluctuation for CrisisLexT26 datasets.

intensity gradually rises in the early stages of training, reaches
a peak, and then gradually declines, forming a distinct periodic
curve. This phenomenon reflects the public’s emotional fluctuations
in response to crime events: as high-intensity crime events occur,
public emotions gradually rise, and after reaching a certain intensity,
the emotional intensity begins to decrease due to the event subsiding
or the public adapting to it. It is important to note that the
amplitude and frequency of the emotional fluctuations are closely
related to the timing and frequency of the crime events, indicating
that the GATPNet model can effectively capture changes in public
emotions at different stages and reflect the periodic nature of
crime events.

For the CrisisLexT26 dataset, the changes in emotion intensity
also show significant fluctuations, but compared to the crime
dataset, the amplitude and frequency of the fluctuations are
somewhat different. The figure shows that the emotion intensity
quickly reaches a peak in the early stages of training, followed by
a sharp decline, then hits a low point around the 50th epoch, and
starts to rise again. Compared to the emotion fluctuations in the Los
Angeles Crime Data, the fluctuations in the CrisisLexT26 dataset
are more complex, with higher frequencies and more significant
amplitude variations. This is mainly because the CrisisLexT26
dataset includes multiple major events from social media, which
often have a strong and rapidly changing impact on public emotions.
The GATPNet model, by learning from these time series, effectively
captures the rapid changes in public sentiment on social media,
reflecting the emotional fluctuations people experience in response
to different events.

Overall, combining the emotion fluctuation predictions from
both figures, the GATPNet model performs exceptionally well in
capturing complex emotional fluctuation patterns. By integrating
the Spatiotemporal Transformer and GAT modules, the model
can effectively understand the impact of public safety events
on public emotions in terms of both temporal dynamics and
spatial relationships. This prediction of emotional fluctuations not
only helps managers understand public reactions and attitudes
toward events, but also provides valuable insights for emergency
management, enabling more effective risk communication and
intervention strategies. Overall, the GATPNet model performs
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excellently in handling different datasets (including crime data and
social media data), fully demonstrating its adaptability and accuracy
in emotion fluctuation prediction.

5 Conclusion

This study proposes a novel public safety event prediction
model, GATPNet, based on multi-source heterogeneous data. By
integrating Graph Attention Networks (GAT), Spatiotemporal
Transformers, and Proximal Policy Optimization (PPO), the model
achieves efficient fusion of multi-source data, precise extraction of
spatiotemporal features, and optimized real-time decision-making.
Experimental results show that GATPNet outperforms other
baseline models on two publicly available datasets, demonstrating
significant improvements in accuracy, recall, spatiotemporal
prediction accuracy (STPA), and response time. Specifically, when
handling complex public safety data, GATPNet’s multi-module
collaborative design effectively enhances overall performance,
showing relative improvements of 5% in accuracy and 10% in
STPA over the best baseline method. This positions GATPNet as
a promising new technological approach for public safety event
prediction and management.

Although GATPNet has achieved remarkable results in public
safety event prediction, there are still some limitations in this
study. On one hand, the model’s computational complexity is
relatively high when processing large-scale heterogeneous data,
which requires considerable hardware resources and limits its
application in resource-constrained environments. On the other
hand, the datasets used in this study are relatively limited, especially
in terms of covering different types of public safety events, which
may affect the model’s generalization ability and adaptability in
various scenarios.

In future research, we plan to make improvements in several
areas. First, wewill introducemore heterogeneous data sources, such
as sentiment analysis data from social media and environmental
sensor data, to enhance the model’s prediction accuracy for
emergency events. Second, we aim to optimize the model’s
computational efficiency, especially in applications with higher real-
time requirements, to further reduce response time. Additionally, we
will consider incorporating more complex reinforcement learning
strategies to improve the decision-making quality of the model in
dynamic environments, thus providing stronger intelligent support
for public safety management. These improvements will further
enhance GATPNet’s application potential and enable it to play a
significant role in more real-world public safety scenarios.
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