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Institute of Control Systems, Hamburg, Germany

The European X-Ray Free Electron Laser is the largest particle accelerator for
X-ray laser generation worldwide. To ensure a safe and efficient operation,
the plant uses various monitoring systems, especially in the linear accelerator.
The low-level radio frequency system has shown reliability in diagnostics,
particularly in quench detection. A quench refers to a superconducting radio
frequency cavity losing its superconductivity and possibly causing a downtime.
The diagnostics solution, however, can be enhanced in terms of robustness
and functionality. Currently, the focus is on integrating artificial intelligence to
improve quench identification. Thus, a lightweight machine learning-assisted
approach targeting FPGAdeployment is developed. It relies on the augmentation
of a physical model-based anomaly detection approach with neural network
models to distinguish the quenches from the other anomalies. This paper
presents the solution in which neural architecture search is applied, and
elaborates on how visualizing and analyzing the anomaly detection results can
provide critical insights for both short-term diagnostics and long-term pattern
identification.
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1 Introduction

The European X-Ray Free Electron Laser (EuXFEL) is the largest particle accelerator
for X-ray laser generation worldwide. It spans over 3.4 km in Hamburg, Germany, and
serves several hundred users each year. The interdisciplinary researchers benefit from an
extremely intense laser light generated at a rate of 27,000 flashes per second, with an electron
acceleration reaching high energies of up to 17 GeV. The linear accelerator (linac) achieves
acceleration with almost 800 superconducting radio frequency cavities (SRFCs), organized
into 25 stations.The SRFCs act as resonators that propel charged particles when operated at
their resonance frequency of 1.3 GHz. They are currently operated in a pulsed mode with a
pulse repetition rate of 10 Hz. An overview of the accelerator is shown in Figure 1.

The safe and efficient operation of large and complex facilities, such as the EuXFEL,
is crucial for successful experiments by the users. Anomalous behaviors are encountered
daily in different areas of the plant. Thus, various monitoring systems were deployed
during commissioning. At the linac, the low-level radio frequency (LLRF) system controls
and monitors the SRFCs. It ensures a stable accelerating field, averaging 23.6 MV/m,
additionally, it diagnoses the radio frequency (RF) signals and other measurements to
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FIGURE 1
Overview of the EuXFEL with a focus on the SRFCs location within the stations and the linac.

report any anomaly and to trigger countermeasures accordingly.
However, under certain conditions, these systems can be inflexible
and suffer from robustness issues. Therefore, upgrades and
improvements have been continuously conducted, with a recent
growing focus on artificial intelligence (AI) techniques. These
techniques have also been explored in other facilities for anomaly
classification and prediction. For example, quenches are classified
through decision trees and neural networks at the relativistic heavy
ion collider (RHIC) [1]. At the continuous electron beam accelerator
facility (CEBAF), a long short-term memory-convolutional neural
network is developed to predict faults in the accelerating cavities [2].

Downtime can occur when an SRFC loses its superconductivity
due to a quench. When an SRFC exceeds its maximum sustainable
gradient, it quenches and transitions to a normal conducting state.
This translates to a loss of the gradient and a drop in the quality
factor (QL), where QL is an indicator of the field coupling and
power dissipation in the cavities. The currently deployed quench
detection system (QDS) relies on a statistical analysis of the QL
[3]. While the QDS is effective in detecting quenches, it also
generates a considerable number of false alarms, triggering with
faults different from quenches [4]. A machine learning (ML)-
enhanced solution has therefore been explored, to improve anomaly
detection and categorization. For general anomaly detection, the
method relies on the SRFC model that couples the electromagnetic
and mechanical dynamics. It employs the non-linear parity space-
based method and the generalized likelihood ratio (GLR) [4, 5].
To identify the anomalies, the system can be augmented with
ML techniques. The k-medoids clustering algorithm, using the
Euclidean (EUC) and theDynamic TimeWarping (DTW) similarity
measures, has been explored to identify quenches [6]. This paper
continues the previous work by presenting a neural network-
based approach. Various multilayer perceptrons (MLPs) [7] are
used to learn enhanced decision boundaries in terms of separation
of the quenches from the other anomalies in the distance
space of the clustering medoids (actual-data centroids). The MLP
architectures are learned through two approaches, a handcrafted
method with varying neuron counts per layer and an optimization-
based approach using neural architecture search (NAS). The latter
uses the evolutionary optimization to find a lightweight model

that maximizes the detection performance while minimizing the
inference latency, given the goal of firmware implementation.
The offline implementation analyzes RF pulse data collected
daily, providing both short-term monitoring capabilities and long-
term trend analysis. This helps LLRF experts diagnose issues
promptly and understand broader patterns. Both the evaluation and
exploitation of the solution are detailed and discussed.

2 Preliminaries

The electromagnetic and mechanical dynamics of the SRFCs
are modeled with the input forward signal, which corresponds to
the RF signal driving the cavity and the output probe signal, which
corresponds to the RF signal coupled out from the field inside of
the cavity. The influencing parameters are the detuning, which is
the delta between the driving and the resonance frequencies, and
the half bandwidth, which is an indicator of an SRFC sensitivity
towards the detuning [8]. This model has been used to develop
a parity space-based method for anomaly detection. The method
captures inconsistencies relative to the expected outputs in the
form of residuals, which are subsequently evaluated with the GLR.
When the latter exceeds a predefined threshold, it indicates a fault
occurrence with high probability [4],

{{{{{{
{{{{{{
{

GLR (k) = K
2
( 1
K

k

∑
i=k−K+1

r(i)⊤)σ−1( 1
K

k

∑
i=k−K+1

r (i)),

AnomalyGLR =
{
{
{

1, if ∃ k such that GLR (k) > T,

0, otherwise,

where r(i) is the evaluated and discretized residual, K is the size
of the moving evaluation window, σ is the variance of the nominal
residual, and T is the predefined threshold typically equal to 10.8,
which corresponds to a desired false positive rate (FPR) of 0.0003%
(assuming that the GLR is following a χ2 distribution) and can be
tuned empirically. Figure 2 illustrates the behavior of the SRFCs,
their waveforms and corresponding GLR, under nominal and
quenching conditions.
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FIGURE 2
Illustrative examples of the SRFC behavior under different conditions. The input forward signal, which corresponds to the RF signal driving the cavity
and the output probe signal, corresponding to the RF signal coupled out from the field inside of the cavity. (Left) RF waveforms and GLR obtained
under a nominal condition of the SRFC, the GLR is a noisy signal not exceeding the threshold. (Right) RF waveforms and GLR obtained under a
quenching condition of an SRFC. This is characterized by a loss in the accelerating gradient (drop of the probe) from approximately 23 MV/m to
17 MV/m. It has been noticed that a bell-shaped GLR corresponds to a quench, with different peak values (approximately equal to 800 in this example),
and therefore different center points within the pulse.

The GLR can be augmented with different lightweight ML
models in order to distinguish quenches from other anomalies.
Preliminary results with a clustering solution based on k-medoids
have been obtained [6]. Given X = {x1,x2,…,xn}, with xi ∈ ℝd,
a dataset consisting of n = 76 quench GLR traces of dimension
d = 1819, the K-medoids [9], which is a clustering algorithm
that groups data by choosing actual data representatives, called
medoids, as cluster centers, is used to cluster the GLR traces. Two
clusters are built for each similarity metric (note that the number
of clusters has been noticed through visualization during data
preparation), and therefore two medoids,MDTW = {mDTW1,mDTW2}
and MEUC = {mEUC1,mEUC2}, have been obtained with DTW and
EUC, respectively. The similarity measures are defined as,

EUC (x1,x2) = √
d

∑
i=1
(xi1 − x

i
2)

2,

and

DTW (x1,x2) = argmin
i,j
∑dist(xi1,x

j
2) ,

where i, j ∈ {1,2,…,d} represent the sample indices of the traces
x1 and x2. Any distance measure (dist) can be used for DTW,
in this case, the Euclidean distance is applied. More details can
be found in [6]. With the two similarity measures explored,
significant improvements in terms of false alarms have been
achieved. However, the decision boundaries used in the distance
space could be improved. Therefore, we propose here to use ML to
learn a new and efficient separation of the quenches from the rest of
anomalies.

3 Methodology

We use an MLP, which is a type of artificial neural network
consisting of multiple fully-connected layers of neurons, an input

layer, one or more hidden layers, and an output layer. Each neuron
in a layer is connected to every neuron in the previous and
next layer, making the network fully connected. When provided
with a new anomalous GLR trace g ∈ ℝd, in order to make
decision whether it is a quench or not, its distance to the quench
medoids is computed and fed to the MLP to assess its similarity
with the quench clustering model. MLPEUC is built to assess the
similarity based on EUC and has therefore an input layer with
two neurons, the first neuron is fed with EUC(g,mEUC1) (EUC-
based similarity between g and the first medoid mEUC1) and the
second neuron is fed with EUC(g,mEUC2) (EUC-based similarity
between g and the second medoid mEUC2). Similarly, MLPDTW
takes as inputs DTW(g,mDTW1) and DTW(g,mDTW2)with DTW as
similarity measure.

To build the two MLPs, data from 2021 to 2022 have been
exploited. A total of 146,811 anomalous GLR traces is used, with
a 70%− 30% split between the training and test sets. Each of the
two architectures includes up to four hidden layers, this hidden
architecture is learned through two approaches, a handcrafted
approach and an optimization-based approach [10], with the
optimization aiming at learning a lightweight architecture. In
the first approach, we explore architectures with different layer
structures. Denoting the varied neuron counts per layer by h,
we define architectures with three hidden layers where h is
doubled or halved in the middle layer. In addition, architectures
where h is progressively increased or shrunk by a factor of
two have been explored. We have also examined uniform
architectures in which the number of neurons h remains consistent
across all layers.

The second approach searches for the model hyper-parameters
by leveraging NAS with the evolutionary optimization as tuner (see
Figure 3). The architecture evaluation is designed as a hardware-
agnostic multi-objective optimization. It rewards higher area under
the curve of the receiver operating characteristic (AUROC), given
the binary classification problem, and it penalizes higher floating
point operations per second (FLOPs) in order to enhance the model
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FIGURE 3
Flow of the neural architecture search to learn the MLPs.

efficiency. We therefore define an objective function as a weighted
sum of AUROC and normalized FLOPs,

{
{
{

θ∗ = argmax
θ∈A

O (θ) ,

O (θ) = α×AUROC (θ) − (1− α) FLOPs (θ) ,

where, A = {θ = (l,hi) ∣ l,hi ∈ ℕ, l ∈ [lmin, lmax], hi ∈ [hmin,hmax]
with i ∈ {1, .., l}} is the search space with the set of all possible
architectures constrained by the number of hidden layers (l) and
number of neurons (hi) in layer i. The minimum number of layers
was set to lmin = 1, and the maximum number of layers was set
to lmax = 3, as discussions are ongoing with the firmware experts
to define what a lightweight model is, we would like to keep the
maximumnumber of hidden layers as small as possible. α is a scaling
factor that controls the trade-off between AUROC and FLOPs. A
higher α prioritizes increasing AUROC, while a lower α prioritizes
reducing FLOPs. Here, it is set to 0.9 as the impact of the AUROC
remains more important while convergence is achieved. In both
architectures, an output layer with a single neuron with the sigmoid
function is used. ReLu is used as activation function, the models
are trained using the Adam optimizer with a learning rate equal
to 0.005, and the data are standardized beforehand. Subsequently,
models with the highest AUROC are retained. The implementation
of the proposed neural architecture search approaches was achieved
using PyTorch and the Neural Network Intelligence toolkit [11].
Here, the search space and the search strategy are provided in
configuration files, and the objective function is implemented and
integrated to the code and used to calculate the performance of
each architecture learned. The optimization is then performed
by the toolkit.

4 Results

With the manually crafted experiment, MAN−MLPEUC =
(l = 3,h1 = 96,h2 = 192,h3 = 96) and MAN−MLPDTW =
(l = 3,h1 = 10,h2 = 20,h3 = 10) are retained as the optimal
architectures with the EUC and the DTW similarity measures,
respectively. With the NAS-based approach, the optimal
architectures obtained with EUC and DTW are: NAS-
MLPEUC = (l = 3,h1 = 36,h2 = 49,h3 = 175) and NAS-MLPDTW =
(l = 2,h1 = 16,h2 = 8), respectively. We notice that both approaches
converged towards architectures with a high-dimensional projection
of the features that helps with the separation. Table 1 presents
the performance of the different models based on AUROC, true
positive rate (TPR), false positive rate, FLOPs, and size of the
models (number of parameters). The NAS approach has shown
better performance in identifying optimal architectures for both

EUC and DTW. NAS-MLPEUC achieved an AUROC of 0.995, with
an FPR about 10% smaller than with MAN-MLPEUC, the model is
also about 70% lighter than the manually-learned one. Although
the difference based on detection performance with DTW leans
toward the manual model, it is minimal, and both the size and
the FLOPs of NAS-MLPDTW are significantly smaller compared to
MAN-MLPDTW.

Visualizing and exploiting results of the anomaly detection helps
to gain and communicate insights. Postmortem data, consisting of
hundreds of RF pulses, are collected daily and saved to HDF5 files
corresponding to station events. The ML-assisted analysis provides
a comprehensive view of the stations and SRFCs affected within a
rolling 24-h period, as illustrated in Figure 4 (Left). This is useful
for continuously diagnosing short-term issues and addressing them
promptly by the LLRF experts. On the Figure, we can read for
example, that one cavity is affected from station A4 on the 25th of
March 2024 at 13:33. This has generated two faulty pulses and these
are identified as quenches. We are also tracking the fault labeled
as “missing signal”, which is triggered when one of the RF signals
used in the GLR computation is not available, leading to erroneous
GLR waveforms.These daily results are saved and rendered through
the web and emails where more details are given, especially plots
of the RF signals, to help the LLRF experts to gain a clearer
understating of the anomalies. Long-term insights help capture
patterns over time and space. For instance, identifying which SRFCs
quenchmore frequently and determining when we experience more
quenches. For the latter, as depicted in Figure 4 (Right), which has
been obtained based on expert-corrected AI findings, a positive
correlation is noticed between the operational energy and the
number of quenches, as higher energies scheduled at the end of each
half-year usually induce more quenches, in 2022, it is clearer in the
second half of the year, where inNovember a total of 18 quenches has
been recorded. Exceptions happen, for instance in April where the
number of quenches is 21.

5 Discussion

The handcrafted experiment led to a directed but limited search
over architectures that satisfy the provided structural constraints.
In contrast, the ability of NAS to explore and evaluate a wide
range of architectures explains its better performance. The current
implementation is based on software running on offline data, a
firmware implementation for an online deployment on FPGA has
also been initiated. To meet the constraints for edge deployment
while maintaining high detection performance, the NAS has shown
to be an effective approach for lightweight model learning. The
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TABLE 1 Evaluation results of the different MLPs.

Model TPR FPR AUROC FLOPs/Size

NAS−MLPEUC 0.9861 0.0049 0.9950 11,367/10,847

MAN−MLPEUC 0.9861 0.0055 0.9903 38,305/37,537

NAS−MLPDTW 0.9583 0.0259 0.9662 241/193

MAN−MLPDTW 0.9583 0.0257 0.9663 551/471

FIGURE 4
Leveraging AI output to gain insights across different time scales. (Left) Summary of SRFC anomalies from daily reports on 25 March 2024 where the
affected stations, the number of faulty cavities and pulses, in addition to the type of anomalies are shown. (Right) Distribution of quenches and other
SRFC anomalies from the yearly reports for 2022.

overall AUROC has also been maintained acceptable, and slightly
improved with EUC, mainly as an impact of the number of false
positives. A deeper analysis of a tolerable rate of false alarms is
however needed to finalize the model selection. Additionally, the
specifications of the targeted firmware need to be explored and
eventually incorporated into the learning loop. More algorithms
can also be explored to detect additional SRFC anomalies, with an
emphasis on human-AI collaborative approaches to achieve adaptive
and continual learning. Incorporating these new anomalies to the
daily reports in Figure 4 would help the experts to quickly identify
the eventual root cause or the affected subsystems. Moreover, this
will help understand the other faults of the long-term analysis and
find correlations.
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