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Fisheye omnidirectional stereo
depth estimation assisted with
edge-awareness

Junren Sun*, Hao Xue, Shibo Guo and Xunqi Zheng

School of Artificial Intelligence, China University of Mining and Technology-Beijing, Beijing, China

Thewide field of view of fisheye cameras introduces significant image distortion,
making accurate depth estimation more challenging compared to pinhole
camera models. This paper proposes a fisheye camera panoramic depth
estimation network based on edge awareness, aimed at improving depth
estimation accuracy for fisheye images.We design an Edge-AwareModule (EAM)
that dynamically weights features extracted by a Residual Convolutional Neural
Network (Residual CNN) using the extracted edge information. Subsequently,
a spherical alignment method is used to map image features from different
cameras to a unified spherical coordinate system. A cost volume is built for
different depth hypotheses, which is then regularized using a 3D convolutional
network. To address the issue of depth value discretization, we employ a hybrid
classification and regression strategy: the classification branch predicts the
probability distribution of depth categories, while the regression branch uses
weighted linear interpolation to compute the final depth values based on these
probabilities. Experimental results demonstrate that our method outperforms
existing approaches in terms of depth estimation accuracy and object structure
representation on the OmniThings, OmniHouse, and Urban Dataset (sunny).
Therefore, our method provides a more accurate depth estimation solution
for fisheye cameras, effectively handling the strong distortion inherent in
fisheye images, with improved performance in both depth estimation and detail
preservation.

KEYWORDS

fisheye camera, omnidirectional, depth estimation, edge information, RCNN, self-
attention

1 Introduction

Depth estimation is a fundamental task in computer vision, crucial for applications such
as autonomous driving, robotic navigation, and virtual reality. It involves reconstructing
the 3D structure of a scene from one or more images, enabling spatial awareness and
environmental perception. Traditional depth estimationmethods, however, rely on cameras
with a limited field of view (FoV), which may not capture sufficient environmental details
in certain scenarios [1, 2].

Fisheye cameras, with an ultra-wide FoV of up to 180°, offer significant advantages
in large-scale monitoring and robotic vision, allowing for comprehensive environmental
coverage. Despite this, their non-linear imaging characteristics pose challenges for
traditional depth estimation techniques, which often fail to handle the distortions in
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fisheye images, particularly at the image edges [3, 4]. The image
edges are compressed, causing barrel distortion, where straight
lines appear curved, especially in peripheral regions, leading to
depth estimation errors [5]. (Radial Distortion) Misalignments
between the lens and sensor introduce shifts that impact stereo
matching and depth accuracy [6]. (Tangential Distortion) These
distortions lead to errors that vary across the image. While the
center remains relatively undistorted, the edges suffer substantial
deviations, making traditional geometric correction methods like
rectification ineffective, as they cause information loss at the
periphery [7]. Classical methods like stereo vision and geometric
correction approaches, such as those by Kannala et al. [8], attempt
to address these distortions, but they remain limited in performance
for fisheye images, especially in dynamic or complex environments
where distortions are more pronounced.

Another approach involves using depth sensors, such as LiDAR
or structured-light cameras, to directly measure depth. While
these methods provide high accuracy and precision, they often
require additional hardware, which increases costs and complexity.
Furthermore, these sensors can be sensitive to environmental factors
such as lighting conditions, reflections, or obstructions, which
can degrade their performance in certain scenarios, particularly
in indoor or dynamic environments [9, 10]. Moreover, sensor-
based methods are less effective in featureless or unstructured
environments, where depth informationmay be sparse or unreliable.

In recent years, deep learning methods have revolutionized
depth estimation, achieving impressive results across a variety
of image processing tasks. Notable approaches like Eigen et al.’s
multi-scale network [11] and Laina et al.’s residual network [12]
have demonstrated high accuracy for depth prediction from
single images. For fisheye images, deep learning has also been
applied to overcome lens distortion challenges [13]. These methods
utilize convolutional neural networks (CNNs) to learn spatial
features and effectively handle distortion. Despite these advances,
the non-linear distortions inherent in fisheye lenses continue to
present significant challenges. Therefore, developing specialized
deep learning models tailored for fisheye camera images remains
essential for improving depth estimation accuracy and robustness
in real-world applications, especially in complex or dynamic
environments.

Up to now, manymethods for omnidirectional depth estimation
based on fisheye cameras have been proposed. Deep learning-based
methods includeOmnidet [14], which introduces amulti-task visual
perception network that jointly trains six tasks-depth estimation,
visual odometry, semantic segmentation, motion segmentation,
object detection, and lens distortion detection-to support 360°near-
field perception. Omnimvs [15] presents a novel end-to-end deep
neural networkmodel for panoramic depth estimation from a wide-
baseline multi-view stereo setup. This method can build panoramic
images from four fisheye images and perform depth estimation.
Furthermore, Omnimvs also proposes a large-scale synthetic dataset
[15]. CasOmniMVS [16] builds on this by introducing a cascaded
architecture that uses a dynamic spherical scanning approach to
progressively refine 360° depth estimation overmultiple stages.Non-
deep learning methods, such as Sphere Stereo [17], propose an
efficient spherical stereo vision method that operates directly on
multi-view fisheye images without requiring additional spherical
calibration.

These methods represent innovative approaches to fisheye-
based depth estimation, but each has its limitations. The multi-
task approach in Omnidet [14], for example, appears somewhat
redundant for the single task of depth estimation, potentially
impacting its accuracy. The end-to-end deep network in Omnimvs
[15] does not effectively integrate information beyond RGB images
for depth estimation. Sphere Stereo [17] is prone to estimation
errors in low-texture regions and on smooth surfaces with strong
reflections.

We believe that for applications such as autonomous driving, 3D
reconstruction, and augmented reality, accurate depth estimation
of the overall structure of objects is crucial. Inspired by Omnidet’s
multi-task approach [14], we introduce edge information as
guidance for depth estimation. Edge information reflects the
structural features of objects and subtle textures, while not overly
complicating the task of depth estimation, thereby enhancing
accuracy without sacrificing performance.

Among methods that incorporate edge information, StereoNet
[18] first proposed an end-to-end deep learning architecture for
real-time stereomatching, generating high-quality, edge-preserving,
and quantization-free disparity maps. The method [19] presents
an approach for single-image depth estimation based on edge
extraction networks and dark channel priors (DCP). A Generative
Adversarial Network (GAN) is used to construct an edge extraction
network to select effective depth edges from multiple edges in the
image. SPDET [20] introduces a self-supervised panoramic depth
estimation network, which designs an edge-aware loss function to
optimize depth estimation performance on panoramic images.

In this paper, we propose an edge-aware fisheye camera
omnidirectional depth estimation network. To enhance the
network’s sensitivity to edges, we construct an Edge-Aware Module
(EAM) in the feature extraction stage, which dynamically weights
features extracted by the Residual CNN using both spatial and
channel attention mechanisms. Afterward, spherical alignment
projects the image features from different cameras into a unified
spherical coordinate system. By aligning the features, we calculate
the cost volume over multiple depth hypotheses. To improve the
stability of the cost volume, we use a 3D convolutional network for
cost volume regularization. Since the depth values in the cost volume
are discretized into multiple depth categories, we employ a mixed
classification and regression strategy to predict the final depth map.
The classification branch predicts the probability distribution of each
pixel belonging to a specific depth category, while the regression
branch uses weighted linear interpolation based on the probability
distribution to compute the final depth value for each pixel. This
approach ensures depth accuracy while maintaining smoothness.
Experimental results on the OmniThings, OmniHouse, and Urban
Dataset (sunny) [15, 21] demonstrate that our method outperforms
existing methods in terms of both depth estimation accuracy and
the representation of object structure.

The main contributions of this paper compared to existing
methods are as follows.

• We propose a novel feature extraction method that combines
Residual CNN and the Edge-Aware Module (EAM), effectively
capturing structural features and edge details from images to
enhance depth estimation accuracy, especially in object edges
and detailed regions.
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• We employ a spherical alignment approach to unify the
image features from different cameras into a single spherical
coordinate system, addressing the consistency issue in depth
estimation across different viewpoints. Additionally, we
optimize the construction of the cost volume and use a
3D convolutional network for cost volume regularization,
capturing spatial correlations between the depth, horizontal,
and vertical dimensions, which effectively reduces noise and
enhances depth estimation robustness.

• We design a hybrid classification and regression strategy
to predict the final depth map. Moreover, by introducing
edge information, particularly in object boundary regions, we
further enhance the accuracy of depth estimation and reduce
blur and errors in transitional areas. We also propose a dual
loss function that combines depth estimation loss and edge
matching loss, further aligning the structural information in
edge features with the depth estimation task.

The remainder of this paper is organized as follows: Section 2
introduces the proposed method and network architecture,
Section 3 presents the experimental results and provides a
comprehensive analysis, and Section 4 concludes the paper.

2 Methods

2.1 Network architecture

As shown in Figure 1, the proposed network is composed
of several sequential stages: input, feature extraction, spherical
alignment, cost volume regularization and depth regression. The
proposed network introduces innovations in feature extraction and
loss function design to achieve accurate depth estimation from
grayscale fisheye images. The feature extraction module integrates
a Residual Convolutional Neural Network (Residual CNN) and
an Edge-Aware Module (EAM). The Residual CNN captures
structural features while maintaining efficient gradient flow, and the
EAM enhances edge-specific details using Sobel convolution and
attention mechanisms. These components work together to extract
both structural and boundary features, crucial for accurate depth
estimation. To optimize depth prediction, we design a novel loss
function combining depth estimation loss and edge matching loss.
The depth estimation loss minimizes pixel-wise errors, while the
edge matching loss aligns the edges of the predicted depth map
with those of the input image.This dual-loss strategy ensures precise
depth estimation, particularly around object boundaries, improving
the overall robustness and accuracy of the network.

2.2 Network input overview

The input to the network consists of grayscale fisheye images
captured from Ncamcameras at different viewpoints. Each input
image has a resolution of H×W.The objective of this stage is to
preprocess the input data and generate feature maps for subsequent
processing. These feature maps serve as the basis for depth
estimation tasks in later stages.

2.3 Feature extraction

We designed an feature extraction module with two blocks:
Residual Convolutional Neural Network(Residual CNN) and
Edge-Aware Module(EAM). This module is designed to process
input images into meaningful representations, focusing on both
structural and edge-specific features to achievesmore accurate depth
estimation for edge structures and object texture details.

2.3.1 Residual convolutional neural network
(residual CNN)

The input images are processed through a convolutional network
with residual connections, which improves gradient flow during
training and mitigates the vanishing gradient problem. These
residual connections allow for efficient learning of base features
essential for depth estimation. The resulting feature maps are
then downsampled to a resolution of 1

2
H× 1

2
W×C, balancing

computational efficiency with the retention of key structural
information.

2.3.2 Edge-aware module (EAM)
To enhance the network’s ability to capture object boundaries

and fine details, the Edge-Aware Module (EAM) is applied to the
feature maps produced by the residual CNN. The EAM performs
two key functions: extracting edge-specific features and dynamically
refining feature importance through attention mechanisms.

The first function involves edge feature extraction, where Sobel
convolution is employed to generate edge-specific feature maps.
The Sobel convolution is a discrete differentiation operator that
computes spatial gradient approximations to identify regions of
high intensity variation in digital images, corresponding to edge
features. This technique employs two orthogonal 3× 3 convolution
kernels designed to measure horizontal (Gx) and vertical (Gy)
directional gradients:

Gx =
[[[[

[

−1 0 1

−2 0 2

−1 0 1

]]]]

]

, Gy =
[[[[

[

−1 −2 −1

0 0 0

1 2 1

]]]]

]

.

For each pixel at coordinates (i, j), the horizontal and vertical
gradients are computed through discrete convolution between the
respective kernel and local image neighborhood. The gradient
magnitudeM(i, j) and orientation θ(i, j) are then calculated as:

M (i, j) = √Gx(i, j)2 +Gy(i, j)2,

θ (i, j) = arctan(
Gy (i, j)
Gx (i, j)
) .

High gradient magnitudes indicate rapid intensity changes
characteristic of edges. A threshold T is applied to M(i, j) to
distinguish significant edges from noise:

E (i, j) =
{
{
{

1, ifM (i, j) > T,

0, otherwise.

The directional nature of the kernels enhances vertical
and horizontal edge sensitivity while providing inherent noise
suppression through weighted neighborhood averaging.This makes
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FIGURE 1
Overview of the network: four input images are fed into the feature extraction stage to get conventional and edge features.These feature maps are
converted into sphere feature maps in the feature alignment stage to built cost volume.The edge information of the depth map generated in the depth
regression stage compares with the edge information generated from raw image inputs to guide the generation of the final depth map.

Sobel convolution particularly effective for extracting geometrically
salient boundaries in images while maintaining computational
efficiency.

Within our network pipeline, raw input images are first
subjected to Gaussian blur denoising, followed by gradient
computation through horizontal and vertical Sobel convolutions
using convolution kernel Gx and Gy. The resulting gradient
magnitudes are normalized to the [0,255] intensity range, after
which a fixed threshold (T = 130) is applied to distinguish edge
features (gradient values > 130) from background regions (gradient
values ≤130).These features capture critical boundary details and
object textures, complementing the base features extracted by the
residual CNN.

The second function introduces attention mechanisms to refine
the extracted features further. The channel attention mechanism
computes the importance of each feature channel by applying global
pooling, assigning higher weights to channels most relevant to
the task. In parallel, the spatial attention mechanism generates
an attention map through convolution operations, emphasizing
key spatial regions such as edges and fine textures. Together,
these mechanisms adaptively enhance the representation of the
most critical features for depth estimation. The block extracts
features with shape 1

2
H× 1

2
W×C,where H and W represent input

height and width.

2.3.3 Feature fusion
The base features and edge features are combined using a

weighted summation:

Fout = α ⋅ Fstruct + β ⋅ Fedge (1)

Here, α and β are trainable parameters dynamically updated during
training and both initialized with a value of 0.5.This adaptive fusion
enhances the network’s ability to capture both low-level edge details
and high-level contextual features. Fout is a tensor with a shape of
1
2
H× 1

2
W×C as well.

2.4 Spherical alignment

2.4.1 Unified projection to a common spherical
coordinate system

The input fisheye images are first projected from their respective
camera coordinate systems to a unified spherical coordinate system
as shown in Figure 2. For each fisheye camera, the transformation
from image coordinates (u,v) to spherical coordinates (d,θ,ϕ) is
defined as follows:

A pixel (u,v) n the fisheye image is transformed into the 3D
camera coordinate system using the intrinsic camera matrix Ki and
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FIGURE 2
The structure of the multi-camera rig system.In feature alignment
stage, we convert feature points from the camera coordinate system
to sphere coordinate system using instrinsic and extrinsic camera
parameters.

a depth hypothesis:

d:Xc = d ⋅K−1i
[[[[

[

u

v

1

]]]]

]

(2)

The 3D point in the camera coordinate system Xc is then
mapped to the world coordinate system using the extrinsic camera
parameters Ri(rotation) and ti:

Xw = RiXc + ti (3)

Finally, the world coordinates (x,y,z) are converted to spherical
coordinates (d,θ,ϕ), where:

d = ‖Xw‖, θ = arctan 2 (y,x) , ϕ = arcsin( z
d
). (4)

where d is the radial distance, θ is the horizontal angle([−π,π]), and
ϕ is the vertical angle([− π

2
, π
2
]).

This projection ensures that features from all cameras are
geometrically aligned in the spherical coordinate system, facilitating
the subsequent cost volume construction.

2.4.2 Cost volume construction
The spherical cost volume is constructed to represent the feature

consistency across multiple views at varying depth hypotheses
dk. For each depth hypothesis, the features from all cameras are
projected onto a unified spherical coordinate grid (θ,ϕ) using
the projection process described earlier. This step ensures that
the features from different cameras are spatially aligned on the
spherical coordinate system, facilitating consistency evaluation.
But in our network, the inverse of the depth d′k =

1
dk

is used,
which is motivated by the non-linear distribution of depth
variations in 3D scenes. Depth changes are more significant
for objects closer to the camera and become less noticeable as
the distance increases. By representing depth as its inverse, the
distribution of depth differences is normalized, ensuring more
uniform spacing between the hypothetical spherical surfaces
in the cost volume. This approach enhances the accuracy of
depth estimation, particularly in scenes with a wide range
of depth values. Furthermore, to reduce the computational
overhead associated with estimating continuous values, the
inverse depth d′k is discretized into a finite number of spherical

surface indices idx. This discretization enables the efficient
representation of depth hypotheses while maintaining sufficient
resolution for accurate depth estimation. The discretization process
is as follows:

The range of the inverse depth, [d′min,d
′
max], is divided into

N equally spaced intervals, where the spacing for each interval
is defined as:

Δd′ =
d′max − d

′
min

N− 1
, (5)

For a given inverse depth value d′, we use the function in [17]
for computing the corresponding index idx of the hypothetical
spherical surface:

idx =
d′k − d

′
min

Δd′
= N− 1
d′max − d

′
min
⋅ (d′k − d

′
min) . (6)

This discretization reduces the computational complexity by
converting the continuous depth estimation problem into a
discrete search over a finite number of hypothetical spherical
surfaces. It also ensures efficient representation and computation of
depth hypotheses while maintaining sufficient accuracy for depth
reconstruction.

To quantify the consistency of features across views, the
cost volume C(idx,θ,ϕ) is defined as the aggregation of feature
differences between each camera and the mean feature across
all cameras at a given depth hypothesis. Mathematically, this is
expressed as:

C (idx,θ,ϕ) =
Ncam

∑
i=1
‖Fi (idx,θ,ϕ) − F(dk,θ,ϕ)‖

2, (7)

where Fi(idx,θ,ϕ) represents the feature value from the i-th camera
at the given depth index idx and angular position (θ,ϕ), and
F(idx,θ,ϕ) is themean feature value across all cameras, calculated as:

F (idx,θ,ϕ) = 1
Ncam

Ncam

∑
i=1

Fi (idx,θ,ϕ) . (8)

To enhance robustness in cost volume construction, alternative
fusion strategies can be employed. One common approach is
variance-based fusion, where the cost is computed as:

C (idx,θ,ϕ) = 1
Ncam

Ncam

∑
i=1
(Fi (idx,θ,ϕ) − F (idx,θ,ϕ))

2. (9)

The cost volume thus encodes themulti-view feature consistency
for all depth hypotheses and spherical coordinates, serving as the
foundation for subsequent depth estimation.

Through spherical alignment and cost volume construction,
followed by stitching and cropping, the featuremaps generated from
four images are combined into a single feature map with dimensions
Ht ×Wt ×C, here, Ht = 160,Wt = 640, which is subsequently
utilized for cost volume regularization. Simultaneously, boundary
information extracted from the original images using an edge
detection network undergoes an identical stitching and cropping
process, resulting in a boundary map of dimensions Ht ×Wt × 1.
This boundary map serves as auxiliary information to refine and
optimize the depth estimation process.
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2.5 Cost volume regularization

Our method employs 3D convolutional networks for
cost volume regularization to capture spatial and depth-wise
correlations, improving consistency and reducing noise. The
raw cost volumeCraw(idx,θ,ϕ) is processed using a series of 3D
convolutional layers to extract local and global dependencies.
Formally, the regularized cost volume is expressed as:

Creg (idx,θ,ϕ) = Conv3D(Craw (idx,θ,ϕ)) (10)

where Conv3D represents the 3D convolution operation applied
across the depth, horizontal, and vertical dimensions.

By leveraging the hierarchical feature extraction capability of
the 3D convolutional network, our method smooths inconsistencies
in the cost volume and enhances the discriminative power
of depth hypotheses. This regularization step ensures robust
depth estimation, even in challenging scenarios with noisy or
incomplete data.

2.6 Depth regression

The final depth map is estimated using a hybrid classification
and regression strategy. The depth values in the cost volume are
discretized into N depth categories, allowing the classification
branch to predict the probability distribution P(i, j,n) for each pixel
(i, j) belonging to depth dn using a cross-entropy loss function. Based
on the probability distribution, the regression branch computes the
final depth value using a weighted linear interpolation:

Dpred (i, j) =
N−1

∑
n=0

P (i, j,n) ⋅ dn, (11)

where P(i, j,n) represents the probability that pixel (i, j) belongs
to depth dn. This hybrid approach combines the robustness of
classification with the precision of regression, ensuring smooth and
accurate depth estimation.The output is expected to be a depth map
with a shape of Ht ×Wt × 3.

2.7 Edge-based depth estimation
optimization

To make the generated depth map more accurate, particularly
around object boundaries, we designed an edge-based optimization
strategy. The edge detection branch extracts edge information from
the RGB image and guides the depth estimation branch to refine
the depth map. The introduction of edge information significantly
improves the boundary quality of the depth map, reduces blur
in transition regions, and minimizes errors in depth discontinuity
areas. We extract a binary edge maps of input images using an edge
extraction network proposed in Li et al. [22], then the maps are
stitched and cropped into a full binary edgemapwith a shape ofHt ×
Wt × 1.Simultaneously, we utilized this network to extract a binary
edgemap from the depthmapwe get in the stage of depth regression.
Two binary edge maps has the same shape.

We use an additionally designed loss function to simultaneously
account for the differences in depth estimation and edge
information, optimizing our task of end-to-end depth estimation.

2.8 Loss function

Our loss function consists of two components: the depth
estimation loss(Loss 1) and the edge matching loss(Loss 2). In the
depth estimation loss, we use the SmoothL1 loss to measure the
pixel-level error between the generated depth map Dpred and the
ground truth depth map Dgt:

Loss1 = 1
N

N

∑
i=1

SmoothL1(Dpred (i) ,Dgt (i)) (12)

In the edge matching loss, we employ the SmoothL1 loss to
measure the discrepancy between the edges of the generated depth
map E(Dpred) and the edges of the input RGB image E(Irgb):

Loss2 = 1
N

N

∑
j=1

SmoothL1(E (Dpred)(j) ,E (Irgb)(j)) (13)

Here,E(⋅) represents the edge extraction network, and N is the
total number of pixels in the edge map.The definition of SmoothL1
is as follows:

SmoothL1 (x,y) =
{
{
{

0.5 ⋅ (x− y)2, if |x− y| < 1,

|x− y| − 0.5, otherwise.
(14)

The total loss function (Loss) is defined as

Loss = α ⋅ Loss1+ β ⋅ Loss2, (15)

where α and β are weighting hyper-parameters used to balance the
depth estimation loss and the edge matching loss.

3 Experiment

3.1 Setup details

This study utilizes the Omnidirectional Stereo Dataset,
specifically designed for multi-view omnidirectional stereo depth
estimation tasks. The dataset contains pairs of fisheye images
captured under various environmental conditions, along with
corresponding ground truth depth maps. It includes several subsets:
Sunny, containing cityscape scenes under sunny conditions; Cloudy,
with scenes captured under cloudy weather conditions; Sunset,
featuring synthetic scenes with low light due to sunset conditions;
OmniHouse, comprising indoor environments with diverse lighting
and layout conditions; and OmniThings, used for evaluating depth
estimation on various object types, including scenes with complex
occlusions and geometries. Each image has a resolution of 768 × 800
pixels and includes four fisheye images covering a 220° field of view,
along with 360° omnidirectional depthmaps at 640-pixel resolution,
providing a comprehensive basis for training and evaluating depth
estimation methods. Experiments were conducted on a machine
with an NVIDIA V100 GPU, running Ubuntu 18.04 and PyTorch
1.1.0. In all our experiments, the output and the GT depth maps are
cropped to Ht = 160 and Wt = 640. The number of sweep spheres
is set to N = 192. To optimize our network, we trained our network
on the OmniHouse, OmniThings and Sunny datasets for 30 epochs.
The three datasets we utilized in this study were devided with 70
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TABLE 1 Quantitative comparisons of depth estimation models on the Omnidirectional Stereo Dataset. The metrics include MAE (Mean Absolute Error),
RMSE (Root Mean Squared Error), and the percentage of pixels with depth errors greater than 1 m, 3 m, and 5 m.

Datasets Methods Metrics

MAE ↓ RMSE ↓ >1 ↓ >3 ↓ >5 ↓

OmniThings

DispNet-CSS [23] 3.260 5.35 41.201 20.338 11.286

OmniMVS-ft [15] 1.076 3.217 20.639 9.557 4.484

CasOmniMVS-ft [16] 1.516 3.610 31.262 11.309 6.373

Ours 0.643 2.000 15.149 4.335 1.986

OmniHouse

DispNet-CSS 1.340 2.788 20.226 10.235 4.659

OmniMVS-ft 0.734 1.782 16.801 5.068 2.258

CasOmniMVS-ft 0.451 1.075 7.164 1.841 1.029

Ours 0.635 1.517 14.827 4.213 1.780

Sunny

DispNet-CSS 1.017 3.752 17.221 5.875 2.461

OmniMVS-ft 0.453 1.917 6.183 2.028 1.338

CasOmniMVS-ft 0.446 1.570 6.807 2.191 1.277

Ours 0.341 1.461 4.557 1.336 0.833

‘↓’ indicates that the smaller the value, the better. Bold values indicate the best-performing method for the current dataset-metric pairing.

percent of the data allocated for training and the remaining 30
percent reserved for testing. This split ensures that the model is
trained on amajority of the data while maintaining a separate subset
for evaluating its performance objectively. We choose the AdamW
optimizer, and the start learning rate λ is set to be 0.0025 for the first
20 epochs and 0.00025 for the rest 10 epochs.

3.2 Experiments

3.2.1 Quantitative evaluation
Table 1 presents a quantitative comparison of our proposed

method with three baseline models (Model 1, OmniMVS-ft, and
CasOmniMVS-ft) on the panoramic stereo dataset. The evaluation
metrics include Mean Absolute Error (MAE), Root Mean Square
Error (RMSE), and the percentage of pixels where the depth error
exceeds 1 meter, 3 meters, and 5 meters. The results demonstrate
that our method outperforms all baseline models across these
metrics, particularly in handling fisheye images with strong wide-
angle distortion. Specifically, our method shows lower MAE and
RMSE values, and the percentage of pixels with errors greater than
a threshold (denoted as ”>n”) is smaller, indicating that our method
maintains high accuracy across various depth ranges.

Our improvements stem from the introduction of an Edge-
Aware Module (EAM), which effectively enhances the network’s
sensitivity to edge information. This is especially crucial for fisheye
camera images, where strong wide-angle distortion often causes the
geometric structure of objects to be severely warped. Traditional
depth estimation methods struggle to accurately capture the true

shape of these objects, resulting in large depth estimation errors.
The Edge-Aware Module improves depth estimation accuracy in
object edges and detailed regions by emphasizing edge features,
significantly reducing MAE and RMSE. After multiple rounds
of model training and convergence, the weights in the Base 2D
CNN for feature fusion consistently demonstrated higher values
than the weights in the Sobel+2D CNN (average ratio 1.8:1).
Under low-light conditions, values increased significantly, showing
a 37.2% improvement compared to baseline measurements. This
optimized weighting ratio enables the model to better learn edge
information, thereby establishing a solid foundation for accurate
depth estimation.

Furthermore, our method incorporates an enhanced cost
volume regularization strategy, which stabilizes estimates across
different depth hypotheses, further improving the overall depth
estimation accuracy. Compared to baseline methods, our approach
exhibits more balanced performance across different depth error
distributions, demonstrating its advantages in estimating large-scale
depth variations and fine-depth differences.

3.2.2 Qualitative evaluation
Figure 3 illustrates the qualitative analysis results of our

proposed method compared to other methods on the same dataset.
As shown in the image, our method performs better in areas such as
object edge regions (highlighted by the yellow dashed boxes in the
figure), low-texture regions(highlighted by the white boxes in the
figure) compared to other methods.

Moreover, from the predicted depth maps, it is evident that our
method excels in restoring object structures.The introduction of the
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FIGURE 3
A detailed comparison with the sunny dataset from OmniThings, OmniHouse, and Urban Dataset demonstrates the performance of our method
compared to OmniMVS, especially in terms of edge and object structure details. The results show that our method handles details better and achieves
smaller overall errors.

Edge-Aware Module enables better capture of geometric features,
especially in complex scenes where object edges and structures
are more accurately reconstructed. For instance, under occlusion
or complex lighting conditions, the depth estimates with edge
information not only maintain smoothness but also enhance the
clarity of object contours, thereby improving the overall structural
perception of the scene.

Additionally, through spherical alignment and the hybrid
classification-regression strategy, we are able to align multi-view
data and process different depth categories using a weighted
averaging method. This further enhances the smoothness
and consistency of the depth maps, particularly in complex
environments, such as outdoor urban landscapes. In the qualitative
analysis, our method demonstrates excellent adaptability and
robustness in these dynamic scenarios.

3.3 Disccusion

The experimental results, as presented in both quantitative
and qualitative evaluations, demonstrate the effectiveness of
our proposed depth estimation method compared to traditional
approaches. Quantitatively, our method outperforms baseline
models such as OmniMVS-ft and CasOmniMVS-ft across all key
metrics, including MAE, RMSE, and the percentage of pixels with
depth errors exceeding thresholds of 1m, 3m, and 5 m. Specifically,
we observe significant reductions inMAE and RMSE, with a notable
improvement in the percentage of accurate depth estimates in
challenging areas, such as the image boundaries where fisheye

distortion is most pronounced. Qualitatively, our method excels
in regions with pronounced distortion, such as object edges and
low-texture areas, as highlighted by the yellow dashed boxes and
white boxes in Figure 3. In contrast, baseline models struggle to
maintain accuracy in these regions. These results confirm that
incorporating edge detection into our approach is key to improving
depth estimation, particularly in fisheye images with significant
distortion.

As shown in Figure 3, we achieve a better error than that
OmniMVS can do. Despite good results at the edges of the object
and an improvement in error performance in low-texture areas,
the error value still does not fall to a reasonable level. This
is really the next issue that we are committed to solving. Our
next goal was to modify the network architecture and refine the
feature extraction part to enhance the network’s perception of
low-texture areas.

4 Conclusion

In this study, we present a depth estimation method specifically
designed for fisheye cameras, incorporating edge detection
to address the challenges posed by lens distortions. Using
the Omnidirectional Stereo Dataset, we show that traditional
methods struggle with fisheye distortions, especially at the image
edges. By integrating edge detection, our approach enhances
depth estimation accuracy, particularly in areas with significant
distortion.Experimental results on datasets demonstrate that our
method outperforms baseline models in key metrics. These results
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highlight the effectiveness of edge detection in improving depth
estimation in complex, wide-angle environments.

Beyond foundational autonomous driving applications (e.g.,
automated parking, curb detection), our wide-field-of-view
framework with edge-aware refinement shows potential for 3D
reconstruction and VR systems by leveraging structural cues
from distortion-prone regions. Future work will prioritize real-
time processing of fisheye video streams and enhanced structural
representation via edge-guided optimization. Additionally,
integrating multi-modal sensor fusion (e.g., sparse LiDAR) could
address occlusion limitations in complex scenes. These directions
aim to bridge the gap between computational efficiency and
precision in wide-angle depth estimation.
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