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Stock price and consumer sentiment consistently serve as pivotal economic
indicators for the performance and growth of e-commerce enterprises. It is
essential to comprehend and forecast the co-movement between the two to
inform financing and investment decision-making effectively. Prior research
has focused on predicting individual indicators, but not much of them attempt
to forecast their co-movement. We propose a novel Rule Combination based
on Bivariate Co-movement Network (RC-BCN) approach for bivariate co-
movement forecasting. Bivariate co-movement features extracted utilizing the
BCN’s topological nature instruct the entropy optimization in order to enhance
the RC-BCN’s predictions. We conduct four sets of experiments on 1,135 data
sets from JD.com between 2018 and 2022, where consumer sentiment is
measured using text sentiment analysis of online reviews. The results indicate
that RC-BCN’s prediction accuracy reaches at most 91% under distortion
preference and is improved by 18% comparedwithout entropy optimization. This
study highlights the value of complex network and entropy theory in forecasting
bivariate co-movement for e-commerce enterprises.

KEYWORDS

consumer sentiment, stock price, bivariate co-movement network, entropy
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Highlights

• Devising a novel approach called Rule Combination based on Bivariate Co-movement
Network (RC-BCN) to solve co-movement prediction problem.

• Predicting the co-movement between Consumer Sentiment (CS) and Stock Price (SP)
for e-commerce companies.

• Bi-objective optimization achieved through entropy optimization based on
BCN topology.

• RC-BCN outperforms in co-movement between CS and SP forecasting.
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• Findings in this study have implications for listed e-commerce
companies financing decisions and investor decision-making.

1 Introduction

For publicly listed enterprises, particularly those in the
customer-centric retail sector, forecasting the co-movement
between Consumer Sentiment (CS) and Stock Price (SP) is
crucial for guiding corporate financing decisions and providing
valuable insights for investor decision-making. E-commerce
enterprises, as typical customer-centric businesses, are significantly
influenced by CS in terms of their firm value. Additionally, the e-
commerce industry has become a vital component of the global
economy. CS and SP are economic signal towers of e-commerce
platform performance. Numerous studies have independently
examined and forecasted them [1–3]. In contrast, a few studies
have integrated these two aspects and established a confirmed
correlation between them [4, 5]. These studies have primarily
explored the relationship between CS and SP via regression analysis,
and employed machine learning to predict SP using CS, thereby
enhancing predictive accuracy. Despite these advancements, the
dynamic interdependence betweenCS and SP, particularly regarding
co-movement forecasting, has received limited attention in existing
literature.

Extant literature indicates that CS impacts SP through multiple
pathways. (1) CS can indirectly affect investor behavior through
media reports, social media interactions, and other channels,
thereby impacting SP [6, 7]. (2) CS reflects the market preferences
for a firm’s products or services, signaling sales expectations and
investor confidence, which in turn affect SP [8, 9]. (3) Some
studies suggest that CS can directly and positively influence SP
[4, 10]. Positive sentiment boosts market expectations of a firm’s
future performance, enhancing investor confidence, while negative
sentiment undermines market trust, potentially leading to a decline
in SP. In addition, related studies have found that: (1) there is a
bidirectional causal relationship between sentiment and SP, with
potentially positive or negative dynamic [11]. (2) the relationship
between CS and SP is complex and nonlinear [5]; and (3) sentiment
has a short-term transient effect on SP, suggesting that sentiment
changes can serve as early signals of SP movements [11–13].

The relationship between CS and SP is dynamic. However, in
contrast to previous studies focusing on the static aspect, this paper
examines their dynamic interaction and co-movement forecasting,
providing valuable insights into the dynamic relationship between
consumer behavior and financial markets. Furthermore, investors
can better capture market trends and mitigate potential investment
risks by analyzing changes in CS. For customer-centric listed
companies, understanding these dynamics enables them to improve
financing efficiency and secure greater capital support. Hence, the
research question in this study is: how to explore and forecast the
co-movement of CS and SP? This research aims to uncover the co-
movement’s features and forecast them, serving as a reference for
corporate financing decisions and investor investment strategies.

Forecasting the co-movement of CS and SP involves obtaining
daily CS data and addressing the challenges of nonlinear time
series forecasting. Currently, vast quantities of CORs are archived
on e-commerce platforms, providing real-time insights into CS.

Moreover, text sentiment analysis is employed to extract the CS from
CORs at a finer time scale. Complex network theory has emerged
as a powerful tool for analyzing nonlinear time series [14]. Given
the dynamic, nonlinear relationship between CS and SP, and the
complexity of their interaction patterns, complex network methods
are particularly well-suited to uncover and forecast their co-
movement. It excels in accurately capturing temporal fluctuations,
leading to highly accurate predictions.

In response to the above problems, we propose a novel
Rule Combination approach, integrating Bivariate Co-movement
Network (RC-BCN) analysis with entropy optimization. It consists
of four sequential steps: CS data acquisition, Bivariate Co-movement
Network (BCN) construction, feature extraction, and co-movement
prediction based on rule combination and entropy optimization. CS
data acquisition uses web crawler and text sentiment analysis. We
project bivariate time series data into phase space to construct BCN.
Particularly, features derived from network topology are used to
instruct entropy optimization innovatively. To validate the proposed
approach, we conduct four sets of experiments on one dataset.
The experiments show that the proposed approach outperforms
baseline model.

Our work contributions are summarized as follows:

• Employ complex network to the problem of bivariate co-
movement forecasting and develop a novel RC-BCN approach
based on entropy optimization for the first time, which
performs well.

• Propose a new feature extraction framework, using network
topological nature to extract features by projecting bivariate
time series into phase space.

• Design a fusion method of combining co-movement features
with prediction methods through entropy optimization, which
results in high prediction accuracy.

The rest of this paper is organized as follows. Section 2
discusses the related works. Section 3 describes the methodology.
Section 4 presents the experiments, and Section 5 discusses
the results. Section 6 concludes and outlooks the work.

2 Related works

To address the research question, we conducted a literature
review from three aspects. Lastly, we highlighted the extant research
gaps and outlined the objectives of our study.

2.1 Evaluating CS through online reviews

CS data can be sourced from two main categories: (1)
Authoritative databases, which provide established metrics like the
Consumer Confidence Index (CCI), and (2) Evaluating CS through
online reviews. Authoritative databases may have limitations
in providing real-time, flexible, and fine-grained analysis when
supporting detailed research perspectives. Therefore, obtaining CS
through CORS have become popular.

Evaluating CS through CORs primarily entails identifying
the influencing factors and calculating CS. Various techniques,
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such as text regression analysis, machine learning, and the Latent
Dirichlet allocation, are employed to ascertain the factors and their
respective weights that impact CS, consequently pinpointing the key
determinants [15–17]. Additionally, evaluating CS through CORs
predominantly utilizes text sentiment analysis methods based on
dictionaries, machine learning, and deep learning [18–20]. Among
these, the dictionary-based text sentiment analysis method is widely
adopted, due to its simplicity. For instance, one approach involves
constructing a CS evaluation system by content analysis, followed
by the utilization of Probabilistic Linguistic Term sets and improved
Analytic Hierarchy Process method to calculate CS based on word
frequency statistics [21]. Other approaches include the Center Term
Short Sentence Sentiment Orientation, the Probabilistic Linguistic
Group Decision-FlowSort, and the Data Envelopment Analysis
method to calculate sentiment intensity and dynamically measure
CS across multiple dimensions [22–24].

These studies highlight the significance of CORs as a valuable
data source formeasuring CS, using relatively established evaluation
methods. However, it is worth noting that CS in our study refers
to consumers’ overall sentiment on shopping platforms. While
influenced by multiple factors, CS cannot be directly quantified as
the sum of sentiment values derived from these individual factors.
Hence, in quantifying CORs, we adopt a dictionary-based algorithm
that matches overall CS vocabulary to measure the sentiment
intensity of CORs. This approach effectively captures overall CS.

2.2 Bivariate co-movement features

Co-movement analysis between CS and SP typically focuses on
their correlation, particularly in predicting SP volatility utilizing
CS. However, limited research has been conducted on the co-
movement features between CS and SP, while an extensive body
of literature exists on bivariate co-movement features, showcasing
more mature methodologies. The research subjects include inter-
country currency exchange rates, the intersection of artificial
intelligence and energy sectors, as well as the relationship between
dirty and clean energy [25–27]. These research covers both
static co-movement features, such as bivariate interdependence
and quantile co-movement, and dynamic features, including co-
movement structure and fluctuations. Although studies on CS and
SP co-movement are typically classified as static, their co-movement
is inherently dynamic.

Common methods for analyzing dynamic co-movement
features include wavelet analysis, DCC-GARCH model, the Thick
Penmethod, Temporal ConvolutionalNetwork (TCN), and complex
network analysis [25, 28–31]. Among these, wavelet analysis
has high sensitivity to the selected wavelet basis function and
scale parameters. The DCC-GARCH model generally assumes
that the data are normally distributed. The Thick Pen method
tends to be subjective in parameter setting. TCN depends on the
quality of input data and is sensitive to the hyperparameter. In
contrast, the co-movement between CS and SP does not necessarily
conform to the normal distribution. Complex network analysis
provides an objective means to visualize nonlinear and nonintuitive
relationships between bivariate.

Scholars have employed symbolic dynamics methods to map
time series data into BCN, and have utilized network indicators

to analyze bivariate dynamic co-movement features. This approach
is grounded on coarse-graining partitions of phase space, involves
constructing coarse-grained rules to transform time series into
symbols, defining symbol sequence vectors as nodes, establishing
a network resulting from the transition frequency of the symbol
sequence vectors in the time series [14]. The co-movement features
are mainly extracted by using network topology indicators such
as node strength, node centrality, weighted cluster coefficient and
community detection [32, 33]. Despite employing various network
indicators in prior research, there remains a gap in the literature
regarding a comprehensive analytical framework for identifying
bivariate co-movement features and guiding the development of a
bivariate co-movement prediction model.

2.3 Bivariate co-movement prediction

The research area of bivariate co-movement forecasting
includes different stock prices, the multi-step network traffic
states, innovative and traditional financial assets in different
regions [34–36]. Research topics in co-movement forecasting
focus on the future trends of bivariate co-movement, including
correlations between stock prices [34], crude oil prices volatility
[37], and volatility spillovers across economic sectors [38]. Given
the high volatility of both CS and SP, this study aims to forecast
the co-movement trend between CS and SP, consistent with
prior research.

In the absence of distinct regularities, nonlinear systems
commonly adopt integrated forecasting models, incorporating
techniques such as data mining, cross entropy, Convolutional
Neural Network-Long Short Term Memory (CNN-LSTM), Back
Propagation (BP) Neural Networks, and link prediction methods, to
improve predictive accuracy [39–42].The aforementionedmethods,
particularly machine learning techniques, have demonstrated
significant efficacy in predicting bivariate co-movement by
optimizing model hyperparameters. However, these methods
face challenges in explaining the underlying mechanisms driving
the observed results. In contrast, the complex network approach
not only uncovers the co-movement characteristics of bivariate
relationships but also effectively predicts their dynamics, eliminating
the need for resource-intensive and time-consuming experimental
processes.

Time series forecasting algorithms based on complex network
have shown significant advancements in recent years. These
methods, such as maximum node weight and maximum visibility
forecasting have been developed based on the principles of complex
network link prediction [43, 44]. The current widely used link
prediction algorithms are often based on various node similarities,
including local similarity, weighted similarity and random walk
similarity [45–47]. Typically, the greater the similarity between two
nodes in the network, the higher the likelihood of connectivity
between them. While numerous algorithms exist for bivariate co-
movement prediction, each validated in different fields, it is worth
mentioning that the co-movement features within a network can
vary significantly across different time series networks. As a result,
predictions made by a single forecasting method may exhibit biases
when compared to actual outcomes.

Frontiers in Physics 03 frontiersin.org

https://doi.org/10.3389/fphy.2025.1557361
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


Wang et al. 10.3389/fphy.2025.1557361

2.4 Research gap and objectives

Bivariate co-movement forecasting has been studied on mostly
macroeconomic indicators. Limited by the availability of data,
previous studies have less often landed on firm-level economic
indicators, especially on the co-movement of CS and SP. For e-
commerce companies, the abundance of CORs on e-commerce
platforms provides valuable opportunities for in-depth analysis.
Previous studies have developed various methods to extract
co-movement features and demonstrated promising results in
bivariate co-movement prediction. However, challenges persist
in systematically extracting these features, applying them for
prediction, and interpreting results, particularly in nonlinear
systems. These gaps underscore the necessity of exploring novel
approaches to predict the co-movement between CS and SP in the
context of e-commerce enterprises.

Addressing the gaps identified in the extant literature, this study
introduces a novel approach, grounded in complex network theory,
to forecast the co-movement dynamics between CS and SP of e-
commerce platforms. The basic approach is: design an algorithm
for collecting and quantifying CORs on e-commerce platforms to
obtain a more finely-grained CS; and then transform the time series
data of CS and SP into BCN and extract the co-movement features
based on the network’s topology; construct a rule combinations
model based on the co-movement features to forecast future co-
movement mode. Moreover, model optimization involves entropy
optimization guided by co-movement features.

3 Research methodology

3.1 Time-series data collection

The closing price is a crucial indicator that reflects daily market
trends and is easily accessible through stock trading platforms. The
process of obtaining the CS involved four key steps (see Figure 1).
Firstly, CORs are collected using web crawling techniques. Secondly,
a dictionary-based text sentiment analysis method is applied,
utilizing the Jieba text segmentation tool to segment, analyze, and
match the text with the dictionary for initial data processing.
Then, sentiment values are calculated based on the part-of-speech
and weights assigned by the dictionary. Finally, the obtained
sentiment values that passed the test are used as the CS. The
test algorithm demonstrated an accuracy of 84.77% when applied
to the Tan Songbo hotel review corpus, confirming its practical
applicability.

Since reviews consist of sentences, Equation 1 calculates
sentiment scores at the sentence level, while Equation 2 aggregates
them to determine the review-level sentiment score, and Equation 3
standardizes it.

Sentence′sscore = (P−Np) ×W× (−1)Neg (1)

where P represents the number of active words, Np refers to
the number of passive words, and Neg denotes the count of
negation words (such as “not,” “no,” and other similar terms). The
sentiment score for each sentence is adjusted by multiplying it
by (−1)Neg , reflecting the principle that double negation leads to

affirmation [48]. W is the weights corresponding to adverbs of
degree. If there are no adverbs of degree, the weight is considered
as 1. Generally, a sub-sentence contains only one adverb of degree.
If there are multiple adverbs of degree, the weight corresponding to
the first matched adverb is used.

Review′sscore = ∑Sentence′sscore (2)

CS =
Review′s score−Review′s scoremin

Review′s scoremax −Review′s scoremin
× 100 (3)

where CS is represented as a numerical value quantified on a scale
from 0 to 100, derived from text sentiment analysis.

3.2 BCN construction

3.2.1 Node determination
In this study, co-movement describes the relationship between

CS and SP, while the co-movement symbol represents both the
direction and magnitude of their interaction. The coarse graining
method in symbol dynamics and time series involves defining the
co-movement sequence as Lpi, which represents the product of ∆CS
(the first-order difference of CS) and ∆SP (the first-order difference
of SP) [49]. Avg+ signifies the average of ∆CS×∆SP when their
product is positive, while Avg− donates the average of the product
is negative. Subsequently, Lpi is subdivided into the following five
cases, as shown in Equation 4.

Lpi =

{{{{{{{
{{{{{{{
{

Y, ∆CS×∆SP ≥ Avg+ Violent co−movement in the same direction
y, 0 < ∆CS×∆SP < Avg+ Slight co−movement in the same direction
o, ∆CS×∆SP = 0 No co−movement
n, Avg− < ∆CS×∆SP < 0 Slight co−movement in opposite directions
N , ∆CS×∆SP ≤ Avg− Violent co−movement in opposite directions

(4)

Thus, the co-movement between CS and SP can be represented
by a continuous symbol sequence, and the corresponding symbol
sequence is given in Equation 5.

Lpi = (Lp1,Lp2,…,Lpw) (Lpi ∈ (Y,y,o,n,N),w = 4) (5)

Given that stock trading typically spans five consecutive days,
with statutory holidays excluded from consideration, we define
a node as the co-movement of four consecutive days. w = 4
ensures the balance of the time window, though its value can
be adjusted based on the sample size in this study. The symbol
sequence Lpi serves as the data sliding window with a step size
of 1, and the coarse-grained symbol sequence is converted into
partially overlapping symbol intervals, each representing different
co-movement modes.

3.2.2 Determination of edges and weights
Using the coarsened data, edges in the co-movement network

are established by connecting the previous co-movement mode
combination to the neighboring subsequent co-movement mode
combination. The number of transitions between two combinations
of the samemode function as the edge weight.Therefore, a weighted
directed BCN is constructed to depict the co-movement modes
between CS and SP.
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FIGURE 1
Text sentiment analysis flowchart.

FIGURE 2
Network structure corresponding to the latest data array.

If the symbol sequence mapped for the time series is
{ynnYoyyNn}, the corresponding latest node is {yyNn}. Figure 2A
illustrates the network structure, where the number of nodes equals
the count of co-movement modes. However, if the symbol sequence
mapped for the time series is {ynnYoynnY}, and the latest node
is {ynnY}, the number of nodes is less than the count of co-
movement modes, as depicted in Figure 2B. In practical network
construction, when the sample size is sufficient, it often resembles
the structure shown in Figure 2B. If the sample size is limited, one
can reduce the use of symbols or symbol combinations (i.e., reduce
w) to construct the BCN.

3.3 Feature extraction

We derive BCN’s features across four key dimensions to guide
the subsequent predictions, with the specific features and indicators
detailed in Table 1.

3.4 Co-movement prediction model

Co-movement forecasting is the prediction of the next day’s
CS and SP co-movement symbol. For instance, if we observe a
co-movement mode on day t, denoted as {ynny}, forecasting the
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TABLE 1 Outlines the framework of the feature extraction model for BCN.

Dimension Indicators Formulas

Influence

Node strength Si_out = ∑
j∈Ni

Wij, Si_in = ∑
j∈Ni

Wji, Si = Si_out + Si_in [49] where Si is node strength of node i, Ni is the set of neighbors

of node i, and Wij is the weight of node i to node j

Strength distribution P(s) = Si
N
∑
i=1

Si
where N is the total number of nodes, P(s) is strength distribution

Clustering

Clustering coefficient Ci =
Ei

ki(ki−1)
[49] where Ci is the clustering coefficient of node i, ki is the degree of node i, and Ei is the number of

actual edges between the neighboring nodes of node i

Weighted Clustering coefficient Ci_weighted =
1

Si(ki−1)
∑
(j,k)

wij+wik

2
aijaikajk where aij indicates whether there is a link between node i and node j: 1 if a

link exists, and 0 otherwise

Periodicity

Betweenness centrality Wk = ∑
(i,j)

Ck(i,j)
C(i,j)

[15] where Wk is the betweenness centrality of node k. C(i, j) is the total number of all shortest

paths between node i and node j. Ck(i, j) is the number of paths through node k

Average path length Lavg =
1

N(N−1)
∑
i≠j

dij [15] where dij is the number of edges in the shortest path between nodes i and j

Orderliness Standards Network Strength Entropy G =
−

N
∑
i=1

P(s)lnP(s)

lnN
, Gi_in =

−P(s)ji lnP(s)ji
lnni_in

, Gi_out =
−P(s)ij lnP(s)ij

lnni_out
[58] where G presents the standards network strength

entropy. Gi_in and Gi_out are the standards strength in-entropy and out-entropy of node i. ni_in is the number of
nodes entering node i. ni_out is the number of nodes that node i points to. P(s)ji =

wji
n
∑
j=1

wji_in

, P(s)ij =
wij
N
∑
j=1

Sij

TABLE 2 Node strength and strength distribution of each
co-movement mode.

No. Node S Ratio
(%)

No. Node S Ratio
(%)

1 nnnn 98 4.34 11 nyyy 68 3.01

2 nnny 80 3.54 12 ynny 67 2.96

3 ynyn 78 3.45 13 nnyy 66 2.92

4 ynnn 78 3.45 14 nnyn 66 2.92

5 nyny 78 3.45 15 yyyn 62 2.74

6 yyyy 76 3.36 16 nynn 62 2.74

7 ynyy 74 3.27 17 yyYy 14 0.62

8 yyny 70 3.10 18 yYyn 14 0.62

9 yynn 70 3.10 … … … …

10 nyyn 70 3.10 268 YYny 1 0.04

mode for day t+ 1 relates to predicting the mode {nny?}. Prior
studies have indicated that the total occurrence time of different co-
movement modes follows an approximately linear distribution [49].
This implies that with sufficient data, new co-movement modes will
not arise in the short term. Hence, we utilize mode transformation
relationships for forecasting.

3.4.1 BCN optimization based on entropy
principal

To ensure the accuracy of predictions, it is essential to
adjust the network structure to enhance its clarity, particularly in

cases where chaotic nonlinear systems exhibit strong randomness.
Therefore, the partial edge weights are adjusted to improve its
predictability based on entropy optimization. Entropy optimization
is a method for finding the optimal solution under given constraints
by maximizing or minimizing an entropy-based objective function,
leveraging the mathematical properties of entropy and principles
of information theory [50]. Entropy, as an optimization and
correction tool, is used to optimize the return statistics that do
not follow Gaussian distribution, and to correct the geometric
Brownian motion model by relaxing the assumption of lognormal
distribution [51, 52]. Furthermore, entropy optimization is utilized
in identifying topological changes in complex networks, assessing
network consistency, and reducing knowledge distillation loss in
deep neural networks by adjusting network entropy [53–55]. The
use of entropy is prevalent in economics, with applications ranging
from risk measurement and portfolio optimization to the design of
combined economic emission dispatch optimization algorithms, all
of which contribute to enhancing the scientific basis for decision-
making [51, 56, 57]. The aforementioned studies demonstrate the
broad applicability and notable effectiveness of entropy optimization
across various economic domains.

The standard network strength entropy is employed as a
measurement tool, which extends Shannon entropy to quantify
the uncertainty in the distribution of node or edge strength
[58]. This measure is standardized to enhance its applicability to
network analysis. Building upon this, the approach constructs a
bi-objective entropy optimization model that aims to minimize
network distortion and simultaneously adjusts the weights of
selected edges to reduce the network’s output entropy (see
G1), thereby achieving overall network optimization. Minimizing
network distortion ensures that the adjustment of edge weights has
minimal impact on the network’s topological structure, which is
mathematically represented by G2. The selected edges set refers to
the edges connected to nodes with higher recognizability, which
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are typically associated with lower entropy values. These edges
are crucial for reducing network out-entropy while preserving the
network’s essential features. Based on these objectives, the following
model is proposed (see Equation 6):

G1 = min
x

{{{{{
{{{{{
{

N

∑
i
Giout

N

}}}}}
}}}}}
}

G2 = min
x

{{{{{
{{{{{
{

|
N

∑
i=1

ΔSi|

N
+

|
N

∑
i=1

ΔCiweighted|

N

}}}}}
}}}}}
}

(6)

Where x represents the adjustment applied to the weight
of the edge.

3.4.2 RC-BCN model
In the process of constructing a BCN, it is crucial to consider

two scenarios for the latest nodes:

(1) If the latest node V(t)i has no out-neighbor node in BCN (see
Figure 2A), then the future node that appears at t+ 1 can be
estimated according to the trend extrapolation method [59].
That is, if V(t)i = {yyny}, then V(t+1)i→j = {ynyy}. In fact, this
situation can be avoided when building the BCN.

(2) If V(t)i has out-neighbor nodes in BCN (see Figure 2B), the set
of out-neighbor nodes is defined by Equation 7.

V (t+1)i→j = {V (t+1)i→j1
,V (t+1)i→j2

,…,V (t+1)i→jn
}, j1, j2…, jn ∈ [1,N] (7)

Based on the preceding analysis (3.2.2), the future nodes at t+ 1
are one of the elements in V(t+1)i→j . There are three common rules to
determine the exact nodes.

Rule 1: The principle of the greatest Node Similarity. Link
prediction techniques are applied, where the probability of a
potential connectivity between nodes is determined by computing
the similarity between two nodes. The node with the highest
similarity is selected as the predicted node, and in case of tie,
preference is given to the relatively most recent node.

Given a pair of nodes (vi,vj), the rules for calculating the
node similarity are as follows: If the BCN exhibits significant
clustering, a local feature-based similarity formula is applied (see
Equation 8); otherwise, a global-based similarity formula is utilized
(see Equation 9) [42].

SJCij =
|Γ(i) ∩ Γ(j)|
|Γ(i) ∪ Γ(j)|

(8)

where Γ(i) and Γ(j) are the sets of out-neighbor nodes of vi and vj
respectively.

SWJC
ij =

∑
x⊂Γ(i)⋂Γ(j)

(wix +wxj)

∑
x⊂Γ(i)∪Γ(j)

(wiy +wyj)
(9)

where wix, wxj, wiy and wyj are edge weights, respectively.
This formula takes into account the weight of the edge on
the basis of Equation 8.

If the maximum value of either SJCij or S
WJC
ij is 0, it is not possible

to predict future nodes. In this case, Rule 2 or Rule 3 are employed
for combined prediction.

Rule 2: The principle of the greatest node strength, that is, select
the node with the largest node strength fromV(t+1)i→j . In case of tie, the
relatively most recent node is selected.

Rule 3: The principle of the greatest connection strength, that is,
select the node with the largest connection strength from V(t+1)i→j . In
the event of a draw, the relatively most recent node is selected.

Following these rules, co-movement modes prediction function
was established, as shown in Equation 10.

V̂ (t+1)i→j = f (V (t)i ) + ξt , t ∈ [0, l] (10)

where f(x) is the composite function comprising six co-movement
prediction models: M-1 (Trend extrapolation method and Rule
1-Equation 8 and Rule 2), M-2 (Trend extrapolation method and
Rule 1-Equation 8 and Rule 3), M-3 (Trend extrapolation method
and Rule 1-Equation 9 and Rule 2), M-4 (Trend extrapolation
method and Rule 1-Equation 9 and Rule 3), M-5 (Trend
extrapolation method and Rule 2), and M-6 (Trend extrapolation
method and Rule 3). ξt is the error.

3.4.3 Evaluation of model prediction accuracy
The co-movement prediction of CS and SP refers to forecasting

both the direction and strength of their co-movement.Hence,model
prediction accuracy is assessed in terms of two aspects: accurately
predicting both the co-movement direction and strength, or solely
the co-movement direction.The evaluation indicators for accurately
predicting both co-movement direction and strength are defined in
Equations 11, 12.

D1 = 1
L

L

∑
t=1

at (11)

at=
{
{
{

1, V (t+1)i→j = V̂ (t+1)i→j

0, V (t+1)i→j ≠ V̂ (t+1)i→j

(12)

The evaluation indicators for accurately predicting the co-
movement direction are given in Equations 13, 14.

D2 = 1
L

L

∑
t=1

bt (13)

bt=
{
{
{

1, V (t+1)i→j ≅ V̂ (t+1)i→j

0, V (t+1)i→j ≠ V̂ (t+1)i→j

(14)

V(t+1)i→j ≅ V̂(t+1)i→j signifies the predicted and actual symbols have
matching directions.

4 Experiments

4.1 Data preparation

A set of experiments was conducted using JD.com, a prominent
B2C online shopping platform. According to a 2022 Tencent report,
electronic products on JD.com accounted for over 60%. Hence, 44
high-selling electronic products were selected from JD. com’s main
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product categories, encompassing five renowned brands: Huawei,
Apple, Samsung, Xiaomi, and OPPO.

A total of 92,722 CORs were collected, spanning from 9 January
2018, to 15 August 2022.The collected CORs include the consumers’
review and the date. Textual sentiment analysis resulted in a 1,645-
day CS dataset. Given that multiple data points exist for the same
day, we use the daily average to more accurately reflect the overall
CS for that day. The closing price from 9 January 2018, to 15 August
2022, was obtained from the Straight Flush website.

After data merging, 1,135 sets of data were obtained.
Subsequently, a Spearman correlation coefficient test was conducted,
revealing a significant positive correlation between them. The
summary statistics indicate that the data do not follow a normal
distribution (see Supplementary Appendix A).This suggests that the
relationship between the variables is complex and warrants further
analysis using nonlinear methods. To further process the data,
coarse-graining and sliding window techniques were employed,
resulting in the generation of 268 nodes and 1,134 edges.

4.2 CS and SP co-movement network
construction

Figure 3 displays the CS and SP Co-movement Network (CS-
SPCN). It shows obvious differences in the influence of the co-
movement modes, and the clustering between different modes.

Furthermore, as the data volume expands, the increase in node
count exhibits a diminishing trend (see Figure 4). The temporal
intervals between the occurrence of new co-movement modes and
those of old modes eventually grow longer (see Figure 5). This
implies that future modes are likely to be once-emerged modes. It
also demonstrates that JD. com’sCS-SPCNadheres to the application
premise of the co-movement mode prediction model developed in
this study.

4.3 Feature extraction

4.3.1 Influence

(1) The co-movement between CS and SP is primarily
slightly negative. Specifically, there were 98 instances of
opposite-direction co-movement over four consecutive days,
while only 76 instances of same-direction co-movement
occurred (see Table 2).This reflects the risk of reverse reactions
and potential misalignment between CS and SP.

(2) The CS-SPCN exhibits an uneven distribution, characterized
by significant disparities in nodes and edges. The initial 16
nodes demonstrate substantial node strength, accounting for a
cumulative strength distribution of 51.46%. In contrast, there
are 113 nodes with a node strength of two or less, representing
only 9.96% of the total strength (see Figure 6A). Figure 6B
demonstrates that the cumulative strength distribution
approximately follows a power-law distribution, indicating
that the CS-SPCN is a scale-free network. There are primarily
16 manifestations of co-movement modes. These 16 co-
movement modes frequently transition to other modes, or
vice versa, demonstrating a high frequency of shifts between

modes. This suggests that market reactions are nonlinear and
complex, and companies must focus on the most influential
factors, concentrating their resources on understanding core
sentiment and market responses.

4.3.2 Clustering
The CS-SPCN exhibits a certain degree of clustering, with some

nodes having strong connections, forming small and tightly-knit
communities or subgroups. There are 29 nodes with a non-zero
clustering coefficient. Both {yyyy} and {nnnn} have greater clustering
coefficients and strength (see Figure 7). The highest clustering
coefficient value observed is 0.5, suggesting a generally modest level
of network cluster. Additionally, the weighted clustering coefficients
of the nodes {nnnn}, {Ynnn} and {ynnn} exceed 0. This suggests that
co-movements are interrelated, and companies should consider the
interactions of multiple co-movements, rather than focusing on a
single direction, in decision-making.

4.3.3 Periodicity

(1) Nodes with violent co-movement symbols exert substantial
network influence. In terms of transition capabilities,
{ynny,nnyY,Nynn,YyYN,YYyY} are the main transformation
hubs. Businesses and investors should proactively identify
market signals and focus on key moments to leverage critical
decision-making opportunities. Figure 8A indicates a relatively
even distribution of node betweenness centrality. Figure 8B
shows that the top 26 nodes have a 25% share of cumulative
betweenness centrality, indicating that 9.7% of the nodes
perform 25% of the transit function. Some nodes with
low strength play essential hub roles, as evidenced by the
circled points in Figure 8C.

(2) The co-movement between CS and SP exhibits a cyclical
pattern, with a periodicity of 8 days. The CS-SPCN
demonstrates an average path length of 7.696. Given a mode
generation sliding unit of 1 day, transitions between modes
span approximately 8 days, thus accentuating the periodic
feature of the co-movement. Companies should develop
forecasting models to adjust decisions promptly in response to
market cycles.

4.3.4 Orderliness
Overall, the network exhibits a high degree of randomness

and disorder, as evidenced by the standard network strength of
the BCN exceeding 0.8, which suggests that predicting the next
node in the network without relying on local information is highly
challenging. This also indicates that businesses operate in a highly
uncertain environment, where both businesses and investors face
the risk of being unable to accurately predict future market changes,
thereby impacting the effectiveness and precision of their decisions.
This study addresses the challenge of predicting the nodes at
t+ 1 based on the nodes at t. Networks with lower out-entropy
demonstrate higher predictability, as reduced out-entropy reflects
less uncertainty in the outgoing connections of nodes. Analyzing
the local characteristics reveals that the average in-entropy and
out-entropy of each node follow specific patterns. Particularly,
nodes set with violent co-movement at the end state, exhibit the
lowest average in-entropy and out-entropy (see Table 3). As a result,
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FIGURE 3
Co-movement network diagram of CS and SP.

adjusting the edge weights of nodes exhibiting violent co-movement
at the end state proves effective in reducing the average out-entropy
of the BCN.

To enhance the network’s predictability, the edge weight of
the node set with violent co-movement at the terminal state is
adjusted to x. Tominimize network distortion and effectively reduce
network out-entropy, the value of x is constrained within the range
[2,7.696]. To accurately obtain the Pareto frontier in a bi-objective
optimization problem, the Eel and Grouper Optimizer (EGO)
algorithm is employed. EGO is a novel meta-heuristic algorithm
inspired by the symbiotic interactions and foraging strategies of eels
and groupers in Marine ecosystems [60]. The algorithm’s flexible
transition between the exploration and development phases, along
with its population-based nature, effectively reduces the risk of
converging to local optima. The Pareto frontier is calculated using

EGO, as illustrated in Figure 9. Excluding caseswhereG2 > 6 leads to
significant network distortion, the analysis categorizes the network
into three groups based on decision-makers’ preferences regarding
the level of network distortion.

Given that 4 < G2 < 6, the decision-maker shows a preference
for network distortion. For 2 < G2 < 4, distortion neutrality is
observed. If 0 < G2 < 2, the decision-maker demonstrates aversion
to distortion. Three optimal solutions are selected from these three
acceptable regions for subsequent prediction.

4.4 Experimental analysis

Sample of model estimation. The growth of a business usually
follows an “S” curve. In addition, the network structure exhibits
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FIGURE 4
Relationship between Data Size and Number of Nodes.

FIGURE 5
Relationship between Co-movement Modes and Earliest Occurrence Times.

annual instability in the post-pandemic period. By utilizing up-
to-date data, more precise predictions can be generated. Hence, a
sample of co-movement modes from 2022 is employed to evaluate
the accuracy of the model.

Implementation details. To assess the effectiveness of BCN
optimization, we conducted four experimental sets with varying
distortion preferences and baselinemodel, comparing the prediction
accuracy of eachmodel. ExperimentA0 serves as the baselinemodel,

where the BCN is not optimized. Experiment A1 represents the
predictive model under distortion aversion (x = 2.21), Experiment
A2 corresponds to distortion neutrality (x = 4.36), and Experiment
A3 reflects a distortion preference (x = 6.31). These experiments
were designed to investigate the impact of varying distortion
attitudes on predictive accuracy, thereby validating the effectiveness
of BCN optimization. Furthermore, given the limited frequency
distribution of violent co-movements, the analysis focuses solely on
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FIGURE 6
Relationship of Node Strength with Strength Ratio and Number of Nodes. Strength Ratio represents the ratio of the cumulative strength of the nodes to
the sum of all nodes’ strength.

FIGURE 7
Relationship between Node Strength and Clustering Coefficient.

forecasting the direction of co-movement rather than its degree.
The accuracy of the prediction model is evaluated using D2. We
randomly selected 200 samples from the dataset and calculated the
accuracy of the prediction results.

Figure 10A0 shows that M-5 and M-6 demonstrate higher
prediction accuracy compared to othermodels, suggesting that node
strength and edge weight are the primary factors influencing the co-
movement betweenCS and SP, while the influence of node similarity
appears to be negligible. By comparing with Figure 10A0, it is
evident that the prediction accuracy of M-5 and M-6 is significantly
improved by entropy optimization, whereas the impact on the
prediction accuracy of M-1 to M-4 is less pronounced. This is
primarily because the optimization of the network has a direct and
significant impact on the strength of nodes and edges, but does not
significantly affect the similarity between nodes. Furthermore, as the
forecasting length (FL) increases, the prediction accuracy tends to
converge around 50%–60%.Theprediction accuracy ofM-6 is nearly
identical under the conditions of distortion aversion and neutrality,
with both exceeding 80% (see Figures 10A1, A2). The prediction

accuracy of M-5 and M-6 can approach 90% under the distortion
preference condition (see Figure 10A3).

Compared to RC-BCN alone, the prediction accuracy of our
proposed RC-BCN based on entropy optimization is, on average,
improved by 15.5% underM-6. To further elucidate the contribution
of this study, we compare the method proposed herein with the
prediction results obtained from the BP neural network and LSTM
models. For the problems addressed in this paper, both the BPneural
network and LSTMmodels use the autoregressivemethod to predict
the values of CS and SP, respectively. The co-movement direction of
CS and SP is then calculated based on the prediction results, with
themethods denoted as BP1 and LSTM1. Furthermore, the direction
of co-movement can be directly classified and predicted, denoted
as BP2 and LSTM2. The parameter settings for the four models are
presented in Table 4 and Figure 11 illustrates that M-5 and M-6
outperform both BP and LSTM in terms of prediction accuracy.

We employ M-5 and M-6 to predict the next 4 days co-
movement modes under the different preferences of decision
makers. The latest co-movement mode is {YYny}, originating from
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FIGURE 8
Betweenness centrality distribution. Rank refers to the nodes ordered according to Wk. Cumulative proportion of Wk represents the ratio of the
cumulative Wk of the nodes to the sum of all nodes’ Wk.

TABLE 3 Network entropy.

Items A B A + B

Total in-entropy 55.46 71.97 127.43

Average in-entropy 0.45 0.50 0.48

Percentage of Nodes with In-Entropy = 0 53.23% 45.14% 48.88%

Total out-entropy 54.46 71.30 125.77

Average out-entropy 0.44 0.50 0.47

Percentage of Nodes with Out-Entropy = 0 54.84% 45.14% 49.63%

Number of nodes 124 144 268

aA node set exhibiting violent co-movement at its terminal state; B A node set exhibiting
slight co-movement at its terminal state.

15 August 2022. The co-movement modes for the last 4 days are
{Ynyy,nyyy,yyyy,yyyn} across different scenarios.

5 Discussion

The co-movement forecast between CP and SP could assist
publicly listed e-commerce companies in financing decisions and
investors in making investment decisions. Motivated by it, we

FIGURE 9
Pareto Frontier in the bi-objective optimization.

explore the forecast approach of the co-movement modes between
the two based on complex network and entropy optimization.
Specially we project the time series data into the phase space, and
enhance the prediction through rule combination and entropy
optimization instructed by features extracted from network
topology indicators. We conducted four experimental sets, with
results indicating the model’s successful predictive performance.
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FIGURE 10
Model prediction accuracy under different FL.

TABLE 4 Model parameter setting.

Input layer
dimension

Output layer
dimension

Number of
neurons in
hidden layer

Batch size Training
rounds

Learning rate Validate
frequency

BP1

1

1 50 80 200 0.001

5

LSTM1 30

BP2

2
5

LSTM2 30

This paper provides a new perspective for the prediction of
chaotic nonlinear systems and expands the application of entropy
optimization within the field of e-commerce.

5.1 Result analysis

This study’s proposed approach for co-movement prediction
in CS and SP yielded favorable results. Particularly the study
innovatively puts forward entropy optimization guided by network
features to enhance co-movement prediction. In our experiment,
we construct CS-SP CN using time series data, and combine
the designed forecasting rules with network features to form

bivariate co-movement forecasting based on rule combination for
the first time. We call this novel approach RC-BCN. Comprehensive
experiments show that the probability of establishing connections
between highly similar modes is minimal in CS-SPCN. This may
be attributed to the influence of nonlinear relationships, external
variables, or temporal factors within CS-SPCN. The connection
among co-movement modes is primarily influenced by node
strength and edge weight in CS-SPCN. M-5 involves identifying
the node with the strongest strength among the external nodes
corresponding to the target node as the prediction outcome.
In the case of M-6, the prediction outcome is determined by
selecting the mode with the highest connection weight among the
externally connected modes of the co-movement mode. These two
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FIGURE 11
Prediction accuracy across different models when FL = 1.

models perform well. This demonstrates the effective integration
of complex networks and entropy optimization into time series
analysis, resulting in enhanced performance.

The sample size and data source may limit the generalizability of
the results. Nevertheless, the JD platform and the electronic product
categories selected in this study are representative, providing
valuable insights into typical consumer behavior and financial
market dynamics. Moreover, the robustness of the results has been
verified using randomized experiments and sensitivity analysis
(detailed in Supplementary Appendix B). To extend these findings,
future research could explore enterprises across various industries,
beyond just e-commerce, further validating and enriching the
applicability of the proposed approach.

5.2 Theoretical and practical implications
analysis

From a theoretical perspective, three outcomes are worth
mentioning. Firstly, we delve into the co-movement between
CS and SP on a finer time scale, providing valuable insights
to support investor decision-making and corporate financing
strategies. Secondly, we introduce a novel co-movement prediction
model based on BCN and rule combination. Thirdly, we extend the
application of entropy optimization in forecasting the co-movement
between CS and SP, offers a new perspective on their relationship,
and contributes to the development of entropy theory in economics.

Regarding practical contributions, the co-movement forecasting
provides valuable insights for corporate financing and investor
decision-making by revealing the intricate relationship between

CS and SP. For companies, leveraging this market feedback can
help optimize financing strategies and assess potential risks. If
negative sentiment is predicted to lead to a decline in stock
prices, enterprises may opt to raise funds during periods of
more favorable market sentiment, thereby reducing financing
costs. For investors, understanding the predicted co-movement
patterns, especially sustained opposite trends, can help them
make more informed investment decisions and adopt appropriate
risk mitigation strategies, ensuring cautious investment in volatile
market conditions.

6 Conclusion and future work

In this study, we integrated complex network theory and
entropy optimization into time series analysis, introducing a
novel RC-BCN method to forecast the co-movement between
CS and SP, which performs well. Additionally, the co-movement
between CS and SP of JD is primarily driven by node strength and
edge weight, suggesting that nodes and node pairs with higher
frequencies of past appearances are more likely to reappear in
the future. This indicates that the co-movement between CS and
SP is influenced not only by the continuity of existing market
behaviors and interaction structures, but also reflects the Matthew
effect, that is, frequently occurring co-movement patterns are
more likely to continue to dominate the co-movement in the
future. Moreover, this study contributes a novel perspective
and methodological framework for examining bivariate co-
movement, offering significant implications for enterprises and
investors in optimizing financing and investment strategies.
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Similar to many studies, this research is not without its
limitations. First, this study examines co-movement between
variables in the same or opposite directions, but does not distinguish
whether the co-movement in the same direction is positive or
negative. Second, while many variables affect corporate financing
and investment, this research focuses solely on two-variable co-
movement prediction. Future studies will extend this method to
forecast the co-movement among additional economic variables to
enhance the generalizability of the findings. By incorporating the
specific co-movement directions of each variable, both businesses
and researchers can gain deeper insights into the interdependent
relationships among complex economic systems in e-commerce.
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