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Introduction: With the development of global industrialization, metal minerals
have become a global focal point of great power competition. An in-depth
investigation into the evolution of global mineral trade structures, alongside
an analysis of the relationships between metal minerals trade, resource
endowments, industrialization, regional dynamics, and geopolitical competition,
is crucial for nations to formulate effective trade policies and enhance the
stability of global mineral trade development.

Methods: This study explores the evolution trends of the global metal minerals
trade structure from 1990 to 2022 based on complex network and further detect
community structure using the Infomap algorithm.

Results and discussion: The results show that (1) There is a general upward trend
in global metal minerals trade from 1990 to 2022, which can be segmented
into phases of slow, rapid, and moderate growth. (2) The two major trading
circles formed in the early stage with Japan and Europe as the center have
changed, forming a dual pattern with China as the super demand center and
Australia as the super supply center. (3) China, Australia, the U.S., Japan, Brazil,
and the European Union play key roles in shaping the global trade network,
with the structure of the global metal minerals trade network primarily being
driven by demand centers. (4) According to the economic trends and the
evolving resource demands, the global trade structure will translate from a
concentrated bipolar model to a diversified network with multiple trade centers.
The conclusion of this research helps specify international policies and maintain
supply chain resilience.
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1 Introduction

Metal minerals are the rawmaterials for industrial development.
With the development of global industrialization and the transfer of
industrial centers, the trade structure of mineral resources has also
changed. In recent years, black swan events such as the epidemic
of the century, Sino-U.S. trade friction, the Russia-Ukraine conflict,
and the Palestine-Israel conflict have occurred frequently, disrupting
the stability of trade networks and impacting the trade of mineral
products [1, 2]. For example, Russia is one of the largest exporters
of copper resources, accounting for 4% of the world’s refined
copper production. However, due to the ongoing fermentation of
the Russia-Ukraine conflict, Russia’s copper exports have declined
significantly, resulting in a rise in LME copper prices, and a supply
shortage of 87,000 tons in the global refined copper market in 2023.
Meanwhile, the import of copper from Russia by EU countries
decreased by 79% compared with 2022, to 62,000 tons, and China’s
import of copper from Russia increased by 14.8% compared with
2022 to 366,000 tons. As a result, exploring the evolution of the
community structure of internationalmetalminerals trade networks
is essential for governments to adjust their development strategies.
Previous studies on metal minerals trade networks usually focused
on a single mineral, which cannot show the whole picture of the
trade structure of mineral products. The complex network theory
often be applied to carry out the supply chain network structure and
risk ofminerals such as copper [3, 4], lithium [5], nickel [6, 7], cobalt
[8–11]and boron [12]. Additionally, models and methods such
as multi-layer complex network construction, infectious disease
spread models, and link prediction are widely used to characterize
the evolution of global mineral resource supply risks and trade
security [13–17]. Complex networks are typically composed of a few
highly significant large nodes and numerous smaller nodes with less
significance, often exhibiting community clustering phenomena.
Community detection is a critical approach for investigating the
internal structure and relationships within complex networks [18].
Three main algorithm types are widely employed in community
detection for complex networks. The first includes hierarchical
clustering-based algorithms, such as the Lawworth and Girvan-
Newman algorithms [19, 20], which are suitable for communities
with tree network structures. The second type is the greedy
algorithm and Louvain algorithm based on maximum modularity-
degree calculation [21–23], which are suitable for fast detection
of undirected large complex network communities. The third
type is an infomap algorithm based on random walks and data
compression. The structure of the trading community of a single
mineral species is often too simple, and only a few relevant
studies have been carried out [24–27], using the second type of
algorithm mentioned above, and the effect and explainability of the
community division are not ideal.The infomap algorithm is a quality
function for optimizing community recognition on directed and
weighted networks, uses data compression for community detection,
known as map equation [28, 29], which can be used for network
visualization and dynamic evolution of community structure, and
has developed rapidly in recent years. It is particularly effective for
revealing hierarchical and overlapping communities in large-scale,
weighted and directed networks [30–32]. This provides a robust
framework for understanding the functional organization and
resilience of the global metal minerals trade network.Therefore, this

paper attempts to apply the infomap algorithm to the community
detection research of mineral trade structure.

This paper selects the total trade values of 17 types of metal
minerals products (trade code 2,601∼2,617) [33] as the research
object. It first constructs a complex network of global trade of metal
minerals products and then utilizes the map equation framework to
detect and divide the community structure of international mineral
trade. In the analysis of network community structure and evolution
process, this paper combined the role importance of a single node
and the characteristics of inter-regional trade structure analysis,
to reveal the evolution process of metal minerals products trade
structure.

In order to accurately divide trading communities, we integrate
map equations with complex network theory into a new analytical
framework. We conducted community surveys over multiple
periods to explore the evolution of the global trade structure
in metals and minerals. This article has two main contributions.
First, unlike the traditional analysis of a single mineral, this paper
analyzes all metal minerals with publicly available trade data, and
for the first time explores the global trade structure of metal
minerals from a holistic perspective. Secondly, this paper constructs
a community network model of global metal minerals trade by
infomap algorithm, analyzes the process of trade center transfer, and
reveals the evolution characteristics of global metal minerals trade.

The remainder of this paper is organized as follows. Section 2
introduces the data source, structural indices of the complex
network, and the algorithm for the map equation framework.
Section 3 explores the top traders, important regions, important
communities, and their evolution over time. Section 4 discusses the
findings, and Section 5 offers conclusions.

2 Data and methods

2.1 Data

All metal minerals trading data including the Harmonized
System(HS) code from 2601 to 2617 (Table 1) were obtained
from the UN Comtrade database (https://comtradeplus.un.org/),
covering the period of 1990, 1995, 2000, 2005, 2010, and 2015-
2022. This study has retrieved 72,311 records (Table 2), each of
which includes exporters, importers, and trade value (the unit is
dollars). These minerals collectively form the basis of our research
object, which is to investigate the overall trade structure of metal
minerals. Based on the data of 13 years, this study adds the total
trade value of each metal minerals as the trade weight in each year,
as shown in Equation 1:

W = 1
2

n

∑
i=1

wi,j (1)

where W represents the total trade value of all metal minerals in
each year, wi,j represents the trade values of each metal mineral
commodity between countries i and j . n is the total number of
countries. m is the total number of metal mineral commodities.

Except the trading data, commodity price, GDP, GDP Per
Capita, Manufacturing value added, minerals resource reserve, and
production data are also used to analyze and interpret the results of
the study, and the sources of these data are the World Bank (https://
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TABLE 1 The HS code and the commodity name.

HS code Commodity HS code Commodity HS code Commodity

2,601 Iron ores and concentrates 2,607 Lead ores and concentrates 2,613 Molybdenum ores and concentrates

2,602 Manganese ores and concentrates 2,608 Zinc ores and concentrates 2,614 Titanium ores and concentrates

2,603 Copper ores and concentrates 2,609 Tin ores and concentrates 2,615 Niobium, tantalum, vanadium or
zirconium ores and concentrates

2,604 Nickel ores and concentrates 2010 Chromium ores and concentrates 2,616 Precious metal ores and concentrates

2,605 Cobalt ores and concentrates 2,611 Tungsten ores and concentrates 2,617 Ores and concentrates; n.e.c. in
heading no. 2601

2,606 Aluminium ores and concentrates 2,612 Uranium or thorium ores and
concentrates

TABLE 2 Trading records of each year.

1990 1995 2000 2005 2010 2015 2016 2017 2018 2019 2020 2021 2022 Total

Records 2,115 3,114 4,384 4,943 5,952 6,724 6,188 6,478 6,621 6,599 6,161 6,670 6,362 72,311

data.worldbank.org/), and United States Geological Survey (https://
www.usgs.gov/centers/national-minerals-information-center).

2.2 Methodology

2.2.1 The construction of complex networks
Complex networks are ideal for analyzing trade patterns due

to their ability to capture intricate interdependencies, non-linear
interactions, and systemic structures in large-scale systems [34,
35]. This approach reveals key players, community dynamics,
and resilience, offering insights beyond traditional models [36].
Compared with other methods, its strength lies in handling
mutil-dimensional data and providing global perspectives, making
it essential for understanding the evolution and efficiency of
global trade.

Complex network model G = (V, E) consists of node set (V) and
edge set (E). In V = {1, 2, … ,n}, n represents the number of nodes,
and in E = {1, 2, … , m}, and m represents the number of edges. The
complex network matrix is shown in Equation 2:

G = (V,E) =

[[[[[[[

[

0 w1,2 ⋯ w1,n

w2,1 0 ... w2,n

⋮ ⋮ ⋱ ⋮

wn,1 wn,2 ⋯ 0

]]]]]]]

]

(2)

where wij represents the edge weights of nodes i to j.
Therefore, we use the complex network model to construct a

total of 13 directed weighted networks for the international trade of
metal ores and concentrates from 1995 to 2022, in which the trading
country is the node, the trade relationship is the edge, and the sum
of all metal ores and concentrates trade volume is the edge weight.

2.2.2 Indices based on topological characteristics
Based on the complex network model of international metal

minerals trade patterns, structural indicators are always used
to measure the global or local characteristics from different
perspectives. In this study, according to the topological features
of the nodes and the global network, we selected five indies to
measure the change in the community structure. Predicated on
the difference in the pattern structure, these indices can reflect the
impact of countries in the trade patterns when removing specific
countries or regions. Simplified definitions and descriptions are
as follows.

2.2.2.1 Degree
The degree represents the total number of edges connected

between nodes in a network. In a directed network, the degree is
composed of in-degree and out-degree representing the total export
and import relations between countries. The calculations are shown
in Equations 3–5:

kini =
N

∑
j=1

aji (3)

kouti =
N

∑
j=1

aij (4)

Ki = k
in
i + k

out
i (5)

where aji represents the edge from node j to node i and aij represents
the edge from node i to node j.

2.2.2.2 Weighted degree
The weighted degree of nodes is the sum of the trade value of all

the edges. In a directed network, the weighted degree can be divided
into the weighted in-degree and the weighted out-degree, which are
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shown by Equations 6–8:

sini =
n

∑
j=1

Wji (6)

souti =
n

∑
j=1

Wij (7)

Si = s
in
i + s

out
i (8)

where Wji represents the edge weights of node j pointing to node i
and Wij represents the edge weights of node i pointing to node j.

2.2.2.3 Centrality
The centrality measures the importance and influence of nodes

in a network and identifies the major active information channels.
It is one of the core indices of network analysis. In this chapter,
two types of centrality are considered: closeness centrality and
betweenness centrality [37–39].

2.2.2.4 Betweenness centrality
The betweenness centrality measures the importance of a node

to the shortest paths through the network, which describes the
capability of a node that make connections to other pairs of nodes
in a network. It is measured by Equation 9:

bc(i) = ∑
j,k∈vV

ςjk(i)
ςjk

(9)

where ςjk(i) is the number of shortest paths that pass through the
node i, and ςjk represents the total number of the shortest paths
between any pair of nodes in the network.

2.2.2.5 Closeness centrality
The closeness centrality is the inverse of the average shortest

distances from a node to all other nodes in a network. It measures
how fast a node will take to spread information from the node
to every other node that describe the influence of the node. It is
defined as Equation 10:

c(i) = N− 1
∑
∀⊂i≠j

ρ(i, j)
(10)

Where ρ(i, j) represents the shortest path distance of node i and
node j in the network.

In brief, weighted degree, weighted in-degree, andweighted out-
degree are used to describe countries’ total trade value, import,
and export. The closeness centrality and betweenness centrality are
selected to estimate the influence and importance of the network.

2.2.3 Communities detection with the map
equation framework

The map equation framework is an information-theoretic
method that identifies communities by optimizing the random
walker’s movement across the network to minimize its description
length [29]. It is particularly effective for revealing hierarchical
and overlapping communities in large-scale, weighted and
directed networks [30–32]. This provides a robust framework for
understanding the functional organization and resilience of the
global metal minerals trade network. For a given network partition,

denoted as M, the map equation specifies the theoretical limit L(M)
of how concisely we can describe the trajectory of this random walk.

To capitalize on the regional structure of the network, one index
codebook and m module codebooks are utilized, with each module
in the network having its codebook, to articulate the movements
of the random walker. The module codebooks contain codewords
for nodes within each module, including exit codes to depart the
module, derived from the node visit/exit frequencies of the random
walker. The index codebook comprises codewords for the modules,
derived from the module switch rates of the random walker. Thus,
the average length of the code describing a step of the randomwalker
is the average length of the codeword from the index and module
codebooks, weighted by their rates of use, as shown in Equation 11:

L(M) = q↶H(Q) +
m

∑
i=1

pi↻H(P
i) (11)

The two-level average description length for a single step
of the random walker within a network comprising n nodes,
segmented intomapMwithm distinct modules, is composed of two
components. The first term is the average description length of the
index codebook, as shown in Equations 12, 13. The second term is
the average description length of the module codebooks, as shown
in Equations 14, 15.

q↶ =
m

∑
i=1

qi↶ (12)

The q↶ describes the rate at which the index codebook is used.
The per-step utilization rate of the index codebook is thus calculated
as the sum of the probabilities with which the random walker
accesses each module.

H(Q) = −
m

∑
i=1

qi↶
q↶

log
qi↶
q↶

(13)

The H(Q) describes the frequency-weighted average length of
codewords in the index codebook. The entropy of the usage rates
for the module codebooks quantifies the minimal average codeword
length that can be theoretically achieved.

m

∑
i=1

pi↻ =
m

∑
i=1
(∑
α∈i

pα + q↷) (14)

The ∑mi=1p
i
↻ describes the rate at which the module codebooks

are used. The per-step utilization rate of the module codebooks is
dictated by the cumulative usage rate of the m module codebooks.
For module i, this rate reflects the time spent by the random
walker in the module, which is the sum of the probabilities of
visiting any node in the module and using the exit message
when leaving.

H(P i) = −
q↷

q↷ +∑βϵipβ
log

q↷
q↷ +∑βϵipβ

−∑
α∈i

pα
q↷ +∑βϵipβ

log∑βϵipβ

(15)

The H(P i) describes the frequency-weighted average length of
codewords in module codebook i. The entropy of the exit and visit
rates of the random walker for module i represents the theoretical
minimum of the average codeword length.
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FIGURE 1
The trade value and metals price index, 1990–2022.

3 Results

3.1 Overview of global metal minerals trade

3.1.1 3 stages of global metal mineral trade
To investigate the evolutionary process of the global metal

minerals trade structure, this study analyzes historical trade data
from 1990 to 2022 in terms of trade volume, trade value, unit trade
price, and the metal price index (Figure 1). According to the growth
rate of value, and combined with the reality of global economy and
mining development, this study divides the global metal minerals
trade into three stages: (A) the slow development stage (1990–2000),
(B) the rapid growth stage (2000–2010), and (C) the deceleration
stage (2010–2022).

During Stage A (1990–2000), trade links doubled to 1949 in
2000, but trade value grew slowly, with new links contributing low
value. Unit trade value declined slightly, whilemetal prices remained
stable, indicating gradual trade volume expansion.

In Stage B (2000–2010), trade link growth slowed, but trade
value surged nearly sevenfold to $232 billion, driven by rising unit
trade values and metal prices, reflecting significant growth in both
trade volume and value.

During Stage C (2010–2022), trade links stabilized
(2,600–2,800), while trade value, unit value, and metal prices grew
steadily. In 2021, the global economy rebounded post-pandemic,
leading to a rise in metal prices and a new peak in trade value. By
2022, trade links declined and stabilized as industrial production
normalized.

Overall, global trade in metals and minerals shows an upward
trend in trade links, value, unit price, and the metal price index.
Especially, the evolution process of trade value and unit price
is similar.

3.1.2 Dominance countries evolution
Figure 2 illustrates the evolution of the global metal minerals

trade network from 1990 to 2022, highlighting the weighted
import and export of countries. It shows that a small percentage,
about 10%–20%, of countries are responsible for 90% of the
cumulative weighted indegree, while 11%–16% account for 90% of
the cumulative weighted outdegree. This indicates that a minority of
nations dominate global trade in metal minerals.

This paper examines the shifting dominance in global metal
minerals trade, focusing on the top importers by the proportion of
trade value annually (Figures 2C, D). From 1990 to 2000, Japan led
trade until 2000, when its demand stabilized post-industrialization.
Then China emerged as the top 1 importer, with its import
growth mirroring its industrialization phase—rapid at first, then
slowing as industrialization neared completion. Since 2010, the
top 10 importers have consistently accounted for around 85% of
global imports, indicating a high concentration of trade, with the
proportion of top importer was near 90% by 2022. This suggests that
a small number of countries dominate metal minerals imports.

Compared with the change of the number of top countries,
the cumulative weighted export ratio is stable, mainly caused by
the change of the top 5 major exporting countries, among which
Australia, Brazil and Chile are stable major exporting countries.
Analyzed the evolution of the cumulative weighted outdegree ratio
among the top 30 countries since 1990, there is a gradual decline,
indicating an increasing participation of countries in the export
trade of metal minerals. Nonetheless, the preponderance of exports
remains concentrated within the top 10 exporting nations.

3.1.3 Dominance commodities evolution
The global metal minerals trade from 1990 to 2022 was

primarily driven by iron and copper, constituting over 65% of
total trade (Figure 3). Iron ore (2,601) trade increased until 2010,
peaking at 58% with a surge in iron prices, then declined to around
50%. Copper ore (2,603) trade remained steady at approximately
20%. Zinc ore (2,608) trade declined to a stable 5% post-2015,
while molybdenum ore (2,613) experienced significant fluctuations,
peaking at 6% in 1995 and 8% in 2000, before settling near 2%.
Trade in precious metals (2,616) saw overall growth with substantial
increases in 2000 and 2020. The trade share of other metal products
remained largely consistent with minimal changes.

3.2 Region analysis results

In this study, the global metal minerals trade was categorized
into 13 key regions, including North America (NA), South America
(SA), Europe (EU), The Commonwealth of Independent States
(CIS), the Middle East (MEA), Africa (AF), Oceania (OC),
Southeast Asia (SAS), China (CHN), Japan (JPN), Korea (KOR),
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FIGURE 2
The cumulative distributions of the weighted in-degree and weighted out-degree, (A) cumulative percentage of weight in-degree, by years; (B)
cumulative percentage of weight out-degree, by years; (C) cumulative percentage of weight in-degree, by top countries; (D) cumulative percentage of
weight out-degree, by top countries.

FIGURE 3
Commodity annual percentage, (A) included 2,601 and 2,603, (B) without 2,601 and 2,603.

and India (IND). Among them, North America, South America,
Africa, Oceania, and Southeast Asia were the primary exporters,
comprising 88% of total exports in 2022.Meanwhile, Europe, China,
Japan, South Korea, and India were the major importers, making
up 92% of total imports in 2022. Figure 4 shows the evolution of
trade flows, with the left axis indicating trade origins, the right
axis showing destinations, line widths signifying trade volumes, and
colors denoting distinct regions.

North America has historically been a key player in global metal
minerals trade, with robust export capabilities, though its influence

has waned in recent years. Between 1990 and 2000, Europe and
Japan accounted for ∼60% of its exports, but post-2000, exports
shifted toward China and South Korea. By 2015, China became
the second-largest destination (∼28%), while South Korea’s share
rose to ∼10%, matching Japan’s. Internal trade remains significant,
comprising ∼20% of exports and ∼40% of imports, with the latter
increasing since 2000, reflecting growing regional self-sufficiency.

South America, the largest global exporter, maintained ∼30% of
global trade volume from 1990 to 2015. However, outdated policies
and inefficiencies in major exporters like Chile and Brazil slowed
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FIGURE 4
The evolution of metal minerals trade flows, by regions. (A–F) are the gobal metal minerals trade flows in 1995, 2000, 2005, 2010, 2015, 2022. The
regions/countries in the left represent the exporter, and the regions/countries in the right represent the importer.

production growth, leading to its overtaking by Oceania in 2019.
Initially, Europe and Japan dominated as export destinations, but
China’s industrialization shifted trade patterns, with its share rising
from 9% (2000) to 65% (2022), marking a transition from multi-
regional to concentrated trade.

Oceania, the second-largest exporter, saw its global export
share rise from 22% (1995) to 30% (2015), surpassing South
America in 2019. Initially, Japan and Europe were primary
destinations (∼60% combined), but China’s demand surged post-
2000, reaching 80% of Oceania’s exports by 2022. The Oceania-
China trade flow became the largest globally, accounting for 24%
of total trade in 2022, driven by the 2010 free trade agreement
with Australia.

Africa emerged as a key supplier, with exports rising rapidly
post-2000. Europe was the primary destination initially, but China’s
share grew significantly, reaching 65% by 2022, while Europe’s
stabilized at ∼20%. Exploration in Northwest and South Africa
fueled this growth, solidifying China’s dominance.

Southeast Asia has been a stable exporter, contributing ∼7% of
global exports (1990–2005), declining slightly to ∼5% (2005–2022).
Japan and Europe were initially dominant (∼70% combined in
2005), but China’s share rose sharply, stabilizing at ∼55% post-
2015, while Japan and Europe’s shares fell to 15% and 5%,
respectively.

Europe, a major importer, saw its global import share drop
from 38% (1995–2000) to 11% (2022). South America, North
America, and Africa are key sources, with intra-European trade
rising to 26% of imports by 2022. Europe reduced reliance on South
America (44%–25%) while increasing imports from North America
and Africa.

China became the largest importer, with its global import share
surging from 1990. By 2022, it accounted for 64% of global imports
($224.3 billion), driven by industrialization and iron ore demand.
Oceania (39%), South America (30%), andAfrica (10%) are primary
sources, with Oceania’s share growing significantly post-2010 due to
Australia’s iron ore exports.
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Japan’s import scale declined annually, falling to 9% of global
imports by 2022 (from 40% in 1990). South America, Oceania, and
North America are key sources, with imports from Southeast Asia
dropping to 8% by 2022. Free trade agreements with South America,
Oceania, and North America between 2010 and 2015 reshaped its
import structure.

South Korea maintains steady imports (∼6% of global total),
with Oceania and North America becoming dominant sources
(∼56% combined by 2022) due to its participation in the Trans-
Pacific Strategic Economic Partnership Agreement with Australia
and the U.S. from 2010 to 2015.

India transitioned from a supplier to a major consumer. Exports
peaked at 3.5% of global trade in 2010 but declined due to
export tariffs and mining restrictions post-2009, particularly on
iron ore. Imports rose during rapid economic growth (2000–2010),
stabilizing at ∼2% of global imports by 2022. A production
resurgence from 2014 helped recover mineral output and exports.

In summary, the global trade of metal minerals is centered
around two main trade hubs: Europe, with North America and
Africa as suppliers, and the Asia-Pacific, with China, Japan, and
South Korea as demand centers and Oceania and Southeast Asia as
suppliers. South America serves as a key mineral supplier to both
trade circles. From 1990 to 2000, the trade was balanced between
the Europe-America and Asia-Pacific circles, with Japan as a central
player, leading to a diversified trade pattern. By 2000–2010, Japan’s
trade diminished, shifting the Asia-Pacific hub to China, sparking
competition with the Europe-America trade circle. From 2010 to
2022, China’s trade continued to grow, while Europe and Japan’s
trade stabilized, leading to a decrease in their proportion of the total
trade volume. By 2022, China accounted for over 60% of the trade,
centralizing the trade circle around it. Overall, the trade pattern
evolved from a diversified to a centralized system, increasing the
instability of the global trade system. Additionally, India’s trade
role shifted from supplier to demander due to increased domestic
demand for iron ore during its industrialization phase, reducing
exports to meet internal needs.

3.3 Communities detection results

In order to further investigate the evolution of trading
communities in the global metal minerals trade, this paper
constructs a complex networkmodel and employs themap equation
framework for community detection and monitoring. The trade
flow data representing 80%, 90%, 95%, and 99% of the accumulated
trade weight were extracted annually and categorized accordingly.
Utilizing the Infomap code base, the data were processed in
Python to test community division by year. The analysis revealed
that selecting trade data with a 95% cumulative trade weight
yielded the most stable and realistic community division. Thus,
the paper focuses on countries within this 95% threshold for
community analysis.

This study utilized Gephi to visualize the global metal minerals
trade network, and the node size indicating a country’s weighted
degree and line thickness signifying trade value. Due to the
large difference between the international situation in 1990 and
today, the participating countries in the global metal minerals
trade were incomplete. This study focused on the years 1995,

2000, 2005, 2010, 2015, and 2022 as key observation points, with
detailed classifications displayed in Figure 5. Communities are
divided as follows:

(1) In the early stage, the communities with Japan as the center
and India,Malaysia, and other Southeast Asian countries as the
main members are marked with orange;

(2) Those with China as the center and South Korea, Indonesia,
Thailand, and other Asian countries as the main members in
the later period are marked in yellow;

(3) Those with Australia as the center and Brazil, Chile, the United
States, Canada and other countries in the Americas as themain
members are marked in green;

(4) Communities centered in Germany with major members from
Europe and someNorth African countries, such as Spain, Italy,
the United Kingdom and Egypt, are marked in blue;

(5) The community with Russia as the center andUkraine, Poland,
Uzbekistan, Kazakhstan and other CIS countries as the main
members, marked with cyan;

(6) Communities with Southern African members centered on
South Africa, identified in pink;

(7) A transitory Brazil-centered trading community,
marked in purple;

(8) And a trading community that appears briefly and centers on
Chile, marked in red.

Between 1990 and 2000, Japan served as the largest global
trade hub for metals and minerals. However, its prominence
declined after 2005, as it became one of the top five centers
within the Australia-Americas community. China, initially part
of the Australia-Americas community, experienced rapid growth
following its post-2000 economic reforms, emerging as the world’s
largest metal minerals trader by 2005 and forming a new trade
community centered on itself. From 2005 to 2022, this China-
led community expanded significantly, becoming the largest
trade group. The Australia-Americas community, characterized by
abundant mineral resources, has consistently played a pivotal role in
global trade, maintaining a relatively stable scale and membership.
Countries such as Brazil and Chile temporarily formed a separate
community in 2000 but rejoined theAustralia-Americas community
after 2005. The European community, primarily comprising EU
member states and select North African countries, has remained
relatively stable. However, between 2010 and 2015, some members
temporarily transitioned to other communities before rejoining
the German-led European community. The Russian community
exhibited gradual growth until 2015 but experienced a contraction
in 2022, as somemembers, includingUkraine,moved to theGerman
European community. The South African community, while smaller
in scale, has demonstrated remarkable stability, with its membership
remaining largely unchanged over an extended period.

Globally, from 1990 to 2000, multiple trade centers coexisted,
creating a competitive trade network pattern. From 2000 to
2010, China’s economic boom and Japan’s stable demand post-
industrialization led to a shift in the trade network, with China
and Australia emerging as the main trade centers. From 2010 to
2022, China became a super-demand center in the global metal
minerals trade, with Australia as the main supply center, leading
to a concentration of trade and a shift from a multi-centered to a
dual-centered pattern dominated by China and Australia.
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FIGURE 5
The evolution of gobal metal minerals trade community. (A–F) show the community division in 1900, 2000, 2005, 2010, 2015,2022. The different
colors represent different communities, and the specific division is shown in the Section 3.3.

To further study the key factors of the evolution of the global
metal minerals trade structure, this study analyzed the overall
situation of the global metal minerals trade, the sub-regional
evolution of the global metal minerals trade, and the evolution of
the complex network community of the global metal minerals trade,
and further collected the characteristic index data of each country
in the complex network. And analyzed the leading countries in the
numerical rankings.

The weighted in-degree percentage is a key measure
of a country’s share in global metal and mineral
trade imports (Figure 6A), indicating the trade network’s import
center. Japan’s indegree percentage declined significantly from
1990 to 2000, then slowed until 2010, leveling off around 10% of
global imports from 2010 to 2022. In contrast, China’s in-degree
percentage showed gradual growth from 1990 to 2000, a sharp
increase between 2000 and 2010, and a slower rise post-2010,
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FIGURE 6
Percentage of weighted in-degree and weighted out-degree of major countries, 1990 to 2022. (A) Percentage of weighted in-degree of major
countries; (B) Percentage of weighted out-degree of major countries. Where JPN-Japan, DEU- Germany, KOR- Korea, USA- United States, ESP- Spain,
CAN- Canada, CHN-China, AUS- Australia, BRA- Brazil, CHL- Chile, IND- India, PER- Peru, ZAF- Zambia.

eventually stabilizing at a higher share of global imports. Germany’s
in-degree percentage also decreased, with a marked drop by 2000,
followed by stabilization at around 8%. Meanwhile, countries such
as the United States, South Korea, Spain, and Canada maintained
relatively stable in-degree percentages throughout 1990–2022.
Over this period, the trade network’s import hub shifted from
Japan to China.

The weighted out-degree percentage is a crucial measure
of a country’s contribution to global metal and mineral
trade exports (Figure 6B). Historically, Australia has been the top
exporter with a stable outdegree percentage of around 20% from
1990 to 2005, followed by rapid growth to 2015, and stabilization
thereafter. Australia has consistently been the trade’s export hub
from 1990 to 2022. Brazil, the second-largest exporter, maintained
a roughly 15% share, with a spike in 2010 due to Chile’s decreased
exports. Chile’s outdegree rose until 2005, then stabilized at 8%.
Canada experienced a decline in 2005, followed by stabilization.
The U.S. showed a steady decline, while South Africa trended
gently upward, both achieving stability. Overall, Australia remains
the central exporter, with other countries maintaining a steady
proportionate structure in the global trade network.

Betweenness centrality evaluates a nation’s ability to influence
trade network dynamics (Figure 7A). In 1990, Germany exhibited
the highest betweenness centrality, reflecting significant network
influence, although this influence fluctuated and diminished
between 1995 and 2022. The United States maintained a high
centrality index from 1995 to 2005, demonstrating stable control
over global trade, but experienced a gradual decline after 2005
while retaining considerable international influence. China showed
a sharp increase in betweenness centrality from 1990 to 2010,
signaling its growing prominence in the global metal and mineral
trade. It has remained the top-ranked country from 2010 to
2022, despite a slight decrease in its centrality value. Canada
exhibited an upward trend until 2000, followed by a gradual
decline, eventually stabilizing at amoderate level of influence. India’s
centrality increased until 2010 before declining, while South Africa
showed a slow but steady decline, maintaining a mid-tier position.

Spain, by contrast, displayed consistent stability throughout
the period.

Closeness centrality indicates a node’s proximity to others,
reflecting a country’s capacity to exert counter-influence within
a network (Figure 7B). Germany’s closeness centrality declined
from 1990 to 2010 but rebounded by 2022, indicating a recovery
in counter-control ability. The US maintained a high and stable
closeness centrality from 1995 to 2022, demonstrating strong
counter-control and trade security, with extensive global trade
ties and high trade freedom. China’s centrality was initially low
but rose to the top after 2010, showing improved trade security
and a continued upward trend to 2022. South Africa, with rich
mineral resources and self-sufficiency, has a consistently high and
stable closeness index, reflecting its stable counter-control ability.
Australia, similarly resource-rich, has a lower overall closeness
index. India’s index rose steadily, enhancing its counter-influence
in global metal minerals trade, though still lagging behind top
countries. Brazil’s closeness index followed a pattern of decline
and recovery, with a gradual strengthening of counter-control after
hitting a low in 2005.

According to the analysis of the value change of each node
characteristic index, the study finds that Japan, China, Australia,
Brazil, the United States, and some European countries play an
important role in the structure evolution of the globalmetalminerals
trade network. Japan, despite a declining import share from 1990 to
2022 and weak control in the trade network due to limited domestic
resources, remains a key player. China, as the current trade network’s
hub and import center, has closely intertwined development with
the overall metal minerals trade from 1990 to 2022, enhancing its
counter-control to safeguard trade security. Australia, the second-
largest trading entity and export center, maintains a stable trade
relationship with China and ensures its trade security through stable
counter-control. Brazil, with a consistent export share and richmetal
resources, is amajor exporter and counter-control player.TheUnited
States, while not the center of imports or exports, exerts significant
control and offers stability as a crucial trade network connector
between countries.
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FIGURE 7
Betweenness centrality and closeness centrality of major countries, 1990 to 2022. (A) Betweenness centrality of major countries; (B) Closeness
centrality of major countries. Where USA- United States, DEU- Germany, GBR- United Kingdom, CHN-China, ZAF- Zambia, CAN- Canada, IND- India,
ESP- Spain, NLD- Netherlands , AUS- Australia, BRA- Brazil.

FIGURE 8
Percentage of industrial added value of major countries and
regions, 2000–2022.

4 Discussion

4.1 Metal minerals and industrial
development

Metal minerals are crucial for societal industrial development,
with demand often rising alongside industrialization. The range of
metal minerals needed for comprehensive industrial development is
vast, and their distribution is typically uneven, meaning few nations
can rely solely on domestic production. This creates a significant
link between the scale of metal minerals trade and industrial
development. Figure 8 shows that since 2000, the manufacturing
industry’s value-added has declined in the U.S., Europe, and Japan,
China’s rapid growth has correspondingly increased its import
position in the global metal minerals trade.

At present, the gap between the trade weight of other
centrosomes and super centrosomes is wide, except for China and
Australia, other countries’ trade changes are not obvious, but China

2021 proposed the “14th Five-Year Plan” [40], the domestic launch
of the new steel policy, steel production has declined, iron ore
demand growth will be limited. India has had the world’s highest
GDP growth rate in recent years, the future steel demandwill further
increase, while domestic iron ore exports will also reduce, further to
the demand-side role transformation. At the same time, investment
in African mineral exploration projects is still advancing, and the
production capacity of metal minerals in Africa will be further
improved in the future [41]. In the future, the global metal minerals
trade structure may change again, from the structure of China as the
supercenter to the multi-center development of the trade structure,
while Africa and India will become the new supply and demand
centers, the global metal minerals trade structure from a highly
concentrated state will once again turn to a diversified trade pattern.

4.2 Policy implications and resource
security

Mineral resource trade is a crucial component of the metal
minerals supply chain, and over-reliance on concentrated import
sources can jeopardize a nation’s resource security. As the trade
network becomesmore intricate, nations have implemented policies
to diversify trade and safeguard domestic resources. For instance,
the U.S. formed the Mineral Security Partnership [42] with allies
on June 14, 2022, aiming to curtail reliance on foreign adversaries
for critical minerals and ensure national and economic security
[43]. Concurrently, the European Union introduced the Critical
Raw Materials Act on September 14, 2022, mandating that by
2030, reliance on a single third country for any strategic material
should not surpass 65% of the EU’s annual consumption at any
stage of processing [44]. These policies indicate a future trend
where global metal minerals trade, under the influence of trade
diversification, will evolve towards alliance-based structures, with
developednations and their allies forming closer trade communities,
fostering a competitive environment with supercenters.

Indonesia, Chile, Peru, the Democratic Republic of Congo,
Australia, and Canada, as major suppliers of metal minerals, have
implemented policies to curb the direct export of raw minerals
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and bolster their economies. Indonesia’s 2014 ban on raw mineral
exports, including nickel ore and bauxite, mandates local smelting
or refining, attracting foreign investment in downstream industries
and increasing export value [45]. Chile, Peru, and the DRC have
raised export taxes on minerals like copper, lithium, and cobalt,
and enforced national participation in mining to boost economic
revenue [46, 47]. Australia and Canada promote domestic mining
through key mineral lists, aiming to enhance economic growth,
competitiveness, and employment [48, 49]. While China remains
a significant export destination for Australian minerals, potential
policy shifts influenced by the U.S. and its allies could encourage
Australia to explore new markets in emerging economies like India
and Southeast Asia, driving global trade structure evolution in
metal minerals.

At the same time, the global energy transition is driving changes
in the consumption structure of metal minerals. In the future, the
energy consumption pattern dominated by clean energy such as
wind power, photovoltaic, and hydrogen energy will greatly increase
the demand for new energy metals such as copper, aluminum,
nickel, cobalt, and lithium while the proportion of demand for
iron will be reduced [50]. Moreover, the new energy sector also
requires a more diverse range of metal minerals, particularly scarce
minor metals such as gallium, germanium, indium, tellurium, and
antimony, which will see a significant rise in demand, leading to a
more diversified trade in metal minerals varieties globally [51].

4.3 Impact of geopolitical events on metal
minerals trade

Geopolitical events have had profound impacts on the global
trade structure of metal minerals. Trade frictions and conflicts
have led to short-term disruptions and long-term shifts in trade
patterns. In the short term, geopolitical events can cause significant
disruptions in supply chains, leading to supply shortages and price
increases. In the long term, these events drive structural changes in
trade networks. For example, The ongoing Russia-Ukraine conflict
has hit the European key mineral supply chain. As a major
global producer of key minerals such as nickel and palladium, the
instability of Russia’s supply has prompted European companies to
accelerate the search for alternative resources [52]. Such as Finland
has reached cooperation with Canada and increased investment in
the development of nickel ore resources in Canada to make up for
the potential gap caused by changes in Russia’s supply. In the Middle
East, the tense geopolitical situation have put the transportation of
minerals passing through the region at potential risk. The conflicts
have triggered concerns about supply disruptions. In response to
this situation, many major Asian electronics - producing countries,
such as Japan and South Korea, have strengthened cooperation with
Australia and Brazil to ensure the stable import of keyminerals such
as rare earths, gallium, and germanium [53].

5 Conclusion

Combining resource endowment, national policy,
industrialization process, energy transition, and other influencing
factors, this study analyzes the evolution process and evolution

characteristics of the global metal minerals trade structure from
1990 to 2022 by region, community, and country. The main
conclusions of this paper are as follows:

(1) From 1990 to 2022, the global trade in metals and minerals
shows an overall growth trend, which can be divided into
three stages: A. Slow development period (1990–2000), B.
Rapid growth period (2000–2010), C. Slow growth period
(2010∼2022). With the development of international trade,
an increasing number of countries have engaged in trade
activities, while the concentration of metal minerals imports
has gradually shifted toward the top 10 importing countries.
A small number of nations dominate the majority of global
metal minerals trade. Currently, iron and copper account for
over 65% of the total trade volume, making them the most
significant traded metal products. However, with the rise of
the new energy sector, the demand for new energy metals is
expected to rise, while the demand for traditional industry
metals will diminish, leading to a more diversified trade in
metal minerals.

(2) Great changes have taken place in the structure of global
metal minerals trade from 1990 to 2022. In the first stage,
competition primarily occurred between the Japan-centered
trade circle and the Europe-centered trade circle. As Japan
entered the later stages of industrialization, its demand for
metal minerals stabilized. In the second stage, the structure
gradually shifted to competition between the Europe-centered
trade circle and the China-centered trade circle. In the third
stage, after 2015, China’s demand formetal minerals continued
to grow, and the global trade structure of metal minerals
gradually evolved into a dual trade structure with China as the
super demand center and Australia as the super supply center.
On the whole, it shows an evolution from decentralization to
centralization.

(3) Through the analysis of the numerical changes of each node
characteristic index, the research finds that Japan, China,
Australia, Brazil, the United States, and some European
countries play an important role in the evolution of the
structure of the global metal minerals trade network. Among
countries with high import weight in metal minerals trade,
those with higher betweenness centrality tend to have greater
influence compared to nations with lower import weight. This
indicates that the structure of the global metal minerals trade
network is primarily shaped by demand centers. Conversely,
countries with abundant domestic metal minerals resources
exhibit relatively higher closeness centrality, suggesting that
international metal trade has a comparatively smaller impact
on their resource supply.

(4) The global metal minerals trade structure is poised for a shift
towards a diversified network with multiple trade centers.
This evolution is partly due to China’s peak demand for
iron ore and its commitment to carbon neutrality, which
will likely reduce foreign iron ore demand and increase the
use of recycled steel. Meanwhile, the demand for copper,
crucial for the new energy sector, will rise, enhancing trade
with copper-rich nations like Chile and Peru. Additionally,
emerging economies such as India and Southeast Asia are
expected to grow their industrialization, potentially becoming
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new demand hubs. Developed countries like the U.S. and
Europe are also forging diversified supply chains, fostering a
multipolar trade landscape.

It should be noted that this study has examined metal minerals
trade data only within HS codes 2,601 to 2,617 from UN Comtrade,
yet it acknowledges limitations as spodumene and lithium carbonate
trade data with 8-bit codes which do not open publish date, and the
intermediate products of cobalt metallurgy by wet process (HS code:
8105201000) which dominated the cobalt trade is not included.
The research could be enhanced by incorporating these elements.
Additionally, the study applies a disjoint community rule in network
analysis, which may overlook the multi-community influence of key
nodes, such as bridge countries, that are instead absorbed into larger
communities by more dominant nodes.
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