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neural network models and
genetic algorithm

Chunyu Jiang*
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Strength and durability of concrete are critical performance indicators for the
safety and service life of building structures. These properties are significantly
influenced by the material proportions and their microstructure. Traditional
methods for designing concrete mix ratios have certain limitations when dealing
with complex multivariable relationships. Therefore, intelligent mix optimization
techniques have become a key focus of current research. This paper presents
an optimization approach for mortar mix design based on a multi-output neural
network model with a multi-head attention mechanism, combined with the
genetic algorithm. Firstly, a neural network model based on the multi-head
attention mechanism is developed to establish a nonlinear mapping relationship
between material proportions and performance. The genetic algorithm is
then applied to optimize the model’s predictions, yielding the optimal mix
design. Finally, by converting the optimized mix design data into element
ion ratios parameters, the correlation between these microscopic factors and
cementitious materials durability is analyzed. Results show that the neural
network model effectively captures complex nonlinear relationships, with the
predicted strength and durability closely aligning with experimental data. The
mix ratio optimized by the genetic algorithm significantly improves the strength
and durability of the mortar. Furthermore, the study of ion content provides new
theoretical support for enhancing concrete durability. This research not only
offers an innovative solution for the intelligent optimization of concrete mix
design but also lays a theoretical foundation for concrete material design and
performance enhancement.

KEYWORDS

durability, neural network model, genetic algorithm, mix design optimization, multi-
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1 Introduction

As one of the most widely used construction materials, strength and durability of
concrete directly influence the safety and long-term performance of building structures.
With the development of construction industry, particularly in the context of increasingly
high requirements for the service life and safety of buildings, the strength and durability
of concrete have become core indicators for evaluating its performance [1]. Optimizing
concrete mix ratios to enhance its performance, especially its durability, has become
a research hotspot. The strength and durability of concrete not only depend on the
proportions of cement, aggregates, and water, but are also influenced by various factors
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such as microstructure, phase assemblage, and porosity [2–6].
Therefore, the scientific design and optimization of concrete
material proportions under multiple variable factors have become
key issues in current research. Traditional concrete mix design
typically relies on classical empirical formulas and experimental
data, adjusting the proportions of cement, sand, aggregates, and
water to meet requirements [7, 8]. However, traditional methods
have certain limitations, as they fail to fully account for the
complex nonlinear relationships between concrete performance
and microstructure, which cannot accurately predict the optimal
mix ratio within a short period. Consequently, with advances in
data processing technologies, intelligent optimizationmethods have
emerged as effective tools for optimizing concretemix design [9, 10].

In recent years, data-driven optimization methods have been
widely applied in concrete mix design. Neural networks, as a
common machine learning approach, possess strong nonlinear
mapping capabilities, enabling them to effectively capture the
complex relationships between concretemix ratios and performance
[11, 12]. Deep learning methods, such as multi-head attention
mechanisms, convolutional neural networks (CNN), and long
short-term memory networks (LSTM), can extract features
from multidimensional data, thereby enabling more accurate
performance prediction [13–15].

Moreover, optimization methods, such as genetic algorithms
(GA), are often combined with neural networks to further enhance
the optimization of concrete mix designs [11]. The attention
mechanism, widely used in deep learning, especially the multi-head
attentionmechanism, has demonstrated exceptional performance in
handling complex multidimensional data. The multi-head attention
mechanism enables simultaneous attention to different parts of the
input data through multiple distinct “attention heads”, allowing
for multi-angle modeling of different features. This mechanism
has been successfully applied in natural language processing and
can be gradually extended to other fields, particularly in concrete
mix optimization [16, 17]. In concrete mix optimization research,
neural network models using multi-head attention mechanisms
can effectively capture the nonlinear relationships between material
proportions and concrete performance. Compared to traditional
neural network models, models incorporating multi-head attention
mechanisms can better identify key features and improve prediction
accuracy when handling complex data. By optimizing the material
mix data, the model can provide more precise predictions
for concrete strength and durability, thereby achieving optimal
mix ratios.

Genetic algorithms in concrete mix optimization can conduct a
global search in complex parameter spaces, avoiding the potential
pitfalls of traditional optimization methods that may fall into
local optima. Through genetic algorithms, global optimization of
material proportions can be performed, leading to the discovery
of the best mix designs and significantly enhancing concrete
performance [11]. In concrete mix optimization, genetic algorithms
can be integrated with multi-head attention mechanism models
to optimize the mix design parameters based on the model’s
predictions through evolutionary algorithms. This combined
approach not only improves the precision of the optimization but
also significantly reduces the time and cost of experimental testing.

In addition to material proportions, the microstructure of
concrete also plays a crucial role in its strength and durability.

Factors such as the pore structure and ion content directly influence
the durability of concrete [6, 18–20]. Excessive porosity can lead
to a decrease in the concrete’s impermeability, thereby reducing its
durability, whereas an optimized pore structure contributes to the
long-term stability of concrete during service [21]. Moreover, the
content of ions in concrete has a significant impact on its durability,
particularly chloride ions and sulfate ions, which notably affect the
corrosion resistance and chemical durability of concrete [22, 23].
Therefore, in-depth studies on the relationship between element
ion ratios, pore structure, and concrete durability are essential for
improving its long-term performance.

Despite numerous studies focusing on the optimization of
concrete mix ratios and enhancing durability, existing optimization
methods still face several challenges. First, the composition
and performance of concrete are influenced by a variety of
factors, particularly environmental conditions and variations in
raw materials, which limit the applicability of current optimization
models. Secondly, current intelligent optimization methods often
rely on large amounts of experimental data for training, and the
process of obtaining and processing experimental data remains an
expensive and time-consuming task [24–26].

Since mortar can be treated as a small size for concrete, to
simplify the system for better investigation, this paper presents an
optimization approach for mortar mix designs based on a neural
network model with a multi-head attention mechanism, combined
with a genetic algorithm. It also provides an in-depth analysis of
the significant impact of element ion content on mortar durability.
The optimized mix ratios are expected to enhance the strength
and durability of mortar, offering a novel intelligent optimization
approach for mix design and providing a theoretical basis for
improving concrete durability.

2 Methodology

2.1 Data collection and preprocessing

2.1.1 Data collection
The experimental data in this study were obtained through

specific experiments and relevant literature [6, 27], with the
primary aim of investigating the effects of different materials
on the strength and chloride ion diffusion. The materials
selected for the experiments included cement, fly ash (FA),
limestone powder (LT), granulated blast furnace slag (Slag),
and various types of calcined clay (CC). To explore the
influence of material proportions on mortar performance, mortar
mixtures of different types of raw materials were prepared. The
corresponding strength and chloride ion diffusion coefficients
were compared.

(1) Mix design

Based on the material mix designs, multiple cement mortar
samples were prepared by incorporating different amounts of
cement, FA, LP, Slag, CC, and other substances. Some of the mix
ratios are shown in Table 1, with 300 g of standard sand included.
The water to solid ratio is fixed as 0.5.

(2) Compressive strength
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TABLE 1 Part of the mix ratios during the experimental process are shown in Table 1 (%).

Cement (Gypsum
included)

Metakaolin included
in calcined clay

Quartz powder
included in calcined

clay

Limestone powder

Sample 1 100 0 0 0

Sample 2 55.88 29.41 0 14.71

Sample 3 55.88 17.65 11.76 14.71

Sample 4 55.88 11.76 17.65 14.71

Sample 5 55.88 8.82 20.59 14.71

Sample 6 55.88 5.88 23.53 14.71

Sample 7 55.88 0 29.41 14.71

Compressive strength was measured on mortar samples after
90 days of moist curing, following the procedure outlined in EN
196. Three specimens were tested for each curing period to ensure
reliable results.

(3) Chloride diffusion coefficient test

Chloride profile analysis was conducted on cylindrical mortar
samples with a diameter of 11 cm and a height of 10 cm, which were
cured for 28 days inmoist conditions. After curing, the samples were
cut into two-halves, and all surfaces were sealed with epoxy resin,
except for the saw-cut face. The samples were then submerged in a
0.5 MNaCl solution at 23 °C. After 1 year of exposure, the specimens
were removed from the solution. The chloride content profiles were
measured by drilling, followed by nitric acid dissolution andAgNO3
titration according to the ASTM C1152 method. The collected data
was subsequently used to calculate the apparent diffusion coefficient
of the mortars, in accordance with ASTM C1556.

2.1.2 Data preprocessing
After data collection was completed, all experimental data need

to be preprocessed for subsequent training and analysis of the neural
network model. The preprocessing steps included the following.

(1) Data normalization

Since the content of various substances and experimental results
(such as compressive strength and chloride ion diffusion coefficient)
had different numerical scales, data normalization was applied
to improve the convergence speed of the neural network model.
This process mapped the value range of all variables to the same
scale (typically from 0 to 1). The normalization formula is as
follows in Equation 1:

X‘ =
X‐Xmin

Xmax‐Xmin
(1)

where X is the original data, and Xmin and Xmax are the minimum
and maximum values of the variable, respectively.

(2) Missing data handling

If missing data occurs during certain experimental processes,
the mean imputation method was used to fill in the missing

values, ensuring data integrity and preventing potential impacts on
subsequent model analysis.

(3) Dataset splitting

To train the neural network model, the experimental data were
randomly divided into training, validation, and test sets.The training
set was used for model fitting, the validation set was used for
hyperparameter tuning, and the test set was employed to evaluate the
model’s generalization ability. The data was split with 70% allocated
to the training set, 15% to the validation set, and 15% to the test set.

(4) Outlier removal:

Through preliminary statistical analysis of the data, outliers were
identified and removed using the Z-score method, ensuring that
extreme values did not affect the model’s performance. This step
helps improve the robustness and accuracy of the model.

These preprocessing steps ensure that all experimental data
are effectively prepared for training and analysis of the neural
network model, thereby laying a solid data foundation for
subsequent research.

2.1.3 Data fitting and augmentation
Due to the limited number of mortar sample data obtained in

the actual experiments (only 20 sets), and to meet the large-scale
dataset requirements for neural network training while enhancing
themodel’s predictive capability, this study employed data fitting and
augmentation techniques. By fitting the existing experimental data,
additional sample data can be generated, thereby expanding the size
of the training set.

(1) Determining the basis for data fitting

In this study, the experimental data cover the effects of different
material mix ratios (including cement, FA, LT, Slag, and CC) on
the compressive strength and chloride ion diffusion coefficient of
mortar. Since the influence of similar mix combinations on mortar
performance exhibits certain regularities, materials under specific
mix designs demonstrate relatively stable trends in terms of strength
and durability. For example, as shown in Figure 1 below, the impact
of calcined clay with different kaolinite content on performance
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FIGURE 1
The effect of different types of calcined clay (with various metakaolin content) on compressive strength (A) and chloride ion diffusion coefficient (B).

is presented, where the calcined clay content is fixed at 29.41%.
It can be observed that the effect of varying kaolinite content on
strength and chloride ion diffusion coefficient follows a consistent
pattern, which can also be verified in the literature [28]. Therefore,
by dividing the data into different subsets and fitting curves, the data
can be expanded.

(2) Piecewise fitting and extension

The data from each subset were fitted to capture the regular
relationships between themix designs andmortar performance.The
fitting methods employed include polynomial regression, support
vector regression (SVR), and other techniques capable of handling
complex nonlinear relationships. Each fitting model is tailored to
a specific mix combination or performance indicator, generating a
corresponding fitting curve. Besides, the fitting should be reasonable
or consistent with some previous study. Based on these curves,
hundreds of new data points can be generated within the known
range of mix ratios, at specified intervals. This approach effectively
expands the data across different regions.

(3) Quality control and data validation

To ensure the validity of the fitted data, the quality of each
fitting model was rigorously evaluated. First, the accuracy of the
fit was verified using cross-validation and residual analysis to
prevent overfitting or excessive fitting errors. Secondly, the generated
extended data points must conform to actual physical laws and
the distribution of experimental data. For instance, strength and
durability should not exhibit significant deviations. Moreover, the
generated datamust align with the patterns observed in the behavior
of the actual materials.

(4) Integration of the extended dataset

After expanding multiple fitting curves, a total of 1,500 new
data points were generated. These data, combined with the original
experimentaldata, formeda largerandmorediversedataset,providing

sufficient samples for subsequent neural network model training.
Throughout this process, the quality of the extendeddatawas carefully
ensured to guarantee the effectiveness of the final model training.

Through data fitting and augmentation, this study successfully
overcame the issue of limited experimental data and provided ample
training data for the neural network model. This approach not
only ensured data diversity but also enabled the model to better
learn the complex relationships between material mix designs and
mortar performance, thereby enhancing prediction accuracy and
the model’s generalization capability.

2.2 Neural network architecture design

The neural network architecture in this study consists of several
components, including the input layer, fully connected layer, multi-
head attention layer, and output layer. The input layer receives
feature vectors representing five kinds of materials, corresponding
to cement, FA, LT, Slag, and CC. These input data are mapped
to a 12-dimensional feature space through a fully connected layer,
with the goal of transforming the original material mix ratios into
high-dimensional representations that the model can learn, thereby
enhancing the network’s feature expression capability.

After mapping the input data to the 12-dimensional feature
space, the data are passed through a multi-head attention
mechanism, which divides them into four attention heads. Each
attention head independently processes a subset of features,
capturing interaction effects from different perspectives. Finally,
the outputs of the four attention heads are concatenated and passed
through the output layer to generate predictions for mortar strength
or durability.

2.2.1 Design of the 12 embedding dimensions
and their physical significance

Although the 12 embedding dimensions in the neural
network do not directly correspond to physical properties, each
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dimension represents a latent feature that reflects the influence
of different material mix designs on mortar performance.
Through the weights learned during the training process, these
dimensions can be automatically adjusted, ultimately forming a
feature space capable of accurately predicting mortar strength
and durability. Specifically, these 12 dimensions correspond to
the key chemical and physical characteristics of the materials,
as follows:

(1) Chemical composition of raw materials: The content of
different elements in raw materials significantly impacts the
hydration reactions, strength development, and durability
performance of cement-based materials.

(2) Particle size distribution of raw materials: The particle size
of raw materials, which is related to their specific surface
area, plays a crucial role in the hydration rate of cement, the
workability of mortar, and its final strength.

(3) Phase composition of rawmaterials:The phase composition of
rawmaterials is essential for the hydration reactions of cement
and its interactions with other components.

(4) Reaction rates of materials: Various reactions, such as
hydration and pozzolanic reactions, are critical to the long-
term strength and durability of mortar.

(5) Synergistic effects of reactions: The interactions and
effects between different reactions further influence the
performance over time.

(6) Properties of hydration products: The characteristics of
hydration products directly affect the performance at
the micro- and nano-scale, which then extend to the
meso- and macro-scales, influencing the final mortar
performance.

(7) Pore size distribution of the hardened specimen:This describes
the distribution of pore structures in mortar, which impacts its
density and compressive strength.

(8) Porosity: This refers to the pore content in mortar, which
further affects its density and compressive strength.

(9) Pore tortuosity: The tortuosity of pores directly influences the
movement of ions within the pores, subsequently affecting
durability and other performance aspects.

(10) Ionic concentration in pore solution: The ionic concentration
in the pore solution can affect the double electric layer
on the pore surface, influencing the transport of external
corrosive ions.

(11) Ionic coupling effects in pore solution: The interactions
between ions in the pore solution further affect the transport
of external penetrating ions.

(12) Other important factors: Other factors not directly addressed,
but which may influence the performance of cement-based
materials.

These embedding dimensions represent the key physical and
chemical properties of themortar components, providing the neural
network with rich feature information. Through the multi-head
attention mechanism, the model allocates these 12 dimensions
into 4 attention heads, with each head independently learning
specific feature combinations and their complex interactions.
This allows the model to achieve accurate predictions of
mortar performance.

2.2.2 Multi-head attention mechanism and
feature allocation

After passing through the fully connected layer, the 12-
dimensional feature vector enters the multi-head attention layer,
where the 12 dimensions are allocated to four attention heads. Each
head focuses on a different subset of features and independently
computes the relationships between them, thereby capturing more
complex interaction effects among the materials. The following
outlines the design and function of each head.

Head 1: Considering the impact of raw materials’ physical
properties and microstructure

This head focuses on the influence of the physical properties
and microstructure of raw materials in cement-based materials on
their mechanical properties and durability, particularly the physical
properties of cement and supplementary cementitious materials
(SCMs), as well as their microstructural characteristics. The particle
size, mineral composition of cement, and the microstructure of
SCMs such as CC, FA, and Slag directly affect the hydration
reactions, pore structure, and overall performance of cement-
based materials. Through this head, the network is able to
capture the interactions between the physical properties and
microstructure of the raw materials and assess their contribution
to the strength, durability, and long-term stability of cement-
based materials. This research helps optimize material design and
enhances the performance of cement-basedmaterials under varying
environmental conditions.

Head 2: Considering the synergistic reactions of raw materials
and the impact of hydration products

This head focuses on the synergistic reactions of raw materials
and the influence of hydration products on the performance
of cement-based materials, particularly the reaction processes
between cement, SCMs (such as CC, FA, and Slag), and water.
These synergistic reactions not only facilitate the formation of
cement hydration products but also improve the microstructure
and mechanical properties of cement-based materials. Through the
interactions between cement and SCMs, denser hydration products
are generated, thereby enhancing the strength and durability of
mortar. Through this head, the network is able to capture the
synergistic effects between cement and SCMs, and deeply analyze
their contributions to the long-term performance and stability of
cement-based materials. This research provides theoretical support
for optimizing material mix designs and improving the overall
performance of cement-based materials.

Head 3: Considering the influence of hardened paste pore
structure distribution and characteristics

This head focuses on the impact of the pore structure
distribution and characteristics of hardened specimen in cement-
based materials on their performance. The pore structure of
hardened paste is a crucial factor affecting the strength and
durability of cement-based materials. The size, morphology, and
distribution of pores directly influence the compressive strength and
durability of these materials. Smaller pores enhance the density,
reduce the penetration of moisture and corrosive ions, and thus
improve the long-term performance of the material, whereas larger
pores may lead to reduced strength and durability. This head
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FIGURE 2
Neural network model analysis process.

aims to explore the characteristics of the hardened specimen pore
structure and its specific effects on the performance of cement-
based materials, helping the model to better understand the role
of pore structure in the mechanics and durability of cement-based
materials.

Head 4: Considering the impact of pore solution ion information

This head focuses on the influence of ion information in the
pore solution of cement-based materials on their performance. The
type, concentration, and distribution of ions in the pore solution
significantly affect the strength, durability, and corrosion resistance
of cement-based materials. Variations in the concentrations of ions
such as calcium, sulfate, and chloride can impact the hydration
process of cement and the stability of its microstructure, thereby
affecting the material’s mechanical properties and durability. For
instance, the presence of chloride ions may accelerate the corrosion
of reinforcing steel, reducing the long-term stability of the material,
while the concentration of calcium ions is closely related to the
extent of cement hydration, influencing strength development. This
head aims to analyze the characteristics of ion information in the
pore solution, helping the model gain a deeper understanding of
the role these ions play in cement-based materials and their overall
impact on performance.

2.2.3 Neural network architecture diagram
To better understand the model architecture, Figure 2 illustrates

the detailed structure of the neural network.The input layer consists
of five nodes, each corresponding to one of the five material
components (i.e., cement, FA, LT, Slag, and CC). These input data
are first mapped to a 12-dimensional feature space through a fully
connected layer. Then, the features are processed by a multi-head
attention mechanism, which splits them into four attention heads.
Each head receives 4-dimensional data and performs independent
attention calculations. Finally, the outputs from the individual heads
are merged and passed through the output layer to generate the final
predictions for strength or durability.

2.3 Mathematical formulation of the model

2.3.1 Multi-head attention mechanism
The multi-head attention mechanism captures the complex

relationships between mortar mix parameters and performance by
concurrently computing multiple attention heads. The main steps
and formulas are as follows:

(1) Computing the Query, Key, and Value matrices

For the input matrix X, the Query (Q), Key (K), and Value (V)
matrices are obtained through linear transformations as follows in
Equations 2–4:

Q = XWQ (2)

K = XWK (3)

V = XWV (4)

Where WQ、WK和WV are the learned weight matrices.

(2) Computing the attention weights

For each attention head, the dot product of the Query and Key is
calculated, followed by a scaling operation, as shown in Equation 5:

Attention(Q,K,V) = softmax(QK
T

√dk
)V (5)

Where dk is the dimension of the key, and the attention weights
are obtained using the softmax function.

(3) Concatenation and linear transformation

The outputs of all attention heads are concatenated and then
passed through a linear transformation (Equation 6):

MultiHead(X) = Concat(head1,head2,…,headh)W
O (6)

The output of each attention headi, is calculated
as shown in Equation 7:

headi = Attention(QW
Q
i ,KW

K
i ,VW

V
i ) (7)

WhereWO ∈Rhdv×d is the output weight matrix; h is the number
of attention heads; dv is the dimension of the value.

2.3.2 Multi-output neural network
Based on the output of the multi-head attention mechanism,

a multi-output neural network is constructed to simultaneously
predict the strength and durability of mortar.

Two independent linear transformations of Equations 8, 9 are
applied to the final output Fn of the feed forward neural network to
separately predict the mortar strength Ŝ and durability D̂:

Ŝ = ReLU(FnWS + bS ) (8)

D̂ = ReLU(FnWD + bD ) (9)

where WS and WD are the weight matrices for strength prediction
and durability prediction, respectively; bS and bD are the bias terms
for strength prediction and durability prediction, respectively.
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2.4 Model architecture

In order to explore the influence of cement, FA, LT, Slag, and
CC on the strength and durability of mortar, a neural network
incorporating the multi-head attention mechanism is introduced.
The network architecture is designed to capture the complex
relationships between themix design factors, thereby enablingmore
accurate prediction of the performance indicators of mortar.

2.4.1 Overview of the network architecture
The multi-head attention mechanism neural network mainly

consists of the following components:

(1) Input layer

The input layer is responsible for receiving the numerical
features of the mix ratio components. The proportions of each
component are normalized to the range [0, 1] to ensure the stability
and convergence of the model.

(2) Embedding layer

To enhance the network’s ability to represent input features,
each mix design component is transformed into a higher-
dimensional dense vector through the embedding layer. The output
of this layer is a high-dimensional feature vector that captures
more comprehensive interaction information between the mix
components.

(3) Multi-head attention mechanism.

In this layer, the model applies the multi-head attention
mechanism to perform weighted processing of the input features.
Specifically, multiple attention heads are used to compute the
weighted representation of each input feature in parallel, capturing
different relationships between the mix components. Each attention
head calculates attention scores using an independent attention
weight matrix and combines the scores to obtain the weighted
feature representations. Finally, the outputs of all attention heads are
concatenated and fused through a linear transformation layer.

(4) Feedforward neural network

The output of the multi-head attention mechanism is passed
into a feedforward neural network, which consists of several fully
connected layers. These layers include activation functions (such as
ReLU) and regularization techniques (such as Dropout) to enhance
the model’s generalization ability. The feedforward network further
performs nonlinearmappings on the features extracted by themulti-
head attention mechanism to capture complex patterns.

(5) Output layer

The output layer consists of two branches, each predicting
the strength and durability of mortar, respectively. These branches
generate the final prediction results through independent fully
connected layers and activation functions.Theprediction of strength
and durability is performed as a regression task, where the output
of each branch is a continuous value representing the predicted
performance of the mortar.

(6) Loss function and optimization

FIGURE 3
Comparison between predicted and actual compressive
strength values.

Mean Squared Error (MSE) is used as the loss function to
measure the difference between the model’s predicted values and
the true values. The network parameters are optimized through
the backpropagation algorithm and an optimizer (such as Adam)
to minimize the loss function, thereby improving the model’s
prediction accuracy.

2.4.2 Model training and validation
During the training process, the training set is used to adjust

the network parameters, the validation set is employed to tune
hyperparameters and prevent overfitting, while the test set is utilized
to evaluate the final performance of the model. Cross-validation is
applied to ensure the robustness and generalization capability of
the model. Through the aforementioned architecture and training
strategy, it is expected that the model can fully leverage the
advantages of the multi-head attention mechanism to accurately
capture the impact ofmix ratio factors on the strength and durability
of mortar, thereby providing a scientific basis for mortar mix
optimization in practical applications.

3 Results and discussion

3.1 Model prediction results

3.1.1 Strength prediction results
Figure 3 presents a comparison between the actual strength

values and the model’s predicted values for a subset of samples.
As shown in the figure, the predicted compressive strength values
exhibit a good fit with the actual experimental data. The model’s
prediction error is relatively small, with the prediction error
for most samples falling within 10%, indicating that the model
effectively captures the mapping relationship between the material
mix ratio and compressive strength. This suggests that the model
demonstrates high robustness when handling different mix ratios.

Frontiers in Physics 07 frontiersin.org

https://doi.org/10.3389/fphy.2025.1557999
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


Jiang 10.3389/fphy.2025.1557999

FIGURE 4
Relationship between limestone powder content and
compressive strength.

Furthermore, a deeper analysis was conducted on the effect
of limestone powder content on compressive strength. The curve
depicting the change in strength of cement mortar with varying
limestone content, fitted based on experimental data, is shown
in Figure 4. The blue data points represent the strength values
from the real experiment, while the hollow dots are from the
predicted data. It can be observed that the data points in
the figure closely match the predicted results, and the overall
trend shows a decrease in compressive strength as the limestone
powder content increases. Although results from the literature
indicate that a small amount of limestone powder can effectively
enhance mortar strength, excessive limestone powder may weaken
the strength of mortar, there are also studies confirming that
strength gradually decreases with increasing limestone content
[29–31]. Therefore, this trend is closely related to the physical and
chemical properties of limestone powder, such as particle size and
purity. Overall, the strength values calculated by the model are
relatively accurate.

3.1.2 Durability prediction results
In terms of durability, the model also demonstrates high

prediction accuracy, as shown in Figure 5. The prediction of
durability indicators, represented by the chloride ion diffusion
coefficient, shows a good fit with the actual experimental results.
Based on the experimental data for the chloride ion diffusion
coefficient, the multi-head attention mechanism effectively focuses
on key mix ratio features related to durability, thereby improving
the accuracy of durability predictions. The results indicate that the
model’s prediction error for the chloride ion diffusion coefficient is
also controlled within approximately 10%.

The model’s accuracy is further validated by the variation
in limestone powder content. The curve depicting the change
in mortar block durability with varying limestone content, fitted
based on experimental data, is shown below in Figure 6. The
blue data points represent the chloride diffusion coefficient values
from the experiment, while other points are data calculated by

FIGURE 5
Comparison between predicted and actual chloride ion diffusion
coefficient values.

FIGURE 6
Relationship between limestone powder content and chloride ion
diffusion coefficient.

the model for the given mix ratios. From the figure, it can be
observed that as the limestone powder content increases, the
chloride ion diffusion coefficient first remains stable and then
gradually increases. This indicates that a small amount of limestone
powder does not affect the system’s resistance to chloride ion
penetration. However, when the content is higher, it significantly
reduces the system’s chloride ion resistance. It results from the filler
effect and the dilution effect of limestone. When the content of
limestone is low, the filler effect is beneficial for the microstructure
refinement, while when the content is too high, the lacking of
the cement would lead to the porous pore structure. This result
is consistent with findings in the literature [32, 33], confirming
the accuracy of the chloride ion diffusion coefficient values
calculated by the model.
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3.2 Results analysis and discussion

The experimental results demonstrate that the multi-head
attention mechanism neural network model effectively captures
the complex relationships between mix designs and mortar
performance. Through a comprehensive analysis of the mix ratios
and the results for strength and durability, it is evident that the
incorporation of high-activity mineral admixtures such as FA, Slag,
and CC significantly impacts the long-term compressive strength,
withmixes containing relatively high slag content notably enhancing
the compressive strength of mortar. Additionally, in terms of
durability, the introduction of CC and FA significantly improves the
chloride ion resistance, especially in high-admixture mixes, where
the mortar exhibits excellent resistance to chloride ion penetration.
The multi-output neural network model employed in this study
can simultaneously predict both strength and multiple durability
indicators, providing an effective approach for comprehensive
optimization of mortar mix ratios. The model’s high prediction
accuracy offers valuable support for material mix optimization and
demonstrates its broad potential for application in the field of
materials science.

4 Obtaining the optimal mix design

Compared to strength, durability indicators are consideredmore
critical.Therefore, the criteria for determining the optimal mix ratio
are set as follows: a compressive strength greater than 45 MPa (for
mortar with a water to solid ratio of 0.5), and as low a chloride
ion diffusion coefficient as possible. Next, the pre-trained model is
further utilized, and a genetic algorithm is employed to identify the
optimal mix ratio.

4.1 Genetic algorithm optimization process

The genetic algorithm is an optimization technique based
on the principles of natural selection and genetics, suitable
for complex search spaces. Its core processes include selection,
crossover, and mutation. The following are the main steps and
relevant formulas.

(1) Initialization of the population

At generation t, the population P(t) is initialized, where each
individual xi corresponds to a differentmix ratio.The representation
of each mix ratio is as follows in Equations 10, 11:

P(t) = {x1(t),x2(t), ...,xN(t)} (10)

xi(t) = [pcement,pflyash,plimestone,pslag,pcalcinedclay] (11)

These mix ratios satisfy the total quantity constraint in
Equation 12:

6

∑
j=1

pi = 100% (12)

(2) Fitness function

The fitness function is used to evaluate the quality of each
individual. The fitness functions for strength S and chloride ion
resistance D are defined as follows in Equation 13:

F(xi) =
{{
{{
{

1
fchlorideresistance(xi)

, if fstrength(xi) ≥ 45

0,       if fstrength(xi) < 45
(13)

In this way, the fitness function ensures that the strength
requirement is met while optimizing the system’s chloride ion
resistance.

(3) Selection operation

The roulette wheel selection strategy is used to select
individuals from the current population, where the selection
probability P(xi) is determined by the fitness value, as shown in
Equation 14:

P(xi) =
F(xi)

∑N
j=1
F(xj)

(14)

(4) Crossover operation

The selected individuals undergo single-point crossover to
generate new individuals. A crossover point c is randomly selected,
and the new individuals generated from the crossover of two
individuals xa and xb are as follows in Equation 15:

x′a = [xa(1),xa(2), ...,xa(c),xb(c+ 1), ...,xb(N)] (15)

At the same time, to increase the diversity of the population,
individual genes are mutated with a mutation rate µ in each
generation as follows in Equation 16:

x′i (j) = xi(j) + Ɛ (16)

Where Ɛ is the random perturbation value.

4.2 Termination condition

The genetic algorithm continues to iterate until one of the
following termination conditions is met.

(1) The predefined maximum number of generations tmax
is reached.

(2) Theoptimal fitness value of the population showsno significant
change over several consecutive generations.

Through steps such as population initialization, fitness
evaluation, selection, crossover, and mutation, the genetic
algorithm continuously generates new mix ratio solutions. As
the number of iterations increases, the algorithm gradually
converges to the optimal mix ratio. Figure 7 illustrates the
fitness variation process of the genetic algorithm, showing
that as the number of iterations increases, the fitness value
gradually improves, indicating that the chloride ion diffusion
coefficient decreases and the strength requirement of greater
than 45 MPa is met.
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FIGURE 7
Fitness variation process of the genetic algorithm.

4.3 Results and analysis

After several generations of evolution, the genetic algorithm
identified the mix ratios that satisfy the strength requirement and
are optimal in terms of durability.

Table 2 lists several typical mix ratios along with their
corresponding strength and durability results.

Through the optimization process of the genetic algorithm, a mix
ratio that satisfies the strength requirement and optimizes durability
was successfully identified. The genetic algorithm effectively avoids
local optima and reasonably balances the two key indicators, strength
and durability, through the fitness function.The final optimized result
demonstrated good practical application value in the experiments.

5 Preliminary exploration of factors
affecting durability

Research indicates that the incorporation of materials such as
CC, Slag, and FA significantly enhances the durability of mortar.
Through the analysis of raw material composition, it was found
that these materials contain higher levels of ions such as potassium
(K), sodium (Na), and titanium (Ti). It is hypothesized that these
ions play a crucial role in improving the durability of the mortar
structure. To further validate this, the data will be converted into
elemental content form for more in-depth investigation.

5.1 Data conversion and processing

Based on the optimized material mix ratio data (such as
cement, FA, LT, Slag, and CC), we further analyzed their chemical
compositions and converted thesemix ratio data into corresponding
elemental content ratios. The specific method involves using the
chemical composition of the admixtures (provided by laboratory
chemical analysis or literature data) and converting mass fractions
and molar fractions (element content divided by the water added)

to calculate the ion content of each material in the mixed system.
These ion contents are used as inputs for themodel, enabling further
analysis of their impact on mortar durability.

5.2 Neural network model construction
and training

Since the previous section utilized a neural networkmodel based
on the multi-head attention mechanism to explore the mapping
relationship between material mix ratios and mortar performance,
this study adopts a similar neural network architecture to further
analyze the impact of ion content ratios on mortar durability.

5.2.1 Overview of the model architecture
In this phase of the study, the basic architecture of the model

remains consistent with the previous sections, continuing to use the
multi-head attention mechanism to capture the complex nonlinear
relationships between input variables and durability. The model
inputs include ion content ratios (e.g., K, Na, Ti, etc.), while
the outputs are mortar performance indicators (e.g., compressive
strength, chloride ion diffusion coefficient, etc.).

5.2.2 Model training and validation
Toavoid redundancy, the trainingprocess of themodel follows the

same procedure as described earlier, utilizing the same optimization
method (Adam optimizer) and loss function (Mean Squared Error,
MSE). The dataset is similarly divided into standard training,
validation, and test sets. During training, multiple iterations are
performed to adjust the model parameters, ensuring that the model’s
performance is stable and converges well across different datasets.

5.3 Results and analysis

5.3.1 Model prediction performance
As shown in Figure 8, after training, the model performs well

on the test set, accurately predicting the impact of ion content
and pore structure on mortar durability. Specifically, the predicted
chloride iondiffusioncoefficient showsminimalerrorcomparedto the
experimentaldata,withthemodelachievinga lowMeanSquaredError
(MSE) and a coefficient of determination (R2) of 0.90. By comparing
the model’s predictions with the actual experimental results, it is
evident that the neural network model successfully captures the
complex nonlinear mapping relationships and can effectively predict
the contribution of different elemental contents to durability.

5.3.2 Impact of ion content on durability
The study found that as the concentrations of Na and K ions

increase, the chloride ion diffusion coefficient of the mortar samples
also shows an increasing trend, as shown in Figure 9.

Through exploratory research, the impact of ion content ratios
onmortar durability has been validated.Themodel results show that
ions such as potassium (K) and sodium (Na) play a significant role
in enhancing durability. This study not only provides a theoretical
basis for ion regulation in material science but also offers valuable
insights for optimizing mortar mix designs in practical engineering
applications.
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TABLE 2 Optimal mix ratio and its strength and durability results.

Cement FA LT Slag CC Compressive strength (MPa) Chloride diffusion coefficient (10−12 m2/s)

Mix 1 0.54 0 0.15 0 0.31 50.03 0.74

Mix 2 0.65 0 0 0 0.35 53.2 1.12

Mix 3 0.5 0.14 0.15 0 0.16 54.32 1.5

FIGURE 8
Comparison between predicted and actual chloride ion diffusion
coefficient values.

FIGURE 9
The relationship between sodium and potassium ion content in pore
solution and chloride ion diffusion coefficient.

Future research could further investigate the influence
of other elements (e.g., magnesium, aluminum) on mortar
durability and optimize the model by incorporating more
experimental data. With more comprehensive data and more

sophisticated model architectures, we hope to further improve
the predictive accuracy of the model, thereby contributing
to the performance optimization and innovation of mortar
materials.

6 Conclusion

In this study, mortar mix optimization was carried out
by introducing a neural network model and genetic algorithm
optimization. The following conclusions were drawn.

(1) By examining the materials used in the mix, such as cement,
fly ash, limestone powder, slag, and calcined clay, it was
demonstrated that the material composition has a significant
impact on mortar durability.

(2) Composition analysis showed that the content of ions such as
potassium (K) and sodium (Na) plays an important role in the
durability of mortar. The neural network model successfully
captured the nonlinear relationship between these ion contents
and durability.

(3) The multi-head attention mechanism in the neural
network model effectively captured the complex
influence of mix composition and ion content on
mortar durability. The model exhibited high predictive
accuracy. This result proves the significant application
potential of artificial intelligence methods in the field of
materials science.

(4) The optimal material mix, derived through genetic algorithm
optimization, improved mortar durability. This approach,
combining intelligent algorithms, provides new insights for
future mortar material optimization.

Overall, this study, through artificial intelligence technologies,
deeply analyzed the influence of material composition and ion
content on mortar durability. By optimizing the model, effective
measures to improve durability were successfully proposed. This
provides a theoretical foundation and technical support for
the development and optimization of future mortar materials,
promoting the integration of materials science and engineering
practices.
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