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Introduction: In the context of energy transition, the competition for copper
resources among countries has intensified, and the global copper trade has
become a vitally important trade chain. The global copper ore trade network is
influenced by various factors, including resource distribution, supply, demand,
prices, transportation costs, etc.

Methods: To understand the evolution process of copper trade network and
to predict the trend of supply chain structure evolution in future, in this paper,
we construct a spatial weighted complex network evolution model based on
complex network theory and gravity model using the import and export data
and distance data of countries from 1990 to 2022.

Results and discussion: Simulation results show that the possibility of
establishing copper ore trade between countries follows the spatial weighted
complex network evolution model. It is proportional to the expected trade flow
between countries and inversely proportional to the distance. The model will
support the simulation analysis of the supply chain network structure evolution
and help to carry out in-depth research on the forecast of future trade relations
between important countries.

KEYWORDS

spatial complex network, gravity model, copper ore supply chain, network evolution
pattern, dynamics simulation

1 Introduction

In recent years, copper has been widely used in new energy-related industries,
such as transmission lines, transformers, cable shielding belts and high-end radiators,
which are important support for the construction of renewable energy generation
installations (such as wind turbines) and solar photovoltaic panels [1–3]. With the
rapid development of clean energy and energy-saving technologies, and the global
copper demand will continue to grow in a long term [4–6]. Copper resources are
abundant globally, but the distribution is unbalanced among countries, due to the
different geological conditions [7]. Major copper exporters include Chile, Peru and
the Democratic Republic of Congo, and major importers are concentrated in Asia
and Europe, such as China, Japan, Germany, Spain and so on. With the increase of
copper demand, the competition for copper resources among countries has intensified,
and the global copper trade has become a vitally important trade chain. Therefore,
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studying the supply chain evolution pattern of copper with different
characteristics in international trade helps to study the formation
and evolution mechanism of copper trade pattern, and predict
the trend of supply chain structure evolution based on future
trade demand.

In recent years, the study of mineral resources supply chain
and the associated risks have gradually become a current research
Frontier and hot spot in the field of resources, which has received
attention from global scholars [8–12]. The research object gradually
expands from energy minerals such as oil, natural gas to emerging
minerals such as lithium, nickel and rare earth involved in new
energy and other emerging industries [13–15]. The research mainly
focuses on the trade flows among countries, trade structure
characteristics of different mineral products in the whole industry
chain and risk resistance of supply chain network [16]. Based
on the industry chain perspective, many scholars have made a
series of research advances by constructing models to research
structure, resilience and risk of supply chain by complex network,
SD simulation, material flow analysis (MFA/SFA), gravity model,
Markov Chain and other simulation models [17–23]. Complex
network can systematically describe the structural characteristics
of mineral resource supply chains. Many Scholars have established
network models based on trade flows, taking countries as nodes
[24, 25]. Most of them focus on the description of topological
characteristics of trade networks, the analysis of important nodes
and the propagation of risks in supply chain networks [26, 27]. Fewer
studies have been conducted on the drivingmodels andmechanisms
behind the evolution of supply chain network structures. Some
research considers the influence of a single factor or multiple factors
such as supply, demand, price, economics and others on the global
copper trade using the gravity model, but little evidence has been
provided to reveal the evolutionary mechanism of the copper trade
network structure, especially the role of geographical factors in the
evolution processed of network structures.

Therefore, this paper proposes a spatial weighted complex
network evolution model that integrates the complex network
theory and gravity model to analyze the evolutionary mechanism
of network structure in copper trade. Utilizing this model facilitates
the simulation and examination of the evolutionary dynamicswithin
the spatially weighted network of the global copper trade. It explains
the formation of the current trade network structure and reveals the
role that geographical factors play in shaping trade patterns. The
import and export data and distance data of countries from 1990
to 2022 are used to simulate the evolution process of the global
copper network. The parameters of the model are discussed by
comparing the simulated network structure with the real network
structure. Based on the model, the trend of supply chain structure
and the potential trading countries can be forecasted. The approach
is helpful for trading countries to master their own characteristics
and development trends of trade structure, and prepare for trade
risks in a timely manner to reduce trade risks. The remainder of this
paper is organized as follows. Section 2 describes the construction of
the spatial weighted complex network evolutionmodel and data sets
used in our work. Section 3 presents the results about evolutionary
process of the global copper ore trade network. We summarize our
conclusions in Section 4.

2 Methods and data

2.1 Complex network model of
international trade in copper ore

According to the complex network theory, this paper constructs
a weighted directed network model for the international copper ore
trade, as shown in Equation 1 [28]:

G = (N,E,W) (1)

where N is the node, which is the set of all the countries involved in
copper ore trade, E is the edge between two nodes. It represents the
trade relationship between two country nodes, and the direction of
the edge represents the trade flow between two nodes. If there is a
trade relationship between two country nodes, there is a continuous
edge between the two nodes; if there is no trade relationship between
the two country nodes, there is no continuous edge between the two
nodes. W is the weight of the continuous edge, which is the trade
volume between the two country nodes.

The digraph G is represented by a matrix φij with N rows and N
columns. If there is a directed edge between node i and node j, and
its weight is τ, as shown in Equation 2.

φij = φ[i, j] = τ (2)

The average path length signifies themean trade distance among
countries, with shorter lengths indicating closer and more intimate
trade relationships between them [29]. The definition of average
short path length(L) is given in Equation 3.

L = 1
N(N− 1)

∑
i≠j

dij (3)

whereN is the total number of nodes, dij is the shortest path between
the nodes i and j.

The average clustering coefficient serves as a metric to quantify
the proximity of trading partners in terms of their trade structure
[22]. A higher average clustering coefficient implies a tighter
relationship, thereby enhancing the likelihood of establishing long-
term and stable trade relations among the partners.The definition of
the average clustering coefficient of a network is given in Equation 4.

C = 1
N

N

∑
i=1

ni
gi(gi − 1)

(4)

where C represents the average clustering coefficient, ni is the
number of edges between all adjacent nodes of node i; gi is the
number of all neighboring nodes of node i.

The betweenness centrality of a node is often used to reflect its
contribution to network connectivity [30]. It is calculated as the ratio
of the number of shortest paths passing through the node to the total
number of all shortest paths in the network. The larger the BCi, the
stronger the intermediary regulation ability, and the stronger the
control over the trade network. The definition of the betweenness
centrality (Bi) of a node is given in Equation 5.

Bi =
2

(N− 1)(N− 2)

N

∑
p=1

N

∑
q=1

Rpq(i)

Rpq
(5)
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where Rpq is the shortest path between p and q, Rpq(i) indicating
that there is the shortest path from p to q through node i (i ≠ p ≠ q;
p = 1,2,3,…,N;q = 1,2,3,…,N).

The closeness centrality measures the proximity of a trading
country to other countries within a complex network, typically
quantified as the reciprocal of the summed shortest paths between
that country and all others. The higher the value of closeness
centrality C signifies the trading country is more significant and
difficult to be controlled by other countries [31]. Closeness centrality
(Ki) is defined by Equation 6.

Ki =
1

N

∑
j=1

dij

(6)

The eigenvector centrality uses the importance and influence
of neighboring countries to describe the role of the country’s
trade in the complex network [30]. These countries display the
attribute of “strengthening through collaboration with prominent
trade nations,” implying that countries with higher eigenvector
centrality are typically interconnected with major trading hubs. This
underscores their capacity to exert indirect influence on the trade
structure. Eigenvector centrality (μi) is defined by Equations 7, 8.

HX = μX (7)

μixi = h1ix1 + h2ix2 +⋯+ hNixi (8)

where H is an N×N adjacency matrix composed of hij. hij indicates
the importancemeasure value of node i to j. x = x1,x2,⋯xN indicates
the degree centrality of each node. μi denotes the eigenvector
centrality of node i.

2.2 Spatial weighted complex network
evolution based on gravity model

Improved gravity models have been widely used to estimate
and study inter-city population migration, traffic flow or trade
flow [32, 33]. In actual networks such as air and road networks,
the influence of geographical factors on the network leads to the
“convergence” of network edges [34]. The evolution of the global
copper supply chain structure is influenced by a combination of
factors such as resource endowments, supply and demand patterns,
market prices, geopolitical relationships, regional trade agreements,
and transportation costs. The transportation cost can be reflected by
the geographical distance between two locations to a certain extent.
This paper constructs a spatial weighted complex network model
of international trade in copper ore, from the perspective of the
dynamics of the evolution of the network structure. The supply-
demand relationship and transportation costs of each country
node in constructing trade relations have been taken into account.
Furthermore, this study has delved into the characteristics of the
evolution of the international trade structure for copper ore, along
with an examination of the pivotal role played by geographical
factors in this evolutionary process.

In this paper, we introduce an improved gravity model as
a measure of expected trade flows between nodes, defined by

Equation 9.

Fij = S
mi

αmj
α

rij
ε (9)

where Fij is the expected trade flow between nodes, S is a constant,
mi andmj represent the degree of adaptation of node i and node j. It
is defined as the total export volume of exporting countries and the
total import volume of importing countries, representing the trade
demand of the country. In general, nodes with larger adaptability
often have larger degree values. In this study, the “adaptability”
of a node represents the trade demand of a country. A larger
value of mi or mj indicates a greater trade demand, and thus the
node is more likely to establish trade connections, resulting in
a larger degree value. rij is the distance between two countries.
Since there are often multiple transportation paths between two
countries, it is difficult to obtain actual distance data. Normally, the
capital is the economic and trade center of the country, and the
distance rij mainly represents the transportation costs between two
countries. So this paper simplifies the transportation distance as a
straight-line distance between two national capitals, which is the
Euclidean distance between two nodes. Although the actual distance
among some countries may be biased, it can roughly reflect the
transportation costs in the global iron ore trade. α and ε are two
parameters, and their values depend on the network’s ability for
nodes to adaptability and dependence on geographical factors. α as
the adaptation factor, represents the influence of trade demand on
network formation; and ε as the geographical factor, captures the
role of distance in trade resistance. It has been proved that in actual
networks such as airline networks and urban road networks, α = 1
and ε fluctuates between 0.2 and 2.7 [35–39].

Using the improved gravity model described above, it is possible
to predict the trade volume between nodes, describing potential
dynamics when the nodes are not yet connected to each other. Since
Fij describes only the trade volume generated between node i and
node j, it does not include those generated by other node pairs that
propagate through some non-direct path through the (i, j) edge.

Based on the above formula the expected trade flow between
any two nodes can be calculated. According to the actual network
development law, when the cost is limited, investment will be
preferentially made in the construction of the areas with the most
urgent needs and the largest trade flow demands. Only in this way
can the dynamic needs of the network be met, and the expected
returns of the network be maximized, as shown in the Equation 10.

MaxWF =∑
i<j

Fijφij =∑
i<j

S
mi

αmj
α

rij
ε φij

∑
i<j

φij = δ
(10)

where φij is the adjacency matrix of the network, δ is the set number
of network edges, and WF is the total expected trade flow of the
network. In building the network, priority is given to connecting
those node pairs with larger expected trade flows, starting from the
pair of nodes with the largest Fij, and connecting the corresponding
node pairs in decreasing order of Fij until the simulation network
reaches a certain number of edges.
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2.3 Data sources

Because the import and export data are collected in different
countries, there are some differences in the import and export data
reported by countries. For example, the trade volume of China’s
exports to Japan comes from China, while the trade volume of
Japan’s imports from China comes from Japan. Therefore, the base
data used in this paper are from the copper ore import data of
UN Comtrade website for the years 1990, 1995, 2000, 2005, 2010,
2015, 2020 and 2021. The copper ore data name is “Copper ores
and concentrates,” HS number 2603. Especially the 2021 data is used
as the benchmark for the simulation of the supply chain network
evolution process. The 2021 data contains a total of 117 countries or
regions. Some statistical objects such as “other regions of the world,
other regions of Asia” cannot be accurately located to the actual
geographical location, so they are excluded in the process of this
study. After screening, a total of 114 nodes with 580 connected edges
were involved in themodeling and analysis of the network evolution
process. For ease of display, the abbreviations of country names are
used in the figure.

The data of the distance between countries were obtained
from the CEPII database. The CEPII database is a comprehensive
multinational database, which contains a large number of trade and
globalization related data fromvarious countries and regions around
the world. The database is widely used in the field of trade and
globalization research andhas become a reliable source of theoretical
and empirical research for many research institutions, governments
and academia worldwide. The geographical distance data between
two countries is an indicator provided by the cep database. To
facilitate the comparison between models, the trade volume and
distance data are normalized in this paper, and the raw data are
transformed to the interval [1,10].

3 Modeling and results

3.1 Parametric analysis of global copper
ore trade network model

In 2021, the global copper ore trade network contains 114
country nodes with 580 connected edges, including 99 nodes in
exporting countries and 72 nodes in importing countries. Through
the clustering coefficient C(k)-degree(k) correlation distribution
characteristics of the network model (Figure 1), the dependence
between the clustering coefficient and degree of the network model
can be judged. The clustering coefficient C(k) of the network model
decreases with the increase of node degree, so the network is a
small-world network. With a small average path length of 2.54 and
a small network density of 0.045, it indicates that the countries in
this network are loosely connected. An average clustering coefficient
value of 0.324 suggests that nodes within the network have a
propensity to form densely interconnected clusters, indicating a
higher degree of local clustering compared to that observed in
random networks [27].

The degree-degree correlation of the network model
characterizes the relationship between nodes with large degree
and nodes with small degree in the network. If nodes with large
degree tend to connect with nodes with large degree, the network

FIGURE 1
Distribution of model clustering coefficient-degree correlation.

FIGURE 2
Network model degree - degree correlation distribution.

exhibits a positive degree-degree correlation feature. Conversely,
nodes with large degree tend to connect with nodes with small
degree, the network exhibits a negative degree-degree correlation
feature. According to the degree-degree correlation distribution
of the network model (Figure 2), it can be seen that the nearest
neighbor average degree value (knn(k)) of the nodes with degree
k is a decreasing function that rises with k. This indicates that
the network is a heterogeneous network with negative correlation
characteristics, and nodes with large degree tend to connect with
nodes with small degree.

By constructing the global copper ore trade network model
(Figure 3), it can be seen that the countries with larger weighted
out degree in the current global trade network include Chile, Peru,
Indonesia, Mexico, Australia, etc. They are the main exporting
countries of global copper ore.The countries with larger weighted in
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FIGURE 3
Global copper supply chain network model (A) weighted out degree, (B) weighted in degree).

degree include China, Japan, South Korea, etc., which are the main
importing countries of global copper ore.

By counting the meso-centrality, proximity centrality and
eigenvector centrality of each node, the important nodes
in the global copper ore trade network are shown in the
following table (Table 1). Apart from the major import and export
countries, Netherlands, United Arab Emirates, Turkey, United
Kingdom and other countries have strong control over the global
trade network. Netherlands, Spain and Turkey are also important
nodes in the network, they are typically interconnected with major
trading hubs.

3.2 Analysis of the historical evolutionary
characteristics of the global copper ore
trade network

This paper constructs a copper ore supply chain trade network
from 1990 to 2021, and analyzes the evolutionary characteristics of
the global copper ore trade pattern. From 1990 to 2021, the total
volume of global copper ore trade continued to grow, with China’s
trade volume gradually dominating the world since 2000 (Figure 4).
The total number of countries participating in the global copper ore
trade network grew from 43 to 114.The number of trade connecting
edges grew from 99 to 580 during the 30-year period. Both the
number of nodes and connected edges reached a peak in 2015,
then began to decline, and has been growing since 2020 (Figure 5).
Combined with the global copper price fluctuations, the changes in
the number of nodes and continuous edges are obvious hysteresis to
copper price peak.

The topological structure characteristics of the network can be
judged based on the average degree, average path length, average
network density, average clustering coefficient, and degree off the
number of ties of the network. The average degree of network,

TABLE 1 Key nodes of the global copper ore trade network.

Importance indicators Top 10 country names

Weighted indegree China, Japan, Rep. of Korea, Spain,
Germany, Bulgaria, India, Malaysia,
Finland, Georgia

Weighted outdegree Chile, Peru, Indonesia, Mexico, Australia,
USA, Canada, Panama, Mongolia, Brazil

Weighted degree China, Chile, Peru, Japan, Indonesia, Rep.
of Korea, Spain, Mexico, Australia, Brazil

Betweenness centrality China, Netherlands, USA, United Arab
Emirates, Germany, Turkey, Chile, United
Kingdom, Canada, Italy

Closeness centrality Lithuania, Latvia, China, USA, Chile,
Canada, Peru, Australia, Brazil, Mexico

Eigenvector centrality China, Netherlands, Spain, Rep. of Korea,
Chile, Germany, Malaysia, Turkey, Canada,
Indonesia

average density of network and average path length are often
used to measure the closeness of trade network. The greater the
average degree, the greater the density of network, and the smaller
the average path length, the more closely connected the network
structure is. The average clustering coefficient is used to measure
the connectivity of trade between countries, the larger the average
clustering coefficient, the better the trade connectivity between
countries.

The average degree of the global copper ore trade network
has gradually increased over time, with the average path length
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FIGURE 4
Graph of changes in global and major countries’ copper ore trade volumes (1990-2021).

FIGURE 5
Graph of changes in the size of the global copper ore trading network (1990-2021).

between any two countries in the network ranging from 2.5 to 3.
Since 1995, there has been an overall decreasing trend, indicating
that the network tightness has been gradually increasing since
1995. In terms of the change in the average network density, it
is highest in 1990, decreasing between 1990 and 2005, increasing
from 2005 to 2010, decreasing from 2010 to 2015, reaching a
minimum in 2015, and increasing after 2015. This may due to
the fact that the network in 1990 contained fewer nodes and the
network size was smaller, thus having a smaller average path length
and a larger network density. the growth rates of the number of
nodes from 1990 to 2020 were 58%, 28%, 18%, 4%, 31%, 25%, and
7%, respectively. The number of nodes increased significantly from
1990 to 2005 and 2015, the network size increased rapidly, and the
average density of the network has decreased (Figure 6). Overall,

the global copper ore trade network is gradually expanding, and
the degree of network tightness is affected by the expansion rate.
So, more low-degree nodes entering the network during the rapid
expansion phase, resulting in a decrease in the average network
density. There is an increase in network tightness during the slow
expansion phase through the establishment of more connections
between nodes.

The average clustering coefficient of the network keeps
increasing, the small-world characteristic tends to be obvious
(Figure 7). The trade connectivity among countries becomes
stronger. Combined with the clustering coefficient-degree
correlation distribution (Figure 8), it can be seen that the change
of clustering coefficient with node degree is not obvious before
2010, and after 2010. The clustering coefficient decreases with the
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FIGURE 6
Characterization of the topology of the global copper ore trade network (1990-2021).

FIGURE 7
Graph of the change in clustering coefficient and degree correlation coefficient of global copper ore trade network (1990-2021).

increase of node degree, and the network shows the typical power-
law distribution characteristics. There are hub nodes in the network,
and the hub nodes make the distance between each other shorter by
connecting a large number of low-degree nodes. It greatly shortens
the path length and strengthens the connectivity of the network.

The degree correlation coefficients of the network are all negative,
andthenetworkasawholeshowsthecharacteristicsofaheterogeneous
network.Thenodeswith large degrees in the network tend to establish
connections with nodes with small degrees. The heterogeneity has
weakened since 1990 to 2005, and the network tends to be neutral.
From 2005 to 2015, the heterogeneity of the network strengthens
significantly, reaching a peak in 2015 and weakening by 2020. This
may due to the evolution of the network in which a small number
of nodes gradually hold a large amount of trade resources. Exporting

countries are restricted by the natural conditions of copper resource
endowment, and importing countries are mainly concentrated in
CentralAsia and somecountries inEurope.Especially since2005,with
the accelerated industrialization of China, the demand for copper has
increased dramatically, highlighting the import demand and the need
to expand import sources. The import targets tend to be low-degree
nodes with fewer trade links, with more copper resource countries
joining the global copper trade supply chain.

3.3 Simulation of the evolutionary process
of the global copper ore trade network

According to the above spatial weighted complex networkmodel
based on the gravity model, the expected trade flows are calculated.

Frontiers in Physics 07 frontiersin.org

https://doi.org/10.3389/fphy.2025.1559799
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


Chen et al. 10.3389/fphy.2025.1559799

FIGURE 8
Global copper ore trade network aggregation coefficient - degree correlation distribution.
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FIGURE 9
Simulation network clustering coefficient - degree correlation distribution (α = 1, 2, 3).

TABLE 2 Statistics of basic characteristics of simulated networks (α = 1, 2, 3).

Average
path length

Average
degree

Network
diameter

Network
density

Average
clustering
coefficient

Modularity (Pearson)

Real Networks 2.540 5.088 6 0.045 0.324 0.38 −0.258

α = 1 2.034 5.088 5 0.045 0.390 0.30 −0.336

α = 2 1.609 5.088 4 0.045 0.592 0 −0.626

α = 3 1.515 5.088 3 0.045 0.701 0 −0.667

It contains 114 countries as nodes in the global copper ore supply
chain including 99 exporting countries and 72 importing countries.
According to the size of the expected trade flows, the node pairs with
larger expected flows are connected preferentially until the number
of connected edges reaches 580 of the real network. Since there
are duplicate countries among the 99 exporting countries and 72
importing countries, the network self-loop is not considered in the
process of this modeling. So the self-loop is eliminated first in the
model construction, and the connected edges are deferred until the
number of connected edges reaches 580.

According to the gravity model equation, the values of α and
ε depend on the dependence of the network on node adaptation
(trade demand) and on geographical factors (transportation cost).
They are the main parameters of the simulation experimental study
in this paper. First, assuming ε = 1, α = 1, α = 2, α = 3 are set
to experiment the dependence of the network on node adaptation
degree. The clustering coefficient-degree correlation distribution of
the model network shows a power-law distribution (Figure 9). As
the value of α increases, the network topology exhibits a hierarchical
structure. The network gives priority to connecting node pairs with
large trade demand, and the hierarchical structure is strengthened.

The analysis of the structural characteristics of the simulated
network can be seen (Table 2), with the increase of α value,
the average degree and network density remain unchanged, the
average path length decreases. It indicates that the network tends
to be closely connected. The average clustering coefficient increases,
and the trade connectivity of countries increases. The number of
degree off links (Pearson) decreases significantly, indicating that
the characteristics of the heterogeneous network are amplified.

Network modularity is used to detect the community structure of
the network. The higher the modularity, the better the structure of
the divided community. If the modularity is 0 or negative, it means
the whole network is a single community or each node is a separate
community. Among them, the modularity degree when α = 2 and 3
is 0, and the community structure does not match the real network.
Meanwhile, the average path length and clustering coefficient at α =
1 are closer to the real network, therefore, α = 1 is selected for the
next analysis.

Specifically, when the parameters α and ε are both set to 1
Among them, ε = 0.5, ε = 1 when all nodes of the network are
connected, and ε = 2 when some nodes of the network are not
connected (Figure 10). As the value of ε increases and the geographic
restriction strengthens, the network hierarchy gradually weakens
(Figure 11). When the geographic factor strengthens, the network
becomes homogeneous and the phenomenon of degree negative
correlation gradually disappears, such as when ε = 2, the nearest
neighbor average degree value is almost a constant, indicating that
the network has no degree correlation (Figure 12).

Combined with the above comparison, the basic structural
characteristics of the statistical simulation network (Table 3) show
that as the value of ε increases, the average path length increases,
the network diameter increases, the network density remains
the same, the average clustering coefficient becomes smaller, the
modularity becomes smaller, and the hierarchical and community
characteristics of the network gradually disappear.

When ε is set to 1, the model network is closer to the real
network, and the nodes with higher weighting degree include China,
Chile, Peru Japan, and Indonesia. They are completely consistent
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FIGURE 10
Global copper supply chain network model (ε = 0.5, 1, 2).

FIGURE 11
Simulation network clustering coefficient-degree correlation distribution (ε = 0.5, 1, 2).
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FIGURE 12
Simulation network degree - degree correlation distribution (ε = 0.5, 1, 2).

TABLE 3 Statistics of basic characteristics of simulated networks (ε = 0.5, 1, 2).

Average
path length

Average
degree

Network
diameter

Network
density

Average
clustering
coefficient

Modularity Degree
correlation
coefficient
(Pearson)

Real Networks 2.540 5.088 6 0.045 0.324 0.38 −0.258

ε = 0.5 1.628 5.088 4 0.045 0.594 0.143 −0.628

ε = 1 2.034 5.088 5 0.045 0.390 0.30 −0.336

ε = 2 2.186 5.088 7 0.045 0.369 0.51 −0.045

FIGURE 13
Global copper supply chain simulation network. [(A) original network, (B) simulation network].

with the real network. There are 17 of the top 20 countries in the
weighted degree are consistent with the real network (Figure 13). It
proves that the model can basically describe the driving pattern of
establishing trade links between nodes. This model relates positively
to the anticipated trade flow between nations and inversely to
the intervening distance. It indicates that trade demand and the
spatial distance are main driving forces for establishing trade ties
among countries.Usually, trade ties are establishedwith neighboring
exporting countries that are relatively close in distance. With the

increase in trade demand, the cost is limited, there will always
be priority investment in the construction of the most urgent,
the largest demand for trade flow. On this foundation, a scientific
evaluation of the stability and potential risks associated with supply
chain structures can be undertaken.

The model reflects the ideal structure of the global copper
ore trade network. But the trade relationships in the real network
are simultaneously influenced by many factors, such as national
geopolitical relations, market prices, import and export policies,
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FIGURE 14
Global copper supply chain in 2022.

regional trade agreements and others. There are some different
relationships from the simulation results in this paper. The nodes
in the real network that have not yet established trade links deserve
further focused attention.

3.4 Forecast of potential trading countries

In recent years, China has been the world’s largest importer
of copper ore. In this paper China is taken as an example to
forecast the potential trading countries using the spatial weighted
complex network model proposed above. Based on the data of
2021, the above model is used to simulate the evolution of the
global copper supply chain structure and predict the changes of the
global copper supply chain structure in 2022. The simulation results
are compared with the real network to evaluate the accuracy of
the model.

In 2021, China imported 23 million tons of copper ore from
59 countries. The major exporting countries are Chile, Peru,
Kazakhstan, Mongolia, Mexico, Indonesia. These countries above
account for nearly 80% of China’s copper imports. The spatial
weighted complex network model was used with α = 1 and ε =
1. According to the simulation results, in 2022, there was little
change in the major exporting countries, such as Chile, Peru,
Kazakhstan, Mongolia, Mexico, Indonesia (Figure 14). And these
countries above account for nearly 80% of China’s copper imports
(Figure 15).

From the perspective of network structure, China’s copper
imports come from more diverse sources. The number of
countries trading copper with China has grown to 83 in 2022.
These include 80 countries in the list of countries simulated,
the percentage is as high as 96%. This can also show that
with the change of the global geographical situation, China is

seeking new trading partners, expand the diversity of copper
import sources, and more countries have joined the copper trade
with China.

4 Conclusion

Based on the global copper ore trade import and export data
from 1990 to 2022, this paper constructs a global copper ore
trade network model using complex network theory. The historical
evolution characteristics and structural change patterns of the global
copper ore trade network are analyzed. The evolution process of
the global copper ore trade network structure is simulated using a
spatially weighted complex networkmodel. Based on these findings,
we propose an evolution pattern for the global copper ore trade
network under the joint influence of national trade demand and
transportation costs. The main conclusions drawn in this paper
are as follows:

(1) The spatial heterogeneity in the distribution of mineral
resources among exporting nations, coupled with the
economic progress of importing countries, exerts a profound
influence on the evolution of the global trade network
structure. Major importing economies, notably Japan,
China, Germany, and Spain, primarily procure copper
resources from significant trade partners such as Chile
and Canada. Concurrently, these importing nations are
diversifying their import bases to encompass resource-
rich countries situated in closer geographic proximity,
thereby enhancing their supply chain resilience and
strategic sourcing capabilities within the global trade
framework.

(2) Since 1990, the total volume of global copper ore trade
has exhibited a sustained growth trajectory, accompanied
by a gradual expansion of the global copper ore trade
network. The degree of network closeness exhibits fluctuations
that are contingent upon the rate of this expansion.
Notably, the small-world and heterogeneous attributes
of the network have become increasingly apparent,
underscoring an intensification of trade connectivity among
nations.

(3) The evolutionary pattern of the global copper ore trade
network can be accurately characterized using the spatial
weighted complex network evolution model. This model
relates positively to the anticipated trade flow between
nations and inversely to the intervening distance. When both
parameters α and ε are set to 1, the structure of the simulated
copper ore trade network aligns more closely with the real
network. On this foundation, a scientific evaluation of the
stability and potential risks associated with supply chain
structures can be undertaken.

Building upon the insights gained from our preceding analysis,
we undertake a comprehensive examination of the structural
attributes and evolutionary forces shaping the global copper supply
chain. Subsequently, we offer a suite of strategic recommendations
targeted at optimizing the international copper trade dynamics
at a comprehensive level. Presently, the exportation of global
copper ore is predominantly concentrated in key regions such as
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FIGURE 15
Source of China’s copper imports in 2021 and 2022.

Chile, Peru, Indonesia, Mexico, and Australia. The potential trade
relationships projected from this concentration merit particular
scrutiny. It is advisable for importing countries such as China, Japan,
Rep. of Korea, Spain, Germany to diversify copper sources and
securing a stable supply chain. And suggestions for export countries
such as Chile, Peru, Indonesia, Mexico, Australia to enhance
production resilience and maintain trade advantages. For major
trade intermediary countries such as the Netherlands, United Arab
Emirates, Turkey, it is essential to stabilize the trade partnerships
established with other nodes and actively expand their coverage
and influence within the network. Furthermore, establishing copper
trade relations with neighboring countries is recommended as a
strategic approach to ensure the stability and resilience of the
supply chain.
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