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Investigation of the impact of the
GaN cap layer on DC and RF
performance in N-polar
AlGaN/GaN HEMTs

Chumki Das and Kaushik Mazumdar*

Department of Electronics Engineering, IIT (ISM) Dhanbad, Dhanbad, India

In this paper, we investigated the logic and RF performance of nanostructure N-
polar AlGaN/GaN high-electron mobility transistors (HEMTs) with and without
GaN cap layer. It’s found that devices without the GaN cap layer exhibit superior
performance, the maximum drain current density of 0.99 mA/μm at VGS = 2 V
and a corresponding on-state resistance (Ron) of 0.88 Ω·mm. The GaN HEMT
without GaN cap layer leads to a peak transconductance of 0.75 S/mm at VDS =
3 V. Varying the drain doping concentration significantly affects both the current
density and transconductance. At a doping concentration (ND) of 10

22 cm−3,
the device without GaN cap layer achieves a maximum current density of
0.98 mA/μm at VDS = 1 V, and the maximum cut-off frequency (fT) of 183.8 GHz
at VDS = 3 V. These findings highlight the potential of N-polar AlGaN/GaNHEMTs
without the GaN cap layer for high-power, high-frequency, and micro- and
nano-electromechanical system (M/NEMS) sensors applications.
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1 Introduction

AlGaN/GaN HEMTs are highly effective for high-power, and high-frequency
applications. This effectiveness arises from their outstanding material properties,
characterized by a wide energy bandgap, saturation velocity, high breakdown voltage,
and a substantial density of two-dimensional electron gas (2DEG) at the AlGaN/GaN
heterointerface [1–4]. The strong mechanical stability of epitaxial films enables the III-N
materials HEMTs for micro-electromechanical system (MEMS) sensors and oscillators
[5–7]. The size of nano electromechanical device can be scaled [8]. The wurtzite crystal
structure of GaN causes polarization in the c-direction. Thus, the orientation of the
substrate can result in epitaxial structures with either N-polarity or Ga-polarity. Currently,
most commercial AlGaN/GaN HEMTs utilize Ga-polar orientation because it’s simplifying
epitaxial growth process andmoremature processing techniques [9]. However, the reversed
polarization found in N-polar epitaxial structures that may offer advantages for N-polar
HEMTs. In N-polar HEMTs, unlike Ga-polar HEMTs, the barrier layer is situated below
the channel. This arrangement enables the gate-to-channel distance to be scaled further
without reducing the density of the 2DEG [10, 11]. N-polar GaN HEMTs exhibit superior
performance as higher-frequency and higher-power amplifiers than their Ga-polar [12].
Additionally, due to its position beneath the channel, the barrier layer acts as a built-in
back barrier, enhancing the device’s pinch-off performance [13]. Furthermore, in N-polar
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GaN, a thick GaN-cap layer can be applied. The N-polar HEMT epi
structure featuring a GaN cap is often termed a “deep recess HEMT”
due to its requirement for recess etching to position the gate in closer
proximity to the channel [14, 15]. The GaN cap layer reduces the
vertical electric field in the GaN channel, leading to an increase in
2DEG charge density and improved mobility [16]. Additionally, the
GaN cap helps control dispersion by shifting surface states away
from the channel and increasing the threshold voltage (VTH) in the
access regions [17]. This voltage shifts results from the higher sheet
charge density induced by the polarization effects of the GaN layer.

Despite these benefits, deep recess N-polar HEMTs face certain
challenges. The interface between the gate and GaN, particularly
at the trench sidewalls, can lead to higher leakage currents due
to damage caused by dry etching [18]. Additionally, the deep
recess structure introduces fringing capacitance from the gate recess
through the GaN cap layer, limiting the device gain [19] which
can degrade RF performance [20]. Furthermore, incorporate of
a GaN cap layer in N-polar HEMTs creates challenges such as
increased surface roughness, complexities in managing polarity
reversal during growth, and potential interfacial strain and defects
[21, 22]. Removing the GaN cap layer in N-polar HEMTs can
offer several significant advantages, primarily related to improved
device performance and fabrication simplicity.Without theGaN cap
layer, the overall surface roughness of the device can be reduced,
leading to better electron mobility and enhanced high-power
performance [23]. The absence of the cap layer also simplifies the
growth process, reducing the complexity and potential for polarity
inversion issues during fabrication [24]. To improve dispersion
control and environmental stability, a thin layer of ex-situ SiN is
used as passivation layer. To fabricate a thin passivation layer bubble
electrospinning can be used to enhanced device performance [25].
By utilizing multiple jets formed from polymer solution bubbles,
insulation can be improved, and leakage currents can be reduced.
Although some research is done on GaN cap layer, further research
is needed to understand the RF performance of AlGaN/GaN
HEMTs in detail.

In thiswork, a novel nanostructureN-polarGaNHEMTwithout
a GaN cap layer is proposed, where a 3 nm HfO2 layer is used for
passivation. The passivation layer is used to control dispersion and
environmental stability, particularly at higher operating voltages.
Evaluated the device’s behavior, DC, and small-signal performance.
The findings revealed GaN HEMTs without a GaN cap layer
improved the output current density, transconductance, and
maximum cut-off frequency. The drain doping concentration
significantly affects the current density and transconductance. The
principal contributions of this article include:

1. The impact of GaN cap layer of AlGaN/GaN HEMTs on DC
performance has been studied.

2. The comparison of the RF performance of GaN HEMTs with
and without GaN cap layer.

3. The impact of drain doping concentration on output
characteristics, transfer characteristics, transconductance, and
cut-off frequency has been investigated.

The paper is organized as follows: Section 2 provides a
detailed explanation of the device structure and simulation
methodology. In Section 3, the results and discussions are

thoroughly discussed. Finally, Section 4 presents the conclusions
drawn from the findings.

2 Device structure and simulation
methodology

The cross-sectional view of the conventional and proposed
AlGaN/GaN HEMTs are shown in Figures 1a,b, respectively. The
proposed structure has a sapphire substrate over which a 1.5 µm
thick Fe-doped GaN buffer layer is placed. This buffer layer plays
a critical role in minimizing lattice mismatch between GaN layer
and the substrate, thereby reducing strain and defect density in
the subsequent layers. Above the buffer, a 150 nm unintentionally
doped (UID) GaN layer is introduced, followed by a 20 nm thick
Al0.32Ga0.68N barrier layer with a donor concentration of 3.8 ×
1018 cm−3. The UID GaN layer helps to prevent electron leakage
from the two-dimensional electron gas (2DEG) into the substrate,
while the barrier layer ensures carrier confinement within the
channel, improving overall device performance. A 0.7 nm AlN
spacer layer is incorporated to further confine the 2DEG and
enhance electron mobility. Above the spacer, a 12 nm UID GaN
channel layer is employed. To facilitate selective etching, a 3 nm
thick layer of Al0.26Ga0.74N serves as an etch-stop layer. For the gate
dielectric, a 3 nm HfO2 layer is used due to its high-k properties,
which provide excellent gate capacitance while minimizing gate
leakage current without compromising gate control. Below the
drain/source region placed an n+ GaN layer with a donor
concentration of 1020 cm−3. The device features 750 nm source-
to-drain spacing, 250 nm source-to-gate recess spacing, 200 nm
source-to-gate, and 300 nm drain-to-gate metal distances.

The Fermi-Dirac statistics model was employed to capture the
effects of elevated doping levels, along with the Shockley–Read–Hall
(SRH) recombination-generation model, and incomplete ionization
models used, offered by Silvaco TCAD [26].The SRH recombination
model consists of four different stages: initially, electrons and holes
are captured, followed by their subsequent emission. To manage
the carrier transport field-dependent mobility and concentration-
dependent mobility models were incorporated. Other essential
models, including drift-diffusion, continuity, quantum tunneling,
the high-field velocity saturation, and the Schrödinger-Poisson
equations [27], were utilized to regulate electron and hole transport,
as well as their dynamics throughout the simulations. Newton’s
method was employed to solve the physics-based models over
multiple triangular mesh regions of the HEMT. The simulation
models were validated using experimentally data sample, as reported
by Odabasi et al. [9]. Figure 2 shows that, the simulated results
closely align with the experimental data, confirming the simulation
environment feasible for comparative analysis.

3 Results and discussion

Figure 3 illustrates the impact of the GaN cap layer on the
performance of high-electron mobility transistors. At VGS of 0 V
and 2 V,HEMTswithout theGaN cap layer exhibit higher IDS values,
reaching 0.8 mA/μm and 0.99 mA/μm, and the corresponding to
on-state resistance (Ron) of 1.02 Ω·mmand 0.88 Ω·mm, respectively.
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FIGURE 1
Cross-sectional schematic structure of AlGaN/GaN HEMT (a) with GaN cap layer (b) and without GaN cap Layer.

FIGURE 2
Calibration of the silvaco ATLAS TCAD tool. Output characteristics
compared with reported data in [9].

In contrast, devices with the cap layer achieve lower current
densities of about 0.6 mA/μm and 0.85 mA/μm, corresponding Ron
of 1.34 Ω·mm and 1.017 Ω·mm under the same conditions. The
output characteristics shows a marked improvement in current
density for devices without the GaN cap layer compared to the
GaN cap layer. The GaN HEMT without a GaN cap layer enhances
the saturation behavior, and reduces Ron, indicating better channel
control and reduced short-channel effects. These improvements are
due to enhanced electron mobility and reduced surface scattering,
leading to superior electron transport characteristics.

Figure 4 presents the transfer characteristics of HEMTswith and
without GaN cap layer, demonstrating the gate-source voltage (VGS)
versus drain current (IDS) relationship. Measurements were taken at

FIGURE 3
Variation of IDS as a function of VDS at VGS = 0 V and VGS = 2 V for
AlGaN/GaN HEMTs with and without GaN cap layer.

different drain-source voltages (VDS = 1 V, 4 V). As VGS increases
from −5 V to 1 V, the GaN HEMTs show a steeper increase in IDS,
and maximum current density (IDS_max) of 1.1 mA/μm at VDS =
4 V. In contrast, HEMTs with the GaN cap layer achieve a slightly
lower peak current density under the same conditions.The threshold
voltage is marginally shifted, indicating better channel control and
reduced short-channel effects in devices with the GaN cap layer.

Figure 5 shows the transconductance (gm) of GaN HEMTs with
and without a GaN cap layer as a function of VGS at a constant VDS
of 3 V. The transconductance curve for HEMTs without the GaN
cap layer demonstrates a higher peak gm value compared to those
with the GaN cap layer, indicating improved electron mobility and
channel control in the absence of the GaN cap layer. The device
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FIGURE 4
Transfer characteristics at VDS = 1 V and VDS = 4 V for GaN HEMTs with
and without GaN cap layer.

FIGURE 5
Transconductance (gm) characteristics of GaN HEMTs with and
without GaN cap layer at VDS = 3 V.

without theGaN cap layer reaches a peak transconductance (gm_max)
of 0.75 S/mm at VGS = −0.51 V, whereas the device with the GaN
cap layer achieves a slightly lower peak gm_max. This improvement
can be attributed to the absence of the GaN cap layer, which reduce
surface scattering and traps, thereby enhancing the overall device
performance.

Figure 6 shows cut-off frequency (fT) as a function of IDS with
and without GaN cap layer at constant drain to source voltage of
3 V. The device without and with cap layer exhibits higher cut-off
frequency (fT,max) of 183 GHz and 99.79 GHz, respectively. Both
devices experience a decline in fT at high IDS, but the non-capped
device maintains better performance. The GaN cap layer introduces
parasitic effects that degrade RF performance. Thus, the without
GaN cap configuration offers superior high-frequency behavior.

Figure 7 illustrates the output characteristics of GaN HEMTs
without a GaN cap layer with varying drain doping concentrations
(ND) from 1017 cm−3 to 1021 cm−3 at a constant VGS of 1 V. The
results show a clear trend, as the doping concentration increases,

FIGURE 6
fT Vs IDS of GaN HEMTs with and without GaN cap layer at VDS = 3 V.

FIGURE 7
Variation of output characteristics for different drain doping
concentrations at VGS = 1 V in GaN HEMTs without GaN cap layer.

the drain current (IDS) also increases. For ND = 1017 cm−3, the IDS
reaches 0.385 mA/μm, whereas for ND = 1021 cm−3, IDS reaches
nearly 0.97 mA/μm, indicating improved conductivity with higher
doping levels.This enhancement in currentwith increasing doping is
due to the higher carrier concentration, which reduces the resistance
in the channel.

Figure 8 illustrates the transfer characteristics of GaN HEMT
for different drain doping concentrations at a constant VDS of 1 V.
The drain concentrations (ND) range from 1017 cm−3 to 1022 cm−3.
As the donor concentration increases the IDS also increases, and
the maximum current of approximately 0.98 mA/μm around VGS =
0.5 V for ND = 1022 cm−3, due to the enhanced electronmobility and
conductivity at higher doping levels. This behavior highlights how
donor concentration improves device performance by increasing the
current-carrying capability.

Figure 9 shows the transconductance (gm) characteristics as
a function of VGS at a constant VDS = 3 V. The graph shows
a significant change in gm for different ND levels. The higher
donor concentrations result in higher peaks in transconductance.
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FIGURE 8
Variation of Transfer characteristics for different drain doping
concentrations at VDS = 1 V in GaN HEMTs without GaN cap layer.

FIGURE 9
Variation of Transconductance (gm) characteristics for different drain
doping concentrations at VDS = 3 V in GaN HEMTs without
GaN cap layer.

The result suggests that higher doping levels improve the device’s
electrical characteristics by enhancing charge carrier mobility,
thereby increasing the transconductance.

From Figure 10 observed that the threshold voltage remains
nearly constant at approximately −1.4 V for ND = 1017 cm−3 to
ND = 1022 cm−3. This indicates that the threshold voltage is not
significantly influenced by changes in donor concentration within
this range. The stability of VTH suggests that the device maintains
consistent switching characteristics regardless of variations in
doping levels, which can be advantageous for ensuring uniform
performance in applications where device consistency is crucial.

Figure 11 illustrates the relationship between the cut-off
frequency (fT) and the drain current density (IDS) for different
doping at VDS = 3 V.These results indicate that the cut-off frequency
is approximately same for ND = 1018/cm3 to for ND = 1022/cm3.
At ND = 1017/cm3, the cut-off frequency reaches a peak value of
165 GHz. However, beyond this point, as IDS continues to increase,
fT decreases significantly, due to parasitic effects such as self-heating

FIGURE 10
Variation of threshold voltage (VTH) for different drain doping
concentrations at VDS = 3 V in GaN HEMTs without GaN cap layer.

FIGURE 11
Variation of cut-off frequency (fT) for different drain doping
concentrations at VDS = 3 V in GaN HEMTs without GaN cap layer.

or increased channel resistance. For ND = 1022/cm3, the maximum
cut-off frequency of 183.8 GHz at VDS = 3 V.

To evaluate the significance of our findings, we performed a
comparative analysis between GaN HEMTs without cap layer and
state-of-the-art GaN HEMTs with cap layer. Table 1 presents the
details of device parameters and performance metrics [9, 28, 29].
Our study highlights the exceptional DC performance of GaN
HEMTs without GaN cap layer, achieving a peak drain current of
0.99 mA/μm at VGS = 2 V and a cut-off frequency of 183.8 GHz
at VDS = 3 V. Additionally, the devices exhibit a notably low on-
state resistance, which plays a critical role in reducing power
losses and improving overall efficiency. These findings suggest
that, GaN HEMT without GaN cap layer have the potential to
surpass existing RF transistor performance limits, paving theway for
next-generation semiconductor technology in high-frequency, and
MEMS applications.
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TABLE 1 Comparison between GaN HEMT without cap layer and state-of-the-art GaN HEMTs with cap layer.

Parameters This work (without
GaN cap layer)

N-polar ALD HEMT [9] High breakdown
voltage N-polar HEMT
[28]

N-Polar GaN/AlN
MIS-HEMT [29]

LG (nm) 100 200 1000 112

IDS (mA/μm) 0.99 (VGS = 2 V) 0.9 (VGS = 1 V) 0.575 (VGS = 1 V) 1. 1 (VGS = 1 V)

Ron (Ω. mm) 0.88 (VGS = 2 V) 2 (VGS = 1 V) 10 (VGS = 1 V) 4 (VGS = 1 V)

gm (S/mm) 0.75 (VDS = 3 V) 0.46 (VDS = 3 V) 0.18 (VDS = 5 V) 0.115 (VDS = 6 V)

VT (V) −1.4 −1.75 −4.8 −8

fT (GHz) 183.8 (VDS = 3 V) 30.5 (VDS = 3 V) - 95 (VDS = 6 V)

4 Conclusion

In summary, we have investigated the performance of
nanostructure N-polar AlGaN/GaN HEMTs with and without GaN
cap layer, and focused on the effects of drain doping concentration.
Devices without the GaN cap layer demonstrated improved
electron mobility, reduced on-state resistance, and enhanced
transconductance. The GaN HEMT without the cap layer achieved
a peak drain current of 0.99 mA/μm and Ron of 0.88 Ω·mm at
VGS = 2 V. Additionally, higher doping concentrations improved
current density and transconductance, reaching a peak current of
0.98 mA/μm atND = 1022 cm-3 at VDS = 1 V.The devices without the
GaN cap layer exhibited enhanced high-frequency characteristics,
with the maximum cut-off frequency reaching 183.8 GHz at VDS =
3 V.Thus, it is conclude that theN-polarGaNHEMTswithout aGaN
cap layer, show strong potential for high-power, high-frequency,
and N/MEMS sensor applications. These finding is crucial for
optimizing the doping levels in semiconductor devices to achieve
desired electrical performance.
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