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Astrophysical constraints on the
simulation hypothesis for this
Universe: why it is (nearly)
impossible that we live in a
simulation
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1Dipartimento di Fisica e Astronomia, Universitá di Bologna, Bologna, Italy, 2Istituto di Radio
Astronomia, Istituto Nazione di Astro Fisica (INAF), Bologna, Italy

Introduction: The “simulation hypothesis” is a radical idea which posits that our
reality is a computer simulation. We wish to assess how physically realistic this
is, based on physical constraints from the link between information and energy,
and based on known astrophysical constraints of the Universe.

Methods: We investigate three cases: the simulation of the entire visible
Universe, the simulation of Earth only, or a low-resolution simulation of Earth
compatible with high-energy neutrino observations.

Results: In all cases, the amounts of energy or power required by any version
of the simulation hypothesis are entirely incompatible with physics or (literally)
astronomically large, even in the lowest resolution case. Only universes with
very different physical properties can produce some version of this Universe as
a simulation.

Discussion: It is simply impossible for this Universe to be simulated by a universe
sharing the same properties, regardless of technological advancements in the
far future.
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1 Introduction

The “simulation hypothesis” (SH) is a radical and thought-provoking idea with ancient
and noble philosophical roots (for example, works by Descartes [1] and Berkeley [2]) and
frequent echoes in the modern literature, which postulates that the reality we perceive is the
creation of a computer program.

The modern version of the debate usually refers to an influential article by Bostrom [3],
although several coeval science fiction movies contributed to popularizing this theme1.

1 For example, it was the central topic of the 2016 Isaac Asimov Memorial Debate, featuring several

astrophysicists and physicists: https://www.youtube.com/watch?v=wgSZA3NPpBs. This theme still

periodically surges and generates a lot of “noise” on the web, indicating both the fascination it

rightfully produces in the public and the difficulty of debunking it.
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TABLE 1 Summary of the size, resolution, memory, and energy requirements of the tested simulation hypotheses.

Simulation System size MIN. Resolution MIN. Information MIN. Energy

(cm) (cm) (bits) (erg)

Full Res. Universe 4.47 ⋅ 1031 1.64 ⋅ 10−33 3.5 ⋅ 10124 8.9 ⋅ 10108

Full Res. Earth 6.37 ⋅ 108 1.64 ⋅ 10−33 9.8 ⋅ 1074 3.0 ⋅ 1059

Low Res. Earth 6.37 ⋅ 108 1.24 ⋅ 10−21 1.65 ⋅ 1051 4.3 ⋅ 1035

Despite its immense popularity, this topic has rarely been
investigated scientifically because, at first sight, it might seem to be
entirely out of the boundaries of falsifiability and hence relegated to
social media buzz and noise.

A remarkable exception is the work by Beane et al. [4], who
investigated the potentially observable consequences of the SH by
exploring the particular case of a cubic spacetime lattice.They found
that the most stringent bound on the inverse lattice spacing of the
universe is ∼10−11GeV−1, derived from the high-energy cut-off of
the cosmic ray spectrum. Interestingly, they proposed that the SH
can be tested through the distributions of arrival direction of the
highest energy cosmic rays through the detection of a degree of
rotational symmetry breaking associated with the structure of the
underlying lattice. Our work will also use ultra-high-energy cosmic
rays and neutrinos to constrain the SH, although in a totally different
way (e.g., Section 3.3).

Our starting point is that “ information is physical” [5, 6], and
hence, anynumerical computationrequires a certainamountofpower,
energy, and computing time, and the laws of physics can clearly tell
us what is possible to simulate and under which conditions. We
can use these simple concepts to assess the physical plausibility—or
impossibility—of a simulation reproducing the Universe2 we live
within, and even of some lower resolution version of it.

Moreover, the powerful physical nature of information processing
allows us to even sketch the properties that any other universe
simulating us must have in order for the simulation to be feasible.

This paper is organized as follows: Section 2 presents the
quantitative framework we will use to estimate the information and
energy budget of simulations; Section 3 will present our results for
different cases of the SH; and Section 4 will critically assess some of
the open issues in our treatment. Our conclusions are summarized in
Section 4.6.

2 Methods: the holographic principle
and information-energy equivalence

In order to assess which resources are needed to simulate a
given system, we need to quantify how much information can be
encoded in a given portion of the Universe (or in its totality). The

2 As a sign of respect for what this astrophysicist honestly thinks is the only

“real” Universe, which is the one we observe through a telescope, I will

use the capital letter for this Universe—even if, for the sake of argument,

is at times assumed to be only a simulation, being run in another universe.

holographic principle (HP) arguably represents the most powerful
tool for establishing this connection. It was inspired by themodeling
of black hole thermodynamics through the Bekenstein bound (see
below), according to which the maximum entropy of a system scales
within its encompassing surface rather than its enclosing volume.
The HP is at the core of the powerful anti-de Sitter/conformal field
theory correspondence (AdS/CFT), which links string theory with
gravity in five dimensions with the quantum field theory of particles
with no gravity on a four-dimensional space [7].

According to the HP, a stable and asymptotically flat spacetime
region with the boundary of area A is fully described by no more
than A/4 degrees of freedom, or approximately 1 bit of information
per Planck area, defined as Equation 1:

l2p = Gℏ/c3 = 2.59 ⋅ 10−66cm2. (1)

where obviously lp = √ℏG/c3 ∼ 1.6 ⋅ 10
−33cm is the Planck scale.

While in a local classical field theory description, there are far
more degrees of freedom, the excitation of more than A/4 of these
degrees of freedom will trigger gravitational collapse [8–10]. The
total entropy containedwith the holographic areaA follows from the
generalized second law of thermodynamics, giving the Bekenstein
bound, which applies to systems that are not strongly self-gravitating
and whose energy is E ≈Mc2:

S ≤ 2πkB
ER
ℏc
= A/4 (2)

In Equation 2, R is the circumferential radius of the smallest
sphere that fits around the matter system, assuming (nearly)
Euclidean spacetime for simplicity, andM is the mass of the system.

Next, we can use the classical information-entropy equivalence
[11], which states that the minimum entropy production connected
with any 1-bit measurement is given by Equation 3:

H = kblog(2) (3)

where the log(2) reflects the binary decision. The amount of entropy
for a single 1-bit measurement (or for any single 1-bit flip, i.e., a
computing operation) can be greater than this fundamental amount
but not smaller; otherwise, the second law of thermodynamics
would be violated.

Therefore, the total information (in [bits]) that can
possibly be encoded within the holographic surface A is
described by Equation 4:

Imax =
S
H
= 2π ER

ℏc log (2)
. (4)
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How much energy is required to encode an arbitrary
amount of information (I) in any physical device? Computation
and thermodynamics are closely related: in any irreversible3

computation, information must be erased, which is a physical
reduction of the number of possible states of one physical register
to 0. This necessarily leads to the decrease of entropy of the device
used for computing, which must be balanced with an equal (or
larger) increase in entropy of the Universe. Thermodynamics thus
leads to the necessity of dissipating energy (via heat) to erase bits of
information. The related cost of erasing one single bit is thus given
by “Brioullin’s inequality,” Equation 5:

ΔE ≥ kBT log (2) (5)

whereT is the (absolute) temperature where the energy is dissipated.
If we apply this to themaximum informationwithin the holographic
sphere, we get Equation 6:

EI = 2πkBT
ER
ℏc

(6)

It is interesting to compute the ratio between the enclosed energy
within the holographic surface, E, and the energy required to encode
the same information, EI, which scales as Equation 7:

χ =
EI
E
≈ 27.5 T

1°K
E

1erg
≈ 0.04 T

1°K
M
mp

(7)

This physically means even at the low temperature of ∼1°K
for computing, the minimum energy required to fully describe all
internal degrees of freedom of the system becomes larger than the
actual energy that the system contains, already for systems with
a mass M ∼ 25mp, or more. This is enlightening, as it shows how
the full simulation of any macroscopic (or astronomical) object is
bound to require an astoundingly large amount of energy, which,
in turn, allows us to assess the plausibility of the SH against known
astrophysical bounds.

The exact bounds derived from Equation 4 depend on what
systems are considered and on how R, E, and S are defined [8,
14]. It must also be stressed that a key assumption in Bekenstein’s
derivation formula is that the gravitational self-interaction of the
system can be neglected, as highlighted by the fact that the Newton
constant G does not appear. Although this assumption is reasonably
verified in the application explored in this work, we notice that the
estimates for black holes can significantly differ [8].

3 Results: information requirements
and energy bounds

3.1 Full simulation of the visible Universe

Based on the above formulas, we can first estimate the total
information contained within the holographic surface with radius

3 It must be noted that also reversible computation, with no deletion of bits

or dissipation of energy, is possible. However, irreversible computation

is unavoidable both for several many-to-one logical operations (AND or

ERASE) as well as for error correction, in which several erroneous states

are mapped into a single correct state [12, 13].

equal to the observable radius of the Universe, RU ≈ 14.3Gpc
(comoving), and assuming a critical density ρc = 8.5 ⋅ 10

−30g/cm3,
which is valid for a flat Universe at z = 0 and using a value
for the Hubble constant H0 = 67.4km/s/Mpc. Equation 8 gives a
total energy

EU =
4π
3
R3
Uρcc

2 ∼ 2.7 ⋅ 1078erg (8)

Based on Equation 4, Equation 9 results in a maximum
information of

IU ∼ 3.5 ⋅ 10124bits (9)

which results into an ecoding energy given by Equation 10:

EI,U ∼ 8.9 ⋅ 10108erg (10)

Assuming a computing temperature equal to the microwave
background temperature nowadays (TCMB = 2.7°(1+ z)K). A
summary of the key quantities of energy and information required
for this simulation (as well as for the following lower resolution
cases) is given in Table 1.

As anticipated, because EI,U ≫ EU, there is simply not enough
energy within the entire observable Universe to simulate another
similar universe down to its Planck scale, in the sense that there are
not even remotely available resources to store the data to even begin
the simulation. Therefore, the SH applied to the entire Universe
is entirely rejected based on the unimaginable amount of energy
it requires.

As noted above, slightly different estimates for the total
information content of the Universe can be obtained by replacing
the Bekenstein boundwith theHawking–Bekenstein formula, which
computes the entropy of theUniverse if that would be converted into
a black hole, as in Equation 11:

I′max =
GM2

ℏc
∼ 2.0 ⋅ 10124bits (11)

which is in line with similar estimates in the recent literature (Egan
and Lineweaver [15], once we rescaled the previous formula for
the volume within the cosmic event horizon rather than from
the volume within the observable Universe; see also Profumo
et al. [16] for a more recent estimate) and obviously incredibly
larger than the amount of information that is generated even by
the most challenging “cosmological” simulations produced to-date
in astrophysics (e.g., ∼1.6 ⋅ 1013bits of raw data in the Illustris-1
simulation, Vogelsberger et al. [17]).

This leads to the FIRST CONCLUSION: simulating the entirety
of our visible Universe at full resolution (i.e., down to the Planck
scale) is physically impossible.

3.2 Full simulation of planet Earth

Next, we can apply the same logic to compute the total
memory information needed to describe our planet (R⊕ = 6.37 ⋅
108cm,M⊕ = 5.9 ⋅ 1027g, and E⊕ =M⊕c2 = 5.46 ⋅ 1048erg).We assume
here that a planet is the smallest system that “the simulator” must
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model to recreate the daily experience that humankind collectively
considers reality4.

Again, based on Equation 4, we get Equation 12:

Imax,⊕ = 9.81 ⋅ 10
74bits (12)

and for the total energy needed to code this information,
Equation 13:

Emax,⊕ = 2.55 ⋅ 1059erg (13)

assuming, very optimistically (as it will be discussed later), that
T = TCMB. The amount of energy required to even start the
simulation of our planet is enormous, and it can be easily put into
astrophysical context:

• this is of the same order as the rest-mass energy of
globular clusters like Palomar2 (Mgc ∼ 3.3 ⋅ 105M⊙, for example
Baumgardt and Hilker [18]): Erm,gc =Mgcc

2 ≈ 5.6 ⋅ 1059erg;
• this is also of the order of the potential binding energy of

the halo of our Galaxy (Mgal ∼ 1.3 ⋅ 10
12M⊙ and Rgal = 287kpc,

for example, Posti and Helmi [19]):Urm,gal ∼ 3GM
2
gal/(5Rgal) ∼

3.1 ⋅ 1059 erg.

Therefore, the initialization of a complete simulation of “just” a
planet like Earth requires either converting the entire stellar mass
of a typical globular cluster into energy or using the equivalent
energy necessary to unbind all stars and matter components in
the Milky Way.

Elaborating on the implausibility of such a simulation, based
on its energy cost, is straightforward: while this is indeed the
requirement simply to begin the simulation, roughly the same
amount of energy needs to be dissipated for each timestep of
the simulation. This means that already after ∼106 timesteps, the
required energy is equivalent to the entire rest-mass energy of the
Milky Way or roughly to the total potential energy of the most
massive clusters of galaxies in the Universe.

Moreover, while the minimum mass required to contain this
information corresponds to a black hole mass prescribed by
Equation 11, which gives ∼0.32M⊙ using Imax,⊕, the actual energy
required to encode the entire amount of bits, Emax,⊕, can at most
be confined at within a radius corresponding to the Schwarzschild
radius given by Equation 14:

RS =
2GEmax,⊕

c4
∼ 4.95 ⋅ 109cm (14)

which is 70% of the radius of Jupiter (RJ = 6.99 ⋅ 109cm), meaning
that a planetary-sized computer must be deployed for this
simulation. The equivalent mass enclosed within such a radius

4 For the sake of argument, because we surmise here the existence of a

skilled simulator that somehow can use computing centers as large as a

planet-sized black hole, we can concede with no difficulty that it can also

create a consistent simulation of the experience of ≤103 astronauts who

have temporarily left our planet and probed a larger portion of space. The

simulator must also use a modest amount of extra computing resources

to produce fake data to constantly keep astrophysicists and cosmologists

busy while they think they are studying the universe.

will, of course, be very large: Mmax,⊕ = Emax,⊕/c2 = 1.68 ⋅ 105M⊙).
Moreover, such a computing Jupiter must be continuously supplied
with a similar amount of energy for each time step while all
dissipated energy is somehow released outside of the system (and
without raising the computing temperature).

Interestingly, such planetary-sized computers were theoretically
explored by Sandberg [12], who presented a thorough study of
all practical limitations connected to heat dissipation, computing
power, connectivity, and bandwidth, arriving at a typical estimate of
∼1047bits for a realistic Jupiter-sized computer. This is impressive,
and yet 27 orders of magnitude fewer than what is required to
encode the maximum information within the holographic surface
containing our planet. Even setting aside the tremendous distance
between the hypothetical and realistic memory capacity of such a
colossal computer, the next problem is that concentrating so much
mass and energy in such a limited volume will inevitably produce
high levels of energy emission and heating, as in standard black holes
and their related accretion disks.

If a black hole actively accretes matter, the kinetic temperature
acquired by accretedmatter is very large, and is given byEquation 15:

Tacc ∼
GMmax,⊕mp

3RJ kB
∼

2mp c
2

3kB
, (15)

That is, regardless of the actual mass and radius of the black
hole into consideration, the temperature acquired by accreted
particles is in the ∼ (m/mp) ⋅ 10

7K regime for a generic particle
with m/mp relative to the proton mass. Such temperature is
manifestly much larger than the very optimistic cosmic microwave
background (CMB) temperature we previously assumed to
compute the minimum energy necessary to encode the full
information of the simulation, that is, Tacc ∼ 107TCMB. From
E∝ kBTIMAX (Equation 4), it follows that the actual energy
requirement is a factor of ∼107 larger, even in the most optimistic
configuration, requiring now a computer with radius ∼5 ⋅ 1017cm,
that is, ∼0.16 parsecs.

This leads to a SECOND CONCLUSION: simulating planet
Earth at full resolution (i.e., down to the Planck scale) is practically
impossible, as it requires access to a galactic amount of energy.

3.3 Low-resolution simulations of Planet
Earth

Next, we shall explore the possibility of “partial” or “low-
resolution” simulations of planet Earth, in which the simulation
must only resolve scales that are routinely probed by human
experiments or observations while using some sort of “subgrid”
physics for any smaller scale.

The Planck scale lp is at the core of physics as we know it, but it
is not a directly measurable scale by any means. In the framework
of the SH, it is well conceivable that lp appears in the equations
of our physics but that the simulation instead effectively works by
discretizing our reality at a much coarser scale, thus providing a
“low-resolution” simulation5.

5 As a matter of fact, in almost any conceivable numerical simulation that is

run in physics, the Planck constant and its associated length scale lp are at
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What is the smallest scale, Δxmin, that a realistic simulation of
our planet should resolve in order for the simulation not to be
incompatible with available human experiments or observations
made on the planet?

High-energy physics, through the De Broglie relation, λ =
hc/E ∼ h/p, establishes an effective link between observed energy
particle phenomena and spatial length-scales. So, the smallest
resolution that the simulation must have depends on the highest
energies routinely probed by human experiments. On Earth, the
smallest high-energy scale probed by man-made experiments is in
the ∼10−16cm ballpark based on the particle collision energy scale
reached with the Large Hadron Collider (LHC) [20]. However, this
is true only limited to the portion of the terrestrial surface where the
LHC is deployed (i.e., a ring of 27 km atmost 200 m below sea level).

A much larger energy scale is probed by the detection of ultra-
high-energy cosmic rays (UHECRs) as they cross our atmosphere
and trigger the formation of observable Cherenkov radiation and
fluorescent light [21, 22]. Observed UHECRs are characterized
by a power-law distribution of events, and the largest energy
ever recorded for an UHECR is ∼3 ⋅ 1020eV (1991, the “Oh my
god particle,” for example, Bird et al. [23]) while the second
exceeded the∼2.4 ⋅ 1020eV range (2022, the “Amaterasu” particle, for
example, Unger and Farrar [24]).The precise determination of “very
energetic” is subject to absolute energy calibration uncertainties, also
due to their uncertain composition; hence, we can use EUHECR =
1020 eV = 1.6 ⋅ 108erg as a conservative limit. This yields a length
scale λUHECR ∼ 1.2 ⋅ 10−24cm. However, a hardcore proponent of
the SH might still argue that this spatial scale is not really the
most stringent experimental limit on the minimum spatial scale of
the global Earth simulation because UHECRs probe only the last
∼102km of air above the ground level, where particle cascades and
airshowers are triggered by the interaction betweenUHECRs and air
molecules. Hence, the simulator might keep most of the simulated
volume of our planet at a much lower level of spatial resolution
to limit computing resources. Indeed, the best resolution that is
currently sampled for the interior of Earth, based on the advanced
analysis of seismic shear waves diffracting along the core-mantle
boundary, is “just” on the order of ∼102km [25, 26].

Luckily, high-energy astrophysics still comes to the rescue
due to the detection of very high-energy extragalactic neutrinos
crossing the inside of our planet. Since the first discovery of energetic
neutrinos by the IceCube observatory [27, 28], the existence of a
background radiation of neutrinos, likely of extragalactic origin,
in the 10TeV− 2PeV energy range, has been firmly established.
Such neutrinos are very likely produced in external galaxies, even
if the exact mechanism is highly uncertain [29–31]. In any case,
the maximum energy scale probed so far reaches approximately
Eν ∼ 1017eV [32]; that is, lower than the maximum energy reached
by UHECRs and in line with theoretical expectations by likely
production mechanisms at the source. Unlike UHECRs, however,
neutrinos cross our planet entirely because they are extremely
weakly interacting with anything else. As a matter of fact, the
IceCube observatory is more sensitive to events that are produced
on the other side of the planet, with respect to its location on

the core ofmany physical relations, and yet the effective spatial resolution

of simulations is coarser than this by many orders of magnitude.

the South Pole, as this reduces the contamination by lower energy
neutrinos of atmospheric or solar origin. Therefore, the established
detection of this event can be used to constrain the minimum
length scale whichmust be effectively adopted by any low-resolution
simulation of our planet: λν = hc/Eν ∼ 1.2 ⋅ 10−21cm6. A simulation
with an effective resolution coarser than this will be incompatible
with our experimental data on neutrinos. Less straightforward is
how to use this knowledge to estimate the information required
for such a reduced-resolution simulation of planet Earth, using
the holographic principle as before. The most conservative choice
appears to be to still apply the HP approach but rescale the
application of Equation 4 to the minimum element of area possible
in the low-resolution simulation (∝ λ2

ν), instead of the Planck area
(Equation 1). Therefore, the minimum necessary information to be
encoded follows from rescaling Equation 12 into Equation 16 for the
ratio of the two areas:

I⊕,low ≈ Imax,⊕ ⋅
l2p
λ2
ν
≈ 1.65 ⋅ 1051bits. (16)

Equation 17 gives a minimum encoding energy:

E⊕,low = 4.31 ⋅ 10
35erg (17)

if we very conservatively use T = TCMB as above (which we are going
to relax later on).

At face value, this energy requirement is far less astronomical
than the previous one: it corresponds to the conversion into the
energy of ≈2.4 ⋅ 10−19M⊙ or ≈7.9 ⋅ 10−14M⊕ (∼4.8 ⋅ 1014g). This is
still equal to the total energy radiated by the Sun in 2 minutes,
considering the solar constant (L⊙ ∼ 3.8 ⋅ 1033erg/s), yet it is an
amount of energy that a fairly advanced civilization might access to.

Equation 11 gives the size of the minimum black hole capable
of storing I⊕,low: MBH,low = 4.4 ⋅ 10−13M⊙. The radius relative to this
mass is also fairly small: RBH,low = 1.3 ⋅ 10−7cm. Therefore, while the
total energy required for the initial encoding of the simulation’s
data is still immense by modern human standards, it is tiny in
astrophysical terms. However, we will next show that the only way to
process the data of such simulation to advance it at sufficient speed
requires access to unattainably large computing power, whichmakes
this last low-resolution scenario impossible, too.

We largely used here the seminal work by Lloyd [13] for the
computing capabilities of black holes. The ultimate compression
limit of a black hole can provide in principle the most performing
computing configuration for any simulation. Thus, by showing
that not even in this case can the simulation be performed, we
can argue about its physical impossibility. Based on the classical

6 Especially because we focus here on the simulation of Earth, a reasonable

question would be whether such low-resolution simulation would still be

capable of reproducing the observed biological process on the planet. A

∼10−21cm length seems to be safely smaller than any process known to

be relevant for biology, and thus, a hypothetical simulation using efficient

subgrid modeling of processes below such resolution might correctly

reproduce biology on Earth. If, instead, some biological processes will

be shown to depend on < 10−21cm scales, this can be used to revise our

constraints on the smallest scale to be resolved by the simulation and call

for an even more implausibly large amount of energy or power.
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picture of black holes, no information is allowed to escape from
within the event horizon. However, the quantum mechanical view
is different as it allows, through the emission of Hawking radiation
as black holes evaporate, to transfer some information on the
outside. Following Lloyd [13], even black holes may theoretically be
programmed to encode the information to be processed within their
horizon. Then, an external observer, by examining the correlations
in the Hawking radiation emitted as they evaporate, might be
retrieving the result of the simulation outside. Even such a tiny black
hole has a very long evaporation timescale: tev ∼ G2M3

BH,low/(3ℏc
4k),

with the constant k ∼ 10−3 − 10−2 depending on the species of
particles composing the bulk of the BHmass, which gives tev ≥ 1035s.

The temperature relative to the Hawking radiation for such a
black hole is given by Equation 18:

TH ∼
ℏc3

8πGMBH, lowkB
∼ 1.4 ⋅ 105K. (18)

Quantum mechanics constrains the maximum rate at which
a system can move from one distinguishable quantum state to
another. A quantum state with average energy Ē needs a time of
order (at least) δt ∼ πℏ/2Ē to evolve into another orthogonal and
distinguishable state. Hence, the number of logical operations per
unit time (i.e., the computing frequency) that can be performed
by a computing device is the inverse of the timescale from the
Heisenberg uncertainty principle: f ∼ 1/δt ∼ 2Ē/(πℏ). If such a black
hole calculator uses all its storage memory, its maximum computing
power per bit (i.e., the number of logical operations for each single
bit) is estimated to be

Nop =
kB2 log (2) Ē

πℏS
(19)

In Equation 19, S is the black hole entropy. The link between
thermodynamic entropy and temperature here is given by T =
(∂S/∂Ē)−1. By integrating the relationship linking T, S and Ē, we get
T = CĒ/S, in whichC is a constant of order unity that depends on the
actual medium being used (e.g., C = 3/2 for an ideal gas or C = 4/3
for photons of a black-body spectrum). The dependence between
the computing power and the working temperature is manifest: “the
entropy governs the amount of information the system can register
and the temperature governs the number of operations per bit per
second it can perform,” as beautifully put by Lloyd [13].

Estimating the working temperature of such a device is not
obvious. As an upper bound, we can use the temperature of accreted
material at the event horizon of an astrophysical black hole from
Equation 15 (T ∼ 107K) and get Equation 20:

Nop ≈
kB2 log (2)T

πℏ
∼ 5.6 ⋅ 1017 [operations/bit/s] . (20)

By multiplying for the total number of bits encoded in such a
black hole, Equation 21 gives its total maximum computing power:

Pop ∼ Nop ⋅ I⊕,low ∼ 9.5 ⋅ 1068 [bits/s] , (21)

On the other hand, if the black hole does not accrete
matter, the lowest temperature at the event horizon is the
temperature relative to the Hawking radiation: TH ∼ 1.4 ⋅ 10

5K for
this mass. Equation 22 thus gives:

N′op ≈ 8.0 ⋅ 1015 [operations/bit/s] . (22)

In this case, we get the total computing power:

P′op ∼ N′op ⋅ I⊕,low ∼ 1.3 ⋅ 1067 [bits/s] . (23)

This computing power may seem immense, yet it is not
enough to advance the low-resolution simulation of planet Earth
in a reasonable wall-clock time. We notice that the minimum
timestep that the simulation must resolve in order to consistently
propagate the highest energy neutrinos we observe on Earth is
Δt ≈ λν/c ∼ 4.1 ⋅ 10−32s. In the extremely conservative hypothesis
that only a few operations per bit are necessary to advance every
bit of the simulation forward in time for a Δt timestep, ∼ O(1031)
operations on every bit are necessary for the simulation to cover
only 1 s of the evolution of our Universe. The two previous cases
instead can at best achieve ∼8 ⋅ 1015 − 5.6 ⋅ 1017 operations per bit per
second, depending on theworking temperature. In those conditions,
a single second in the low-resolution simulation of planet
Earth requires:

• tCPU ∼ 4.2 ⋅ 1013s of computing time, that is, ∼1.4 ⋅ 107yr, using
the computing power given by Equation 20;
• tCPU ∼ 3.0 ⋅ 1015s of computing time, that is,∼1 ⋅ 108yr using the

computing power given by Equation 22,

which are in both cases absurdly long wall-clock times.
Therefore, an additional speed-up of order × 1015 − 1017 (or larger)
would be necessary to advance the low-resolution simulation of
Earth faster than real time7. In this case, the necessary computing
power will be simply impossible to collect:

• dE/dt ∼ 1.1 ⋅ 1073erg/s if the working temperature is ∼105K,
• dE/dt ∼ 9.4 ⋅ 1074erg/s if the working temperature is ∼107K,

which means converting into energy many more than all
stars in all galaxies within the visible Universe (and using a
black hole with mass ∼10−13M⊙ for this). No known process
can even remotely approach this power, and thus also this
scenario appears absurd.

This leads us to the THIRD CONCLUSION: even the lowest
possible resolution simulation of Earth (at a scale compatible with
experimental data) requires geologically long timescales, making it
entirely implausible for any purpose.

4 Discussion

Needless to say, in such a murky physical investigation, several
assumptions can be questioned, and a few alternative models can be
explored. Here, we review a few that appear to be relevant, even if it
is anticipated that the enthusiasts of the SH will probably find other
escape routes.

7 It should also be considered that the time dilatation effect of general

relativity will also introduce an additional delay factor between what is

computed by the black hole and what is received outside, although the

amount of the delay depends onwhere exactly the computation happens.
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4.1 Can highly parallel computing make
the simulation of the low-resolution Earth
possible?

A reasonable question would be whether performing highly
parallel computing could significantly reduce the computing time
estimated at the end of Section 3.3. In general, if the required
computation is serial, the energy can be concentrated in particular
parts of the computer, while if it is parallelizable, the energy can be
spread out evenly among the different parts of the computer.

The communication time across the black hole horizon
(tcom ∼ 2R/c) is of the same order of the time to flip a single bit (∼
πℏ/(2Ē), see above); hence, in principle, highly parallel computing
can be used here. However, the somewhat counter-intuitive result of
Lloyd [13] is that the energy E is divided among Nproc processing
units (each operating at a rate ∼2E/(πℏNproc)) the total number
of operations per second performed by the black hole remains the
same: ∼ Nproc2E/(πℏNproc) = 2E/(πℏ), as in Section 3.3. This strictly
follows from the quantum relation between computing time and
spread in energy explored in Section 3.3. Thus, if the energy is
allocated to a more parallel processor, the energy spread on which
they operate gets smaller, and hence they run in a proportionally
slower way. Finally, if the computing is spread to a configuration
significantly less dense than a black hole by keeping the same mass,
higher levels of parallelization can be used, but the computing time
will increase as a black hole computer already provides the highest
number of operations per bits per second (Equation 19).

4.2 What if the time stepping is not
determined by neutrino observations?

What if (for reasons beyond what our physics can explain) high-
energy neutrinos can be accurately propagated in the simulation
with a time stepping much coarser than the one prescribed by Δt =
λν/c ∼ 4.1 ⋅ 10−32s? In this case, the next constraint to fulfil is still
very small and given by the smallest time interval that humans
could directly measure so far in the laboratory: this is Δt′ ≈ 10−20s
[33]. In this case, applying the same logic of Section 3.3, we get
tCPU ∼ 40− 104s depending on the computing temperature, which
still means a simulation running several orders of magnitude slower
than real time.Moreover, even in this scenario, the amount of power
to process is (literally) out of this world: dE/dt ∼ kBT log (2) ⋅ Pop ∼
1044 − 1047erg/s if we rescale Equations 21–23 for the new time
rate. This power is astronomically large but not entirely impossible:
mergers between massive clusters of galaxies, which are among the
most energetic exchanges of matter in the Universe, “only” produce
∼1045erg/s of power [34]. Distant quasars can radiate energy up
to ∼1047erg/s [35], while supernovae can release up to ∼1052erg/s,
mostly in the form of energetic neutrinos and only in the first
∼1− 10 seconds of their explosion. A gamma ray burst from a
hypernova can dissipate up to ∼1054erg/s on a timescale of days
[36]. Finally, the detection of gravitational waves by merging black
holes (with masses of several tens of M⊙) probed energy dissipation
rates of several ∼1056erg/s but is limited to the short timescale of
the coalescence [37]. In any case, conveying in a steady way such
a gigantic amount of energy through the microscopic black hole

required for this very low-resolution scenario appears to be an
impossible task.

4.3 What about quantum computing?

By exploiting the fundamental quantum properties of
superposition and entanglement, quantum computers perform
better than classical computers for a large variety of mathematical
operations [38]. In principle, quantum algorithms are more
efficient in using memory, and they may reduce time and energy
requirements [39] by implementing exponentially fewer steps than
classical programs. However, these important advantages compared
to classical computers do not change the problems connected with
the SHanalyzed in thiswork,which solely arise from the relationship
between spacetime, information density, and energy. According to
the HP, the information bound used here is the maximum allowed
within a given holographic surface with radius R, regardless of the
actual technique used to reach this concentration of information
or to process it. Moreover, our estimated computing power does
not stem from the extrapolation of the current technological
performances of classical computing, but it already represents the
maximum possible performance obtained in the futuristic scenario
in which a black hole can be used as the ultimate computing device.
In summary, while quantum computing might, in principle, be
the actual way to get to the maximum computing speed physically
allowed at the scale of black holes (or in any other less extreme
computing devices), this technology will not be able to beat the
currently understood limits posed by physics.

4.4 What if the holographic principle does
not apply?

One possibility is that the HP, for whatever reason, does not
apply as a reliable proxy for the information content of a given
physical system. It is worth reminding that the HP prescribes
the maximum information content to scale with the surface, and
not the volume, of a system; hence, it generally already provides
a very low information budget estimate compared to all other
proxies in which information scales with the volume instead. In
this sense, the estimates used in this paper (including in the low-
resolution simulation of Earth in Section 3.3) already appear as
conservatively low quantities. If the HP is not valid, then a larger
amount of bits can be encoded within a given surface with radius
R (in contradiction with our understanding of black hole physics).
This will allow the usage of smaller computing devices, but at the
same time, it will require even more computing power, making
the SH even more implausible. On the other hand, while the HP
prescribes the maximum information that can be encoded with a
portion of spacetime, the actual evolution of the enclosed system
might be described with fewer bits of information. For example,
in recent work by Vazza [40, 41], we used mathematical tools
from Information Theory [42, 43] to show that, on macroscopic
scales, the statistical evolution of the cosmic web within the
observable Universe can be encoded by using (only) ∼4 ⋅ 3 ⋅ 1016bits
of information. This is, of course, incredibly less than the IU ∼ 3.5 ⋅
10124bits estimate quoted in Section 3.1 and following from the HP.
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However, the latter includes all possible evolution on all scales, down
to the lp fundamental length, in which a plethora of multi-scale
phenomena obviously happens. While the concept of “emergence”
and efficiency of prediction for complex multi-scale phenomena
is a powerful and useful tool to compress the information needed
to describe physical patterns forming at specific scales [44], a full
error-less simulation of a multi-scale system seems to require a
much larger amount of information. In essence, we shall conclude
that while it is conceivable that the actual information needed to
fully capture the evolution of multi-scale phenomena emerging on
different scales can be further reduced, it is implausible that the
information budget quoted in this work can be reduced by several
orders of magnitude.

4.5 Plot twist: a simulated Universe
simulates how the real universe might be

Our results suggest that no technological advancement will
make the SH possible in any universe that works like ours.

However, the limitations outlined above might be circumvented
if the values of some of the fundamental constants involved in our
formalisms are radically different than the canonic values they have
in this Universe. Saying anything remotely consistent about the
different physics operating in any other universe is an impossible
task, let alone guessing which combinations of constants would still
allow the development of any form of intelligent life. Nevertheless,
for the sake of argument, we make the very bold assumption that in
each of the explored variations, some sort of intelligent form of life
can form and that it will be interested in computing and simulations.
Under this assumption, we can then explore numerical changes
to the values of fundamental constants involved in the previous
modeling to see whether combinations exist that make at least a
low-resolution simulation of our planet doable with limited time
and energy.

So, in a final plot twist whose irony should not be missed, now
this Universe (which might be a simulation) attempts to Monte
Carlo simulate how the “real universe” out there could be for the
simulation of this Universe to be possible.We assume that all known
physical laws involved in our formalisms are valid in all universes,
butwe allow each of the key fundamental constants to vary randomly
across realizations. For the sake of the exercise, we shall fix the total
amount of information required for the low-resolution simulation
of our planet discussed in Section 3.3 (I⊕,low = 1.65 ⋅ 1051bits) and
consider the Hawking temperature relative to the black hole which
is needed in each universe to perform the simulation.

The simulation consists of a Monte Carlo exploration of the
six-dimensional parameter space of the fundamental constants that
entered our previous derivation: G, mp, kB, c, ℏ, to which we now
add H, that is, the “Hubble–Lemaitre constant”8 to compute the
cosmic time. From 106 randomly drawn universes, we select all
realizations in which the low-resolution simulation of our planet is
“possible.” Each constant is free to randomly vary across 20 orders
of magnitudes around its reference value. Our simplistic definition
of possibility for the simulation here stems from two conditions:

8 Very likely to be named differently in any other universe.

• the simulation can be run at least in real time, or faster than real
time, in the universe where the simulation is produced. This
means that a time interval of 1s in this Universe is simulated
in the equivalent of 1s in the other universe. However, any
other universe can have different evolutionary timescales than
this one, depending on their H. By considering that 1s ≈ 3 ⋅
10−18tU, where tU is the age of this Universe, we require that
one second of this Universe can be simulated in Δt = 3 ⋅ 10−18tU
of computing time in any other universe. To easily compute
tU, we assume for simplicity Einstein-de Sitter cosmology
in every other universe, hence tU = 2/(3H); here, H is the
Hubble–Lemaitre constant of other universes.
• Thepower used to produce the simulation is “reasonable.” How

canwe guesswhat “reasonable”would be in any other universe?
We cannot, of course, but for the sake of the exercise, we use
1GW of power as a goal: this is about the power provided
by a modern nuclear reactor, and it is ∼102 − 103 higher than
the typical power consumed by the best high-performance
computing center to-date. Thus, it represents some extreme
power budget available to numerical astrophysicists of the
remote future. As in the previous case, we must scale this
power for the properties of other universes, and to do that,
we consider that 1GW equates to ∼6.6 ⋅ 1018 protons (∼10−33

of the mass of Earth) converted into energy in a second (where
for the second, we again use the normalization of the previous
step).Therefore, we assume that in any other universe, there are
planets (or something conceptually equivalent) and that a very
tiny fraction of their mass can be used to support computing.

In Figure 1, we give the results of the Monte Carlo simulation,
in which we show samplings of the distribution of allowed
combinations of constants, normalized to the value each of them has
in this Universe. Although the exploration of the full 6-dimensional
parameters space is complex, a few things can be noticed already.
First, two well-correlated parameters here are c and h: for a given
value of the age of the universe, the computing timescale scales as
∝ h/TH, so if c increases, the Hawking radiation temperature of
the black hole increases too (lowering the computing timescale),
while at the same time, proportionally larger values of h are allowed.
Another couple of correlated constants is (c,G), which stems from
the condition on the power: from this condition, it follows that
c3/G∝mp. Hence, an order of magnitude increase in c must be
compensated by a three-orders-of-magnitude increase in G for a
fixed value of mp. Most of the other combinations of constants
(e.g., (mp,kB) and (H,c) in Figure 1) show instead a lack of obvious
correlation.

In general, this simulation shows that combinations of
parameters exist to make the SH for a low-resolution version of
planet Earth possible (and similarly, also for higher-resolution
versions of the SH), although they require orders of magnitudes
differences compared to the physical constants of this Universe. It is
beyond the goal of this work to further elaborate whether any of the
many possible combinations make sense, based on known physics,
if they can support life, and whether those hypothetical forms of life
will be interested in numerics and physics, as we are9.

9 The full direct simulation of such cases, possibly down to the resolution

at which conscious entities will emerge out of the simulation and start
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FIGURE 1
Examples of the distribution of allowed values of the fundamental constants (rescaled to their value in this Universe) necessary to perform a
low-resolution simulation of Earth in other universes, as predicted with Monte Carlo simulations. Each axis gives the allowed value for each constant,
normalized to its value in this Universe.

4.6 What if the universe performing the
simulation is entirely different from our
Universe?

Guessing how conservation laws for energy and information
apply in a universe with entirely different laws, or whether they
should even apply in the first place, appears impossible, and this
entirely prevents us from guessing whether the SH is possible in
such a case. For example, hypothetical conscious creatures in the
famous Pac-Man video game in the 1980s will simply be incapable
of figuring out the constraints on the universe in which their
reality is being simulated, even based on all the information they
can gather around them. They would not guess the existence of
gravity, for example; they would probably measure energy costs in
“Power Pellets,” and they would not conceive the existence of a third
dimension, or of an expanding spacetime, and so on. Even if they
could ever realize the level of graininess of their reality andmake the
correct hypothesis of living in a simulation, they would never guess
how the real universe (“our” Universe, if it is real indeed) functions
in a physical sense. In this respect, our modeling shows that the

questioning whether their universe is real or simulated, is left as a trivial

exercise to the reader.

SH can be reasonably well tested only with respect to universes
that are at least playing according to the physics playbook—while
everything else10 appears beyond the bounds of falsifiability and
even theoretical speculation.

5 Conclusion

We used standard physical laws to test whether this Universe or
some low-resolution version of it can be the product of a numerical
simulation, as in the popular simulation hypothesis [3].

One first key result is that the simulation hypothesis has
plenty of physical constraints to fulfil because any computation
is bound to obey physics. We report that such constraints are so
demanding that all plausible approaches tested in this work (in
order to reproduce at least a fraction of the reality we humans
experience) require access to impossibly large amounts of energy
or computing power. We are confident that this conclusively shows

10 A possibility for such amodel to workmay be that all scientists are similar

to “non playable characters” in video games, that is, roughly sketched

and unconscious parts of the simulation, playing a pre-scripted role (in

this case, reporting fake measurements).
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the impossibility of a “Matrix” scenario for the SH, in which our
reality is a simulation produced by future descendants, machines,
or any other intelligent being in a Universe that is exactly the
one we (think we) live in—a scenario famously featured in the
“The Matrix” movie in 1999, among many others. We showed
that this hypothesis is simply incompatible with all we know
about physics, down to scales that have already been robustly
explored by telescopes, high-energy particle colliders, and other
direct experiments on Earth.

What if our reality is instead the product of a simulation,
in which physical laws (e.g., fundamental constants) different
from our reality are used? A second result of this work is that,
even in this alienating scenario, we can still robustly constrain
the range of physical constants allowed in the reality simulating
us. In this sense, the strong physical link between computing
and energy also offers a fascinating way to connect hypothetical
different levels of reality, each one playing according to the
same physical rules. In our extremely simplistic Monte Carlo
scan of models with different fundamental constants, a plethora
of combinations seems to exist, although we do not dare to
guess which ones could be compatible with stable universes, the
formation of planets, and the further emergence of intelligent
life. The important point is that each of such solutions implies
universes entirely different from this one. Finally, the question
of whether universes with entirely different sets of physical laws
or dimensionalities could produce our Universe as a simulation
seems to be entirely outside of what is scientifically testable,
even in theory.

At this point, we shall notice that a possible “simulation
hypothesis,” which does not pose obvious constraints on
computing, might be the solipsistic scenario in which the
simulation simulates “just” the single activity of the reader’s
brain (yes: you), while all the rest is a sophisticated and very
detailed hallucination. In this sense, nothing is new from Renee
Descartes’ “evil genius” or “Deus deceptor”—that is, for some
reason, an entire universe is produced in a sort of simulation,
only to constantly fool us—from its more modern version of
“Boltzmann brains” [45]. Conversely, a more contrived scenario
in which the simulation simulates only the brain activity of single
individuals appears to quickly run into the limitations of the
SH exposed in this work: a shared and consistent experience
of reality requires a consistent simulated model of the world,
which quickly escalates into a too-demanding model of planet
Earth down to very small scales as soon as physical experiments
are involved.

At this fascinating crossroad between physics, computing, and
philosophy, it is interesting to notice that the last egotistic version of
the SH appears particularly hard to test or debunk with physics, as
the latter indeed appears to be entirely relying on the concept of a
reality external to the observing subject—be it a real or a simulated
one. However, the possibility of a quantitative exercise like the one
attempted here also shows that the power of physics is otherwise
immense, as even the most outlandish and extreme proposal about
our reality must fall within the range of what physics can investigate,
test, and debunk.

Luckily, even in themost probable scenario of all (theUniverse is
not a simulation), the number of mysteries for physics to investigate

is still so immense that even dropping this fascinating topic cannot
make science any less interesting.
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