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First- and second-order network
coherence in N-duplication
weighted corona networks

Chao Liu*

School of Mathematics, Shanghai University of Finance and Economics, Shanghai, China

This paper studies first- and second-order coherence problems for N-
duplication weighted corona networks subject to stochastic disturbances.
Explicit expressions of the coherence for first-order (and second-order)
dynamics, which are determined by the sum of the reciprocal (and square of
reciprocal) of each nonzero eigenvalue of the Laplacian matrix, are derived. In
particular, for both first- and second-order systems, the analytical formulas of
the network coherence are presented from two different perspectives. Based on
these formulas, the influence of the duplication N, the weight ω, and the factor
networks G1 and G2 on the network coherence of the corona network G1◦G2

is investigated. Some noteworthy topological properties of the N-duplication
weighted corona network are also revealed.
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1 Introduction

Over the past few years, technological development in communication networks has
greatly increased interest in distributed coordination for networks of dynamical agents.
As one of the fundamental problems in cooperative control, the consensus problem
for multi-agent systems has been investigated from various perspectives [1–5]. In the
context of networks (graphs) of agents, consensus means that agents represented by
nodes (vertices) reach an agreement on a certain issue, such as pace, load, or direction
and velocity.

In realistic applications, communication between agents is often degraded due to
environmental uncertainty or communication uncertainty, for example, thermal, fading
channel, and quantization noises during encoding and decoding. Without uncertainties,
it is well known that when the graph is connected, the states of autonomous systems
converge exponentially to the average of the initial state values. In the presence of
stochastic disturbances, however, the state evolution becomes a stochastic process and
fluctuates around the average of the current node states. Thus, it is of great interest
to consider how robust distributed consensus algorithms are to external disturbances
[6–16]. Network coherence [8–16] quantifies the steady-state variance of these fluctuations
and can be considered a measure of the robustness of the consensus process to
the additive noise. Networks with small steady-state variance have high network
coherence and can be considered to be more robust to noise than networks with
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low coherence [13–16]. For both first- and second-order systems,
network coherence can be measured by the H2-norm of the
consensus errors, which can be characterized by the spectrum of the
Laplacian matrix of the underlying communication graph [15, 16].

Because massive networks often consist of small pieces, for
example, communities [17] and motifs [18], graph products, by
which one can build a large network out of two or more smaller
ones, are widely used as an effective method for generating
large-scale networks. Analysis of product networks offers critical
insights into understanding the dynamics of real-world large-
scale networks. Specifically, graph products have been explored to
construct and reveal structural and functional relationships between
factor systems and the associated composite system [19–22].

Common graph products include direct products and strong
products [23], Cartesian products [24], Kronecker products [25],
and corona products [26]. Among them, corona product graphs
have attracted a great deal of attention due to their complex
but unique structures and wide range of applications in coding
theory, DNA sampling, UAV formation, and some special chemical
and biological structures or communities [27–34]. The concept
of the corona product of graphs was first introduced by Frucht
and Harary [27]. In [28], the authors introduced the edge
corona of graphs and calculated the corresponding spectrum. The
properties of spectra and Laplacian spectra of corona products
have been extensively studied in spectral graph theory [35–38].
Some recently widely concerned indices, such as the Sombor index
and the Kirchhoff index, have been derived from corona product
graphs [39, 40]. Notably, some related advancements in graph
theory have been reported in [41–45]. In the literature, based on
the spectral analysis of the Laplacian and normalized Laplacian
matrices, Kemeny’s constant, global mean-first-passage time of
random walks, and the number of spanning trees were studied
in various network structures. Specifically, Kemeny’s constant
represents the cumulative sum of relaxation time scales and has
specific applications in computing a graph’s Kirchhoff index. These
research achievements and methods are enlightening for further
studies on corona networks.

The first-order coherence of weighted corona networks was
examined from the weighted Laplacian spectra perspective in [46].
It is noteworthy that, in addition to the basic corona product
investigated in [46], multiple variants of corona operation have been
introduced and studied, including edge corona [35], neighborhood
corona [36], subdivision double corona, Q-graph double corona, R-
graph double corona [37], and iterative corona [38], etc. Therefore,
further research on consensus algorithms of various kinds of corona
networks is necessary.Moreover, little research has clearly addressed
the relationship between the coherence of the corona network and
that of its factor networks, and research results on the second-order
or higher-order coherence of corona networks are still rare.

The multilayer network is a frontier research branch of network
science. The multilayered structure has many examples in reality,
for instance, the interactions between the power grid and the
Internet, friendship and family relations, or transportation and

Abbreviations: ◦ N-duplication corona product; ∨ join operation; ⋃ union
of sets; ⊗ Kronecker product; R real number field; Ik k-dimensional identity
matrix; 1k k-dimensional vector with all elements being 1.

aviation networks [47, 48]. Lately, a multilayered graph based on the
duplication of corona products was introduced in [49, 50]. Varghese
and Susha [49] determined the Laplacian spectrum and discussed
the number of spanning trees, theKirchhoff index, and the incidence
energy of the graph. The controllability of the N-duplication corona
product networkG1◦G2 was investigated in [50]. An example of this
N-duplication corona network is shown in Figure 1, where G1 and
G2 are complete graphs of order 5 and 2, respectively.

With the introduction of duplication, the classic corona graph is
generalized from a single-layer structure to amultilayered structure.
It is necessary and significant to extend the consensus theory to
the N-duplication corona product network, which includes the
basic corona network as a special case with the duplication N =
1. The intricate topological configurations of the N-duplication
corona product network not only compounds analytical challenges
in coherence studies but also raises new research questions. What
influence will the duplication N or the weight factor ω have on the
network coherence? What is the relationship between the coherence
of the corona network G1◦G2 and that of its factor networks G1 and
G2? In comparison, which factor network plays a more important
role in the determination of the coherence of the composite corona
network? These natural and interesting questions deserve to be
considered.

Inspired by these questions, this study explores the robustness of
consensus algorithms for N-duplication weighted corona networks
when the nodes are subject to external perturbations.The coherence
in corona product networks composed of first- or second-order
dynamic agents is studied, aiming to obtain exact solutions of
network coherence and unveil the relationship between the network
topology and network coherence. The main contributions of
this work are three-fold. First, the explicit expressions for the
coherence of the first- and second-order noisy consensus algorithms
in N-duplication weighted corona networks are obtained. The
results of [46] are now a special case of this study, and more detailed
and noteworthy analysis is presented in this work. Second, for both
first- and second-order consensus algorithms, the impacts of the
duplication N and the weight ω on the network coherence are
explored. It is found that corona networks with larger duplication
N or higher weight ω usually have higher network coherence and
can be considered to be more robust to noise. Note that the property
of high coherence of the network with large duplication N can be
regarded as a special topological characteristic of the N-duplication
weighted corona network. Finally, based on the obtained formulas,
the relationship between the coherence of the composite corona
network G1◦G2 and that of the factor networks G1 and G2 is
investigated. Little work has been done from this perspective on
the study of coherence problems. It is revealed that, for both first-
and second-order consensus algorithms, higher coherence of G1 or
G2 usually also leads to higher coherence of the corona network
G1◦G2. Especially in the situation of large duplication N or high
weight ω, the network coherence of the corona network G1◦G2 is
mainly determined by the factor network G1. The results presented
in this study not only contribute to the theoretical understanding
of network coherence but also provide practical insights into how
different parameters and network structures can be optimized for
better coherence, which is crucial for the design and analysis of
complex networks in various applications such as sensor networks,
social networks, and biological networks.
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FIGURE 1
Illustration of N-duplication corona graphs G1◦G2 composed of G1 and G2, where (a) and (b) indicate 1-duplication and 2-duplication corona graphs,
respectively.

The rest of this paper is organized as follows. Section 2 reviews
the definition of N-duplication weighted corona network, the
first- and second-order network coherence, and the relationship
between the network coherence and the Laplacian spectrum of the
underlying graph. Section 3 shows the explicit analytical results
of first- and second-order network coherence in N-duplication
weighted corona networks. The influence of the duplication N, the
weight ω, and the factor networks G1 and G2 on the network
coherence of the corona network G1◦G2 is investigated. Several
simulation examples are presented in Section 4. Finally, Section 5
draws the conclusion.

2 Notations and preliminaries

This section briefly reviews the definition of the first- and
second-order network coherence and the formation of N-
duplication weighted corona networks and introduces some lemmas
that will be used in the sequel.

2.1 Notations

Some available notations used in this study are given in the
abbreviations.

2.2 Coherence in networks with first-order
dynamics

Consider a network with underlying undirected graph G =
(V,E,A), where V = {v1,…,vn} is the set of nodes, E ⊆ V×V is the
set of edges, and A = [aij] ∈ Rn×n is the weighted adjacency matrix.
The Laplacian matrix L is defined as L = D−A, where D is the
degreematrix.The network has consensus dynamicsmodeled by the
stochastic differential equation

ẋ (t) = −Lx (t) + χ (t) , (1)

where x(t) ∈ Rn is the state of the system, L is the Laplacian matrix,
and χ(t) is an n-vector of zero-mean and unit variance white noise.
The network coherence of the first-order system in Equation 1 is

denoted by the mean steady-state variance of the deviation from the
average of all node values [7–9], that is,

H1 (G) ≔ lim
t→∞

1
n

n

∑
i=1

var{xi (t) −
1
n

n

∑
j=1

xj (t)}.

It has been shown [6–9] that H1(G) can be completely determined
by the eigenvalues of the Laplacian matrix L,

H1 (G) =
1
2n

n

∑
i=2

1
λi
, (2)

where 0 = λ1 < λ2 ≤⋯ ≤ λn are the Laplacian eigenvalues.

2.3 Coherence in networks with
second-order dynamics

In the second-order system, such as the vehicle formation
problem, the node states consist of a position vector x(t) ∈ Rn and
a velocity vector v(t) ∈ Rn. The second-order consensus dynamics
subject to noise are described by

[
ẋ (t)
v̇ (t)
] = [

0 I
−L −L

][
x (t)
v (t)
] +[

0
I
]ω (t) , (3)

whereω(t) is a disturbance vector with zero-mean and unit variance.
The network coherence of the second-order system in

Equation 3 is defined in terms of x(t) only and denoted by the
mean (over all nodes) and the steady-state variance of the deviation
from the average of x(t),

H2 (G) ≔ lim
t→∞

1
n

n

∑
i=1

var{xi (t) −
1
n

n

∑
j=1

xj (t)}.

This value is also completely determined by the eigenvalues of the
Laplacian matrix [8, 9, 15],

H2 (G) =
1
2n

n

∑
i=2

1
(λi)

2 , (4)

where 0 = λ1 < λ2 ≤⋯ ≤ λn are the Laplacian eigenvalues.
Note that networks with smaller steady-state variance H1(G) or

H2(G) have higher network coherence and can be considered to be
more robust to noise than networks with lower coherence [11–14].
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The following lemma gives the well-known Vieta’s
formulas, which will be leveraged in the following
coherence analysis.

Lemma 1: [52] Let p(x) = anxn +⋯+ a1x+ a0 be a real polynomial
of degree n ≥ 2 with a0 ≠ 0. It shows

n

∑
k=1

1
ρk
= −

a1

a0
,

and
n

∑
k=1

1
ρ2
k

= (
a1

a0
)

2
− 2

a2

a0
,

where ρk(1 ≤ k ≤ n) are the roots of p(x).

2.4 N-duplication weighted corona
networks

As an extension of the classic corona network, an N-duplication
weighted corona network was recently introduced in the literature
[49, 50].

Definition 1: [49, 50] Let G1 and G2 be two finite, simple, nonempty,
and vertex-disjoint graphs with n1 and n2 vertices, respectively. The
N-duplication weighted corona product G1◦G2 is generated by taking
N copies of G1 and n1 copies of G2 and then joining the ith vertex of
each G1 to every vertex in the ith copy of G2 (i = 1,2,3,…,n1). All the
weights of the newly added edges between G1 and G2 are the same and
positive, denoted as ω.

LetL1 andL2 be the Laplacianmatrices ofG1 andG2 respectively,
then the Laplacian matrix of the N-duplication weighted corona
product G1◦G2 is

L = [
IN ⊗ (L1 + n2ωIn1

) −1N ⊗ (ωIn1
⊗ 1Tn2
)

−1TN ⊗ (ωIn1
⊗ 1n2
) In1
⊗ (L2 +NωIn2

)
]. (5)

The join operation of two disjoint graphs is also an
effective method for generating large-scale networks [51]. As an
extension, [46] presented the weighted join operation as below.

Definition 2: [46, 51] The join of two disjoint graphs G1 and G2,
denoted by G1 ∨G2, is the graph with vertex set V(G1)⋃V(G2) and
the edge set E(G1)⋃E(G2)⋃{(u,v), for each u ∈ V(G1) and v ∈ V(G2)}.
(u,v) represents the added edge joining u and v. Each link (u,v) has
the same and positive weight, called the join-weight of G1 ∨G2.

In [49, 50], the characteristic polynomial of the N-duplication
weighted corona graph G1◦G2 was presented based on the
eigenvalues of the factor graphs G1 and G2.

Lemma2: [49, 50]Let σ(G1) = {λ1,λ2,…,λn1
|0 = λ1 < λ2 ≤⋯ ≤ λn1

}
and σ(G2) = {μ1,μ2,…,μn2

|0 = μ1 < μ2 ≤⋯ ≤ μn2
} be the Laplacian

spectrum sets of G1 and G2, respectively. Then, the Laplacian
characteristic polynomial of the N-duplication weighted corona
product G1◦G2 with the Laplacian matrix Equation 5 is

Φ (L:γ) = γ (γ− (Nω+ n2ω))
n2

∏
j=2
(γ−Nω− μj)

n1

n1

∏
i=1
(γ− n2ω− λi)

N−1

n1

∏
i=2
(γ2 − (Nω+ n2ω+ λi)γ+Nωλi) .

(6)

3 Main results

This section studies the first- and second-order coherence
problems for N-duplication weighted corona networks, where
vertices are subject to white noise. Note that the graphs G1, G2
and the N-duplication weighted corona network G1◦G2 used in the
sequel are all as defined in Def. 1.

3.1 First-order coherence of the
N-duplication weighted corona network

Theorem 1: Let σ(G1) = {λ1,λ2,…,λn1
|0 = λ1 < λ2 ≤⋯ ≤ λn1

} and
σ(G2) = {μ1,μ2,…,μn2

|0 = μ1 < μ2 ≤⋯ ≤ μn2
} be the Laplacian

spectrum sets of G1 and G2, respectively. Then the first-order
coherence of the N-duplication weighted corona network G1◦G2 can
be described as follows:

H1 (G1◦G2) =
1

2n1N

n1

∑
i=2

1
λi
+ N− 1

2n1 (n2 +N)

n1

∑
i=1

1
n2ω+ λi

+ 1
2 (n2 +N)

n2

∑
j=2

1
Nω+ μj

+ 1
2n1(n2 +N)2ω

+
n1 − 1

2n1 (n2 +N)Nω
.

(7)

Proof. By Def. 1, the N-duplication weighted corona network
G1◦G2 contains n1(n2 +N) vertices. From Lem. 2, the Laplacian
eigenvalues ofG1◦G2 are the roots of Φ(L:γ) = 0.Then, the Laplacian
spectrum of G1◦G2 consists of

(i) 0;
(ii) Nω+ n2ω;
(iii) Nω+ μj, repeated n1 times for j = 2,3,…,n2;
(iv) n2ω+ λi, repeated N− 1 times for i = 1,2,…,n1;
(v) Two roots of the equation

γ2 − (Nω+ n2ω+ λi)γ+Nωλi = 0, i = 2,3,…,n1.

From Equation 2, the first-order network coherence of G1◦G2 is
determined by the sum of the inverses of nonzero Laplacian
eigenvalues. Consider the last factor of the Laplacian characteristic
polynomial defined in Equation 6:

n1

∏
i=2
(γ2 − (Nω+ n2ω+ λi)γ+Nωλi) . (8)

Let a0 and a1 denote the constant term and the coefficient of the
linear term of Equation 8, respectively. Then,

a0 =
n1

∏
i=2
(Nωλi) ,

a1 = −
n1

∏
i=2
(Nωλi)

n1

∑
i=2
[(Nω+ n2ω+ λi)/(Nωλi)] ,

(9)

and

−
a1

a0
=

n1

∑
i=2

Nω+ n2ω+ λi
Nωλi

=
n1 − 1
Nω
+
N+ n2

N

n1

∑
i=2

1
λi
. (10)

Combining the Laplacian spectrum of G1◦G2 as
shown in (i)-(v), Lemma 1, and Equations 2, 10,
one obtains
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H1 (G1◦G2) =
1

2n1 (n2 +N)
( 1
(n2 +N)ω

+
n1 − 1
Nω
+
N+ n2
N

n1
∑
i=2

1
λi
+

n1
∑
i=1

N− 1
n2ω+ λi

+
n2
∑
j=2

n1
Nω+ μj

)

= 1
2n1N

n1
∑
i=2

1
λi
+ N− 1

2n1 (n2 +N)

n1
∑
i=1

1
n2ω+ λi

+ 1
2 (n2 +N)

n2
∑
j=2

1
Nω+ μj

+ 1
2n1(n2 +N)

2ω
+

n1 − 1
2n1 (n2 +N)Nω

.

The proof is completed.

Remark 1: From Equation 7, Theorem 1 implies that H1(G1◦G2)
decreases as the duplication N or the weight factor ω increases.
Accordingly, corona networks G1◦G2 with larger duplication N or
weight factor ω have higher first-order network coherence and can
be considered to be more robust to noise than networks with smaller
duplication or weight factors.

It is worth noting that the phenomenon of high coherence of
the corona network G1◦G2 with a large duplication N is interesting
because it differs from the results reported in prior literature, such as
[14, 15]. [14] considered the first-order network coherence in a kind
of 5-rose graph and found that 5-rose networks with small network
sizes have high network coherence. In [15], the authors investigated
the coherence problem of the Koch network and revealed that
enhancing the iteration or the network size of the Koch network
will reduce the network coherence. Thus, high coherence or strong
robustness of the corona network G1◦G2 with a large duplication
N (thereby large network size) can be regarded as a distinctive
topological characteristic that may lead to significant application
value. For example, in [8], the vehicular formation control problem
was studied based on the analysis of performance measures in large-
scale networks. It is found that the network coherence, which varies
with network size and dimension, plays an important role in the
performance limitation of the vehicle formation. From this point
of view, the N-duplication weighted corona network G1◦G2 can be
considered a graph with good robustness to external disturbances,
which provides new insights into its practical applications.

In Equation 7, H1(G1◦G2) is characterized by the Laplacian
eigenvalues of the associated matrices G1 and G2, the weight ω, and
the duplication N. To further explore the relationship between the
first-order coherence of the composite network G1◦G2 and that of
the factor networksG1 andG2, we derive another analytical formula
for H1(G1◦G2).

Lemma 3: Let G be a simple graph with n vertices and Laplacian
eigenvalues 0 = λ1 < λ2 ≤⋯ ≤ λn. There is an orthogonal matrix
P = (pij)n×n, such that PTL(G)P = diag(λ1,λ2,…,λn). Moreover, p1 =
√n,p2 =⋯ = pn = 0, where pi(i = 1,2,…,n) is the sum of the ith
column of the matrix P.

Proof. For the Laplacian matrix L(G), it is obvious that ξ1 =
1
√n
(1,1,…,1)T is the unit eigenvector associated with eigenvalue

λ1 = 0. Let ξi (1 < i ≤ n) be an eigenvector of L(G) associated with
eigenvalue λi. Then, ξT1 ξi = 0; that is to say, the sum of all the entries
of ξi (1 < i ≤ n) is 0. The conclusion of the lemma follows from the
orthogonal decomposition theorem.

Theorem 2: Let k1 denote the complete graph of order 1 (i.e., the
trivial graph), G1 ∨ k1 be the join graph of G1 and k1 with the join-
wight n2ω, and G2 ∨ k1 be the join graph of G2 and k1 with the
join-wight Nω. Then, the first-order coherence of the N-duplication
weighted corona network G1◦G2 can be described as follows:

H1 (G1◦G2) =
1
N
H1 (G1) +

(N− 1) (n1 + 1)
n1 (n2 +N)

H1 (G1 ∨ k1) +
n2 + 1
n2 +N

H1 (G2 ∨ k1)

+ 1
2 (n2 +N)ω

[
n1 − 1
Nn1
+ 1
n1 (n2 +N)

+ N− 1
n2 (n1 + 1)

− 1
N (n2 + 1)

] .

(11)

Proof. Let A1 and L1 denote the adjacency and Laplacian
matrices of G1, respectively. The block form of the adjacency matrix
of G1 ∨ k1 is

A (G1 ∨ k1) = [
A1 n2ω1n1

n2ω1Tn1
0
],

where 1n1
represents the all-ones column vector of dimension n1.

The Laplacian matrix of G1 ∨ k1 is

L (G1 ∨ k1) = [
L1 + n2ωIn1

−n2ω1n1

−n2ω1Tn1
n2ω
].

Suppose that σ(G1) = {λ1,λ2,…,λn1
|0 = λ1 < λ2 ≤⋯ ≤ λn1

} is the
spectrum set of G1. Then, there is an orthogonal matrix P such that
PTL1P = diag(λ1,λ2,…,λn1

). In addition,

[
PT 0
0 1
][

L1 + n2ωIn1
−n2ω1n1

−n2ω1Tn1
n2ω
][

P 0
0 1
]

= [
PT (L1 + n2ωIn1

)P −n2ωP
T1n1

−n2ω1Tn1
P n2ω

].

From Lemma 3, the characteristic polynomial of L(G1 ∨ k1) is

|λIn1+1 − L (G1 ∨ k1) | = |
PT (λIn1

− L1 − n2ωIn1
)P n2ωP

T1n1

n2ω1Tn1
P λ− n2ω

|

=
|||||

|

λ− n2ω 0 ⋯ n2ω√n1

0 λ− n2ω− λ2 ⋯ 0
⋮ ⋮ ⋱ ⋮

n2ω√n1 0 ⋯ λ− n2ω

|||||

|

.

Therefore, the Laplacian eigenvalues of G1 ∨ k1 with the join-weight
n2ω are

0,λi + n2ω (i = 2,…,n1) , (n1 + 1)n2ω. (12)

Similarly, the Laplacian eigenvalues of G2 ∨ k1 with the join-weight
Nω are

0,μi +Nω (i = 2,…,n2) , (n2 + 1)Nω. (13)

Moreover, we have

H1 (G1 ∨ k1) =
1

2 (n1 + 1)
(

n1

∑
i=2

1
n2ω+ λi

+ 1
(n1 + 1)n2ω

) (14)

and

H1 (G2 ∨ k1) =
1

2 (n2 + 1)
(

n2

∑
j=2

1
Nω+ μj

+ 1
(n2 + 1)Nω

). (15)

Equation 11 is then obtained by combining Equations 2, 7, 14, 15.

Remark 2: Setting N = 1 in Equation 11, we have

H1 (G1◦G2) =H1 (G1) +H1 (G2 ∨ k1) +
(n1 − 1)n2

2n1(n2 + 1)2ω
, (16)
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which is consistent with the result of [46] (see Theorem 3 of [46]
for details).

In the proof of Theorem 2, the first-order coherence
of the join graphs G1 ∨ k1 and G2 ∨ k1 is also derived, as
presented in Equations 14, 15, respectively. From Equation 14,
H1(G1 ∨ k1) generally increases with the increase of H1(G1).
The assertion holds true also for H1(G2 ∨ k1) with H1(G2).
Therefore, from Equation 11, lower H1(G1) or H1(G2) generally
indicates lower H1(G1◦G2). Furthermore, for a fixed ω, we have
H1(G1◦G2) → (1+

1
n1
)H1(G1 ∨ k1) +

1
2n2(n1+1)ω

as N→∞. On the
other hand, given a constant N, H1(G1◦G2) →

1
N
H1(G1) as ω→∞.

The above analysis leads to the following remark.

Remark 3: From Equation 11, Theorem 2 shows, for fixed values
of n1, n2, N and ω, lower H1(G1) or H1(G2) generally leads to
lower H1(G1◦G2). In other words, higher first-order coherence of the
factor network G1 or G2 usually implies higher first-order coherence of
the N-duplication weighted corona network G1◦G2. Especially, in the
situation of large duplication N or weight ω, the first-order coherence
of G1◦G2 is mainly determined by the factor network G1.

3.2 Second-order coherence of the
N-duplication weighted corona network

This subsection investigates the second-order coherence of the
N-duplication weighted corona networks.

Theorem 3: Let σ(G1) = {λ1,λ2,…,λn1
|0 = λ1 < λ2 ≤⋯ ≤ λn1

} and
σ(G2) = {μ1,μ2,…,μn2

|0 = μ1 < μ2 ≤⋯ ≤ μn2
} be the Laplacian

spectrum sets of G1 and G2, respectively. Then, the second-order
coherence of the N-duplication weighted corona network G1◦G2 can
be described as follows:

H2 (G1◦G2) =
n2

n1 (n2 +N)N2ω

n1

∑
i=2

1
λi
+
n2 +N
2n1N

2

n1

∑
i=2

1
λ2
i

+ N− 1
2n1 (n2 +N)

n1

∑
i=1

1
(n2ω+ λi)

2

+ 1
2 (n2 +N)

n2

∑
j=2

1
(Nω+ μj)

2 +
1

2n1(n2 +N)3ω2

+
n1 − 1

2n1 (n2 +N)N
2ω2 .

(17)

Proof. Based on Equation 4, to evaluate the second-order
network coherence of G1◦G2, we need to obtain the sum of squared
reciprocals of all nonzero Laplacian eigenvalues. The analysis of
the Laplacian spectrum of G1◦G2 is presented in Theorem 1. For
Equation 8, the last factor of the Laplacian characteristic polynomial
Equation 6, the constant term a0, and the coefficient of the linear
term a1 are given in Equation 9. Let a2 denote the coefficient of the
quadratic term of Equation 8. We have

a2 =
n1

∏
i=2
(Nωλi)[

[

n1

∑
i=2

1
Nωλi
+

n1−1

∑
i=2

n1

∑
j=i+1

(Nω+ n2ω+ λi)(Nω+ n2ω+ λj)

N2ω2λiλj
]

]
and

(
a1

a0
)

2
− 2

a2

a0
=

2n2

N2ω

n1

∑
i=2

1
λi
+
(N+ n2)2

N2

n1

∑
i=2

1
λ2
i
+
n1 − 1
N2ω2 . (18)

The result of the theorem is then deduced by combining
the analysis of the Laplacian spectrum of G1◦G2, Lemma 1, and
Equations 4, 18.

From Equation 17, a conclusion similar to Remark 1 can be
drawn for the second-order network coherence in N-duplication
weighted corona networks.

Remark 4: Theorem 3 implies that H2(G1◦G2) decreases as the
duplication N or the weight factor ω increases. Therefore, similar to
the case of first-order coherence, second-order noisy corona networks
G1◦G2 with larger duplication N or weight factor ω can be considered
to be more robust to noise than networks with smaller duplication or
weight factor values.

From Remark 4, the notable topological property of high
coherence of corona networks G1◦G2 with large duplication N
remains valid for N-duplication weighted corona networks with
second-order dynamics. As in the case of the first-order coherence,
the relationship between the second-order coherence of the corona
network G1◦G2 and that of the factor networks G1 and G2 is
also explored.

Theorem 4: Let k1 denote the trivial graph, G1 ∨ k1 be the join graph
of G1 and k1 with the join-weight n2ω, and G2 ∨ k1 be the join
graph of G2 and k1 with the join-weight Nω. Then, the second-order
coherence of the N-duplication weighted corona network G1◦G2 can
be described as follows:

H2 (G1◦G2) =
2n2

(n2 +N)N
2ω

H1 (G1) +
n2 +N
N2 H2 (G1)

+
(n1 + 1) (N− 1)
n1 (n2 +N)

H2 (G1 ∨ k1) +
n2 + 1
n2 +N

H2 (G2 ∨ k1)

+ 1
2 (n2 +N)ω2 [

n1 − 1
n1N

2 +
1

n1(n2 +N)2
+
(n1 + 2) (N− 1)
n2
2(n1 + 1)2

− 1
(n2 + 1)

2N2 ].

(19)

Proof.The Laplacian eigenvalues ofG1 ∨ k1 andG2 ∨ k1 are given
in Equations 12, 13, respectively. From Equation 4, one obtains

H2 (G1 ∨ k1) =
1

2 (n1 + 1)
(

n1

∑
i=2

1
(n2ω+ λi)

2 +
1

(n1 + 1)2n2
2ω

2) (20)

and

H2 (G2 ∨ k1) =
1

2 (n2 + 1)
(

n2

∑
j=2

1
(Nω+ μj)

2 +
1

(n2 + 1)2N2ω2).

(21)

The theorem is then proved by combining the analysis of the
Laplacian spectrum of G1◦G2, Lemma 1, and Equations 17, 20, 21.

Remark 5: Setting N = 1 in Equation 19, the second-order network
coherence of the 1-duplication corona network (or simply the corona
network) can be expressed as follows:

H2 (G1◦G2) =
2n2

(n2 + 1)ω
H1 (G1) + (n2 + 1)H2 (G1) +H2 (G2 ∨ k1)

+
n2 (n1 − 1) (n2 + 2)
2n1(n2 + 1)3ω2 . (22)
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FIGURE 2
(a) H1(G1◦G2) and H2(G1◦G2) versus duplication N; (b) H1(G1◦G2) and H2(G1◦G2) versus weight factor ω.

In the proof of Theorem 4, the second-order coherence for the
join graphsG1 ∨ k1 andG2 ∨ k1 is derived, as shown in Equations 20,
21, respectively. From Equation 20, it can be seen that H2(G1 ∨ k1)
generally increases with the increase of H2(G1). The assertion holds
also true for the relationship between H2(G2 ∨ k1) and H2(G2).
Therefore, from Equation 19, lower H1(G1), H2(G1), or H2(G2)
generally leads to lower H2(G1◦G2). Furthermore, for a fixed ω,
H2(G1◦G2) → (1+

1
n1
)H2(G1 ∨ k1) +

n1+2
2n2

2(n1+1)2ω2 as N→∞. On the

other hand, given a constant N, H2(G1◦G2) →
n2+N
N2 H2(G1) as ω→

∞. The above analysis leads to the following remark.

Remark 6: Similar to the first-order noisy consensus algorithms, for
fixed values of n1, n2, N, and ω, the higher second-order coherence
of the factor network G1 or G2 generally implies higher second-order
coherence of the corona network G1◦G2. Especially, in the situation of
large duplication N or weight ω values, the second-order coherence of
G1◦G2 is mainly determined by the factor network G1.

4 Examples and simulations

This section verifies the theoretical results of Section 3 with
numerical examples.

Example 1: Consider the network coherence of the N-
duplication weighted corona network G1◦G2, where G1 and
G2 are complete graphs of orders 5 and 2, respectively.
Examples of 1-duplication and 2-duplication corona networks
are shown in Figure 1.

The Laplacian eigenvalues of G1 and G2 are 0,5,…,5⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
4

and

0,2, respectively. The first- and second-order coherence of the N-
duplication weighted corona network G1◦G2 can be derived from
Equations 7, 17, respectively. Especially, settingω = 1,H1(G1◦G2) →
1

2n1
∑n1

i=1
1

n2+λi
≈ 0.1071, and H2(G1◦G2) →

1
2n1
∑n1

i=1
1
(n2+λi)2
≈ 0.0332,

as N→∞; setting N = 1, H1(G1◦G2) →
1

2n1
∑n1

i=2
1
λi
=H1(G1) = 0.08

and H2(G1◦G2) →
n2+1
2n1
∑n1

i=2
1
(λi)2
= (n2 + 1)H2(G1) = 0.048 as ω→

∞.
Figure 2 shows the asymptotic trend of H1(G1◦G2) and

H2(G1◦G2) with the increasing duplication N and weight factor ω,

respectively. Furthermore, we can see the steep decline ofH1(G1◦G2)
and H2(G1◦G2) occurring at the small values of N and ω.

The dependence ofH1(G1◦G2) andH2(G1◦G2) on duplicationN
and weight ω is depicted in Figure 3. It can be seen from the hook
face that bothH1(G1◦G2) andH2(G1◦G2) generally decrease as ω or
N increases. Accordingly, a corona network with large duplication
N and weight factor ω can be considered to be more robust to noise
than networks with small N and ω.

Example 2: In this example, the relationship between the
coherence of theN-duplicationweighted corona networkG1◦G2 and
that of the factor networks G1 and G2 is explored. To this aim, two
different cases are considered.

In case (I), the N-duplication weighted corona networks G1◦G2
are composed of the same factor graph G2 (complete graph of order
5) but different G1 (complete, cycle, and star graphs, all with eight
vertices).Thefirst- and second-order coherence of the three different
G1 is H1(Gc) = 0.0547, H1(Gcy) = 0.2613, H1(Gs) = 0.3828, H2(Gc) =
0.0068,H2(Gcy) = 0.2604, andH2(Gs) = 0.3760, where the subscripts
c, cy, and s stand for the complete, cycle, and star graph, respectively.
The results of case (I) are shown in Figure 4.

In case (II), theN-duplication weighted corona networksG1◦G2
are composed of the same factor graph G1 (complete graph of order
8) but different G2 (complete, cycle, and star graphs, all with five
vertices).Thefirst- and second-order coherence of the three different
G2 is H1(Gc) = 0.0800, H1(Gcy) = 0.1632, H1(Gs) = 0.3200, H2(Gc) =
0.0160, H2(Gcy) = 0.0808, and H2(Gs) = 0.3040, respectively. The
results of case (II) are shown in Figure 5.

The influence of the factor networks G1 and G2 on the
coherence of the corona network G1◦G2 is illustrated in Figures 4,
5, respectively. As shown in Figure 4, in the case of the same factor
graph G2, a smaller value ofH1(G1) (orH2(G1)) also generally leads
to a smaller value ofH1(G1◦G2) (orH2(G1◦G2)). In other words, for
the sameG2, theN-duplication weighted corona networkG1◦G2 will
generally have higher network coherence when the factor network
G1 has higher network coherence. From Figure 5, it can be seen that
the above assertion also holds true for the influence of G2 on the
network coherence ofG1◦G2.Moreover, comparedwith the results of
Figure 5, the values ofH1(G1◦G2) (orH2(G1◦G2)) in Figure 4 show a
more notable difference, which indicates that the factor network G1
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FIGURE 3
(a) H1(G1◦G2) with various duplication N and weight factor ω values; (b) H2(G1◦G2) with various duplication N and weight factor ω values.

FIGURE 4
H1(G1◦G2) and H2(G1◦G2) of the N-duplication weighted corona networks G1◦G2 composed of the same factor graph G2 but different G1, where (a, b)
are versus duplication N and (c, d) are versus weight ω. The different factor graphs G1 are a complete graph (C), a cycle graph (Cy), and a star graph (S),
respectively.

plays a more important role thanG2 in the network coherence of the
N-duplication weighted corona network G1◦G2.

5 Conclusion

In this paper, coherence problems in N-duplication weighted
corona networkswith first- or second-order dynamics are addressed.
As a special case with N =1, the network coherence in the classic

corona network is also investigated (see Equations 16, 22). For both
first- and second-order consensus problems, explicit expressions of
the network coherence are derived and presented in two different
ways. In one way, the network coherence is expressed in terms of
the Laplacian spectra of the factor networks G1 and G2, the weight
factor ω of edges connecting G1 and G2, and the duplication N.
Based on this kind of expression, it is found that corona networks
with large duplication N or weight ω usually have high network
coherence and can be considered to be more robust to noise. High
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FIGURE 5
H1(G1◦G2) and H2(G1◦G2) of the N-duplication weighted corona networks G1◦G2 composed of the same factor graph G1 but different G2, where (a, b)
are versus duplication N and (c, d) are versus weight ω. The different factor graphs G2 are a complete graph (C), a cycle graph (Cy), and a star graph (S),
respectively.

coherence or strong robustness of the corona network G1◦G2 with
large duplication N (thereby large network size) can be regarded
as a special and notable topological property of the N-duplication
weighted corona network. In another way, the coherence of the
corona network G1◦G2 is expressed in terms of that of the factor
networksG1 andG2. Little work has been done from this perspective
on the study of the consensus problems in product networks, and
it deserves further research. Based on this kind of expression, the
influence of the factor networksG1 andG2 on the network coherence
of the corona network G1◦G2 is investigated. The results show that
higher coherence of G1 or G2 usually also leads to higher coherence
of the corona network G1◦G2. Especially, in the situation of large
duplication N or weight ω, G1 plays a more important role than
G2 in the network coherence of the N-duplication weighted corona
network G1◦G2.
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