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We present an analytical and numerical study of a class of geometric phase
induced byweakmeasurements. In particular, we analyze the dependence of the
geometric phase on the winding (W) of the polar angle (φ), upon a sequence ofN
weak measurements of increased magnitude (c), resulting in the appearance of
a multiplicity of critical measurement-strength parameters where the geometric
phase makes a |π| discrete jump. Adding to the novelty of our approach, we not
only analyze the weak-measurement-induced geometric phase by a full analytic
derivation, valid in the quasi-continuous limit (N→∞), but also we analyze the
induced geometric phase numerically, thus enabling us to unravel the finite-N
interplay of the geometric phase with the measurement-strength parameter,
and its stability to perturbations in the measurements protocol.
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1 Introduction

When a quantum system undergoes adiabatic cycling, its state can become quantifiable
based solely on its closed path in parameter space [1]. Conversely, a cyclic series of quantum
observations can create a geometric phase. As reported in Gebhart et al. [2], for closed
trajectories, upon the application of a series of steering weak measurements, a topological
transitionmay occur in themapping between themeasurement sequence and the geometric
phase, when the measurement strength is changed.

Despite the fact that overall quantum phases cannot be fully determined, when
the quantum system is driven slowly over a cycle returning to its starting condition,
the accumulated phase becomes gauge invariant and can be measured. As originally
pointed out by Sir. M. V. Berry [3], this is a geometric phase (X) in that it is
dependent on characteristics of the closed trajectory in parameter space, rather than on
process dynamics. Geometric phases can be held responsible for a number of situations:
they can modify material properties in solids, such as conductivity in graphene [4],
they can trigger the emergence of surface edge-states in topological insulators, whose
surface electrons experience a geometric phase [5], they can modify the outcome of
molecular chemical reactions [6], and they can affect electronic properties of matter
[7]. Furthermore, understanding various physical phenomena [8–10], defining fractional
statistics anyonic quasiparticles [11–13], and identifying topological invariants for quantum
Hall phases [14], superconductors [15, 16], or quantitative characterizations of topological
insulators via the Zak phase [17, 18], as well as underpinning holonomic and topological
signatures in photonic systems [19–23], are all made possible by geometric phases.
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A class of geometric phase, resulting from the outcome of
a series of intense (projective) measurements that operate on
the system and produce certain measurement read-outs, is the
Pancharatnam phase [24]. Optical investigations that monitor the
Pancharatnam phase caused by polarizer sequences have readily
been reported [25]. Notwithstanding the fact that incoherent
measurement processes are generally involved, such a phase may be
reliably detected. A general series of measurements is by its very
nature stochastic. Thus, based on the sequences of measurement
readouts linked to the relevant probabilities, one may expect
a distribution of measurement-induced geometric phases. The
induced evolution is entirely predictable for a quasi-continuous
series of strong measurements (N→∞) because of the dynamical
quantum Zeno effect [26].

In this paper, we present an analytical and numerical study of
a novel type of geometric phase induced by weak measurements.
Weak measurement is a robust measurement procedure enabling
continuous monitoring of the evolution of a quantum state
with minor disturbance or system back-action, which has been
successfully implemented experimentally in the context of dynamic
control of numerous quantum systems [27–29]. In contrast to PNAS
2020 [2], the originality of our approach consists in considering
the dependence of the geometric phase on the winding W of
the polar angle φ, which quantifies the number of full 2π-turns
the trajectory makes until it closes its path, returning to its
original state. This is accomplished by setting the azymmuthal
angle at θ = π/2 and considering the initial state |ψ0〉 =

|↑〉+|↓〉
√2

,
and a sequence of weak measurements in the polar angle φ
of increasing magnitude φk = ϵk, with k = 0, ,N the measurement
index. We ensure the trajectory induced by the sequence of weak
measurements is closed, and the geometric phase well defined,
by parameterizing the rotation parameter as α = ϵN/2, where N
is the number of measurements. We note α is a parameterisation
that ensures the trajectory closes at the discrete values α = kπ.
Nevertheless, α in itself is not discrete since it can be expressed
in terms of the polar angle as α = ϕk

k
N
2
, for k = N we obtain the

relation 2α = ϕk. By allowing the parameter α to take multiple
values in the intervals [0,kπ], with k = 1,…,M and M ∈ Z+,
the winding number simply results in W = k, with k = 1,…,M.
We find that different winding numbers W can give rise to
unpredictable critical measurement-strength parameters, where
the geometric phase makes a |π| discrete jump and the system
undergoes a topological phase transition, thus confirming that the
phase transitions for different W are not topologically equivalent.
Furthermore, adding to the novelty of our approach, we not only
analyze the weak-measurement induced geometric phase by a
full analytic derivation based on the exponential approximation
presented in PNAS 2020 [2], valid for N→∞, but also we analyze
the induced geometric phase numerically, thus enabling us to
understand the finite-N interplay of the geometric phase with the
measurement-strength parameter c, and its stability to fluctuations
in the measurement protocol.

The paper is organized as follows: In Section 2 we outline
the measurement protocol. Next, in Section 3, we present our
analytic results. In particular, we characterize the phase transitions
for different windings W. Next, in Section 4, we present our
numerical results. Namely, we characterize the interplay of the
geometric phase with the measurement strength c for finite N,

and we analyze the impact of phase noise on the geometric
phase in different parameter regions of the N− c landscape.
Finally, in Section 5, we outline the conclusions and future
perspectives.

2 Measurement protocol

Themeasurement sequence required to accumulate the intended
geometric phase X can be mathematically described by a complete
set of POVMs (Positive Operator-Valued Measures), implemented
via the Kraus operators.

M(rk)k =Mηk
(nk, rk), |ψ〉 →M(rk)k |ψ〉, as described in [2]. Such

POVM can be implemented by introducing a detector consisting
of a second qubit whose Hilbert space is spanned by the set r =
{| + 〉, | − 〉}. We consider the generic initial state of the system of
the form |ψ0〉 = a|↑〉 + b|↓〉, and assume the detector is in the initial
state | + 〉 and that the initial state of the system plus detector
is separable, of the form |ψsep〉 = |ψ0〉 ⊗ | + 〉. The measurement
coupling λ(t) is then switched on for a finite time t ∈ [0,T], to obtain
the entangled state Equation 1:

|ψent〉 =Mη (n,+) |ψ0〉 +Mη (n,−) |ψ0〉, (1)

here the measurement strength is η∝ sin2(g), with g = ∫T0λ(t)dt.
The POVMs describing the measurement process are defined by

the Kraus operators [2]:

Mη ( ̂z,+) = (
1 0
0 √1− η

)Mη ( ̂z,−) = (
1 0
0 √η
), (2)

corresponding to a measurement orientation along the z-axis n = ̂z.
Kraus operators along a generic orientation n can be obtained via
the change of basis.

Mη(n, r) = R−1(n)Mη( ̂z, r)R(n), where the unitary matrix R(n)
is given by Equation 3:

R (n) = (
cos θ/2 e−iφ sin θ/2
sin θ/2 e−iφ cos θ/2

), (3)

representing a rotation of the measurement orientation along the
direction n = (sin (θ)cos (φ), sin (θ) sin (φ),cos (θ)).

The interaction-induced mapping (a|n〉 + b| −n〉)| + 〉 →
(a|n〉 + b√1− η| −n〉)| + 〉 + b√η| −n〉| − 〉 describes the system-
detector interaction that mediates the measurement process. The
detector is then projectively measured in the basis of states | ± 〉
after this step. The following properties apply to this measurement
protocol: (I) it guarantees that the readout r = + is produced if
the initial state is |n〉 (a = 1, b = 0); (II) without changing the
system’s state, if the initial state is | −n〉 (a = 0, b = 1), it provides
readouts r = − or r = + with probabilities p− = η and p+ = 1− η,
respectively. The measurement procedure does, in fact, change the
state of the system when it is in a superposition state of |n〉 and
| −n〉. With probability η|b|2, the readout results r = −, causing a
jump in the system state to | −n〉. For η≪ 1, the detector stays
essentially in its initial state (r = +), changing the system state only
slightly. One can define “null weak values” by taking into account
only the experimental runs that result in r = +. A photon of a given
polarization is always transmitted (r = +), whereas a photon of the
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FIGURE 1
Schematic representation of the action of the measurement protocol described by the proposed POVM set for a generic input state a|↑〉 +b|↓〉. Kraus
operators Mη(n,+/−) can be implemented by means of imperfect polarizers oriented along (a) vertical direction r+ = | + 〉; (b) horizontal directions r− =
| − 〉; (c) depicts the Bloch sphere for the system qubit {|↑〉, |↓〉} setting the initial state |ψ0〉 =

|↑〉+|↓〉
√2

, for initial parameters (θ0 = π/2,φ0 = 0); (d) red curve
depicts the |π| discrete jump in the geometric phase (X) from 0 to −π for a critical measurement strength ccrit = 2.1 (dashed line indicating the onset of
topological phase transition); (e) depicts the topological phase transition in the geometric phase (X) for α = π, corresponding to a single winding (W = 1).
Special attention was taken to ensure the continuity of the geometric phase (X) at the point of the phase transition in order to distinguish transitions
from random phase jumps.

orthogonal polarization has a finite probability of being transmitted
(r = +) or absorbed (r = −) [2]. Such postselectedmeasurementsmay
be implemented for arbitrary η with imperfect polarizers, as shown
in Figures 1a, b.

Within this framework, the weak measurement-induced
geometric phase (X) can be defined asX = arg〈ψ0|M

(rN)
N …M(r1)1 |ψ0〉.

It can be obtained from the quasi-continuous trajectory
with all outcomes set to rk = +, setting the measurements
orientations to (θk,φk = θ,2πk/N), and using the explicit
form of the Kraus operators (Equation 2). In particular, for
an initial state of the form |ψ0〉 = R(n0)

−1|↑〉, it is possible
to rewrite the geometric phase using 〈ψ0|M

(+)
N …M(+)1 |ψ0〉 =

〈↑|δR(Mη(z,+)δR)N−1|↑〉, where δR (Equation 4) can be
expressed as [2]:

δR =(
cos2 θ2 + e

−2πi/N sin2 θ2
1
2 (1− e

−2πi/N) sin θ
1
2
(1− e−2πi/N) sin θ sin2 θ2 + e

−2πi/N cos2 θ2
), (4)

which is a matrix independent of k, as explained in detail
in the following Section. An imperfect polarizer oriented
along the directions r+,− can implement such null-type weak-
measurement protocol. This is depicted in Figure 1. Figure 1a
describes the action of the POVM Mη( ̂z,+) on a generic input

state |ψ0〉 = a|↑〉 + b|↓〉 while Figure 1b describes the action
of the POVM Mη( ̂z,−) on the same generic input state. The
Bloch sphere for the system qubit s = {|↑〉, |↓〉} is schematized in
Figure 1c.

3 Analytic results

An analytic expression for the geometric phase X can be
derived in the quasicontinuous measurement limit N→∞. X
is extracted from the quasicontinuous trajectory postselecting
all outcomes rk = | + 〉 as described in PNAS2020 [2]. This
result is obtained by setting the initial state |ψ0〉 = R

−1(n0)|↑〉.
In our case, we consider the initial state to be eigenstate of
Sx, of the form |ψ0〉 =

|↑〉+|↓〉
√2

, thus selecting the initial rotation
along x̂, this is equivalent to setting the initial parameters
(θ0 = π/2,φ0 = 0), as depicted in Figure 1c. We then sequentially
rotate the measurement apparatus, in order to increment the
angle φ by a fixed amount ϵ = 2π/N. This parameterization
ensures that the trajectory is closed and the geometric phase
well defined. By selecting the readouts rk = | + 〉, setting
η = 4c/N, the measurement orientations (θk,φk) = (π/2,2πk/N),
and using the explicit form of Kraus operators in Equation 2,
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FIGURE 2
|π| discrete jumps in the geometric phase (X) vs. measurement-strength parameter (c) for increased winding number W = k, with k = 2,3,4,5: (a)
(α = 2π,W = 2) ccrit = 3.4 and ccrit = 5.7, (b) (α = 3π,W = 3) ccrit = 4.4 and ccrit = 7.6, (c) (α = 4π,W = 4) ccrit = 5.2 and ccrit = 9.1 and (d) (α = 5π,W = 5) ccrit = 6.0
and ccrit = 10.5. As we restrict our analysis to trajectories on the equator, the acquired geometric phase (X) can only take values of 0 or |π| (modulo 2π).

one obtains an expression for the geometric phase X of the
form [2]:

arg〈ψ0|M
(+)
N−1…M(+)1 |ψ0〉 = arg〈↑|δR(Mη ( ̂z,+)δR)

N−1|↑〉, (5)

where δR (Equation 6) is given by the k-independent matrix:

δR = (
1/2(1+ e−iϵ) 1/2(1− e−iϵ)
1/2(1− e−iϵ) 1/2(1+ e−iϵ)

). (6)

The quasicontinuous limit (N→∞) is obtained by using the
exponential approximation (1+ Γ/N)N ≈ eΓ, valid for N→∞. This
approximation is explicitly invoked by expressing the Taylor series
ofMη( ̂z,+)δR, and rewritingMη( ̂z,+)δR = V(I+ Γ/N)V

−1, where I is
the 2× 2 identity matrix and V is the unitary matrix for the change
of basis, obtained by diagonalization ofMη( ̂z,+)δR. In this scenario,
the geometric phase can be extracted from the upper-most diagonal
element of the matrix product VeΓV−1, resulting in:

X = e−iα−c [cosh (τ) + c sinh (τ)/τ] , (7)

where τ = √c2 − α2 and α = ϵN/2. We recover the analytic result
reported in [2], by setting z = c, and α = π, as expected for θ =
π/2.Our knowledge of the existence of a critical-measurement
parameter where the geometric phase makes a phase transition is
based on the previous work reported in Ref. [2]. We do not analyze
a continuous set of trajectories that cover the entire parameter space,
as we focus on a specific set of trajectories winding along the equator.

We note that our case is complementary to the one analyzed
in PNAS2020 [2], where the authors analyze the dependence of the
geometric phase on the azymmuthal angle θ for a single winding of
the trajectory with the polar angle φ. Here we report the dependence
of the geometric phase on the winding of the trajectory by the
steering sequence of weak measurements of increasing angle φ,
obtained by increasing the winding number W, while fixing θ =
π/2. We stress that the critical measurement-strength parameter
ccrit obtained for different winding numbersW = 1,2,3,…,M (with
M ∈ Z+) are not predictable to our knowledge.

The onset of a topological phase transition in the geometric
phase for a critical measurement strength can be understood by
considering two limiting cases: For the case of a series of strong
projective measurements (c→∞), resulting in the well-known
Pancharatnam-Berry phase π(cos (θ) − 1) [24], the polarization is
expected to rotate along the equator by an amount ϵ = 2π/N with
each projective measurement, until it returns to its original state,
accumulating a geometric phase equal to |π| (modulo 2π), while
for a series with infinitely weak measurement strength (c→ 0) the
polarization should not be affected by the measurement process.
Thus, there exists a critical measurement strength ccrit where X
makes a discrete jump from 0 to |π|, signaling the onset of a
topological phase transition, here |π| corresponds to a full winding
of the trajectory. A plot of the geometric phase X, given by
the analytic expression in Equation 7, is given in Figures 1d, e.
Figure 1d depicts the discrete jump of X from 0 to −π for a
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FIGURE 3
Topological phase transition for increased winding numbers W = 2,3,4, for c > ccrit (c < ccrit) red (blue) curves: (a, b) depicts curves for W = 2, and phase
transition from 0 to |π| and |π| to 0, respectively; (c, d) depicts curves for W = 3, and phase transition from 0 to |π| and |π| to 0, respectively; (e, f) depicts
curves for W = 4, and phase transition from 0 to |π| and |π| to 0, respectively. The different topological nature of each phase transition is signalled by the
increased numbers of oscillations for increased W. This can be explained by noting that increasing the winding number W = k, for α ∈ [0,kπ],
corresponds to closing the trajectory after k-windings of 2π with the polar angle φ. Therefore, it is expected to observe a larger number of oscillations
when increasing the number of windings W. (a, c, e) display k oscillations for W = k, while (b, d, f) present k− 1 oscillations for W = k, since there is no
phase transition from |π| to 0 for a single winding W = 1. Special attention was taken to ensure the continuity of the geometric phase at the point of the
phase transition in order to distinguish transitions from random phase jumps.

critical measurement strength ccrit = 2.1 indicating the onset of
topological phase transition, while Figure 1e depicts the geometric
phase vs. α, signaling a topological phase transition for a α = π,
corresponding to a full winding of the trajectorywith the polar phase
(W = 1). Special attention was taken to ensure that the geometric
phase is mathematically continuous in order to distinguish the
onset of a topological transition, from a random π-jump in the
geometric phase.

3.1 Winding number (W)

Next, we analyzed the existence of additional critical
measurement-strength values, signalling multiple topological phase
transitions characterized by discrete jumps in the geometric phase
between 0 and |π|. This was analyzed by enabling the parameter
α take multiple values in the intervals [0,kπ], with k = 1,…,M
and M ∈ Z+, corresponding to full windings of the phase φ, as
quantified by the winding number W = k, with k = 1,…,M, and
a wrapping of the phase at multiples of 2π, revealing the existence of

additional critical measurement-strength parameters for different
values ofW.This is shown in Figure 2, displaying additional critical-
measurement parameter values where X jumps from 0→−π and
from −π→ 0, respectively. We stress that while there is numerical
evidence indicating that ccrit increases with W, the actual critical
measurement-strength values for different winding numbersW are
not predictable to our knowledge.

Figure 2 corresponds to: (a) (α = 2π,W = 2) with ccrit = 3.4 and
5.7, (b) (α = 3π,W = 3) with ccrit = 4.4 and 7.6, (c) (α = 4π,W = 4)
with ccrit = 5.2 and 9.1 and (d) (α = 5π,W = 5) with ccrit = 6.0 and
10.5. We note that as we restrict our analysis to trajectories on the
equator, the acquired geometric phase can only take values of 0 or
|π| (modulo 2π).

Further confirmation of the onset of different topological phase
transition was obtained by plotting the geometric phase vs. the angle
parameter α for increased winding number W. This is presented in
Figure 3, for trajectorieswith c < ccrit (red curves) and for trajectories
with c > ccrit (blue curves). Figures 3a, b depicts curves for W = 2,
and phase transition from 0 to |π| and |π| to 0 (mod 2π), respectively;
(c) and (d) depicts curves forW = 3, and phase transition from 0 to
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FIGURE 4
Plots of the geometric phase X vs. α for decreasing values of N, for a measurement-strength parameter c > ccrit (red curves) and c < ccrit (blue curves),
where ccrit ≈ 2.1 for W = 1. (a–d) correspond to N = 10,8,6,4, respectively. The deviation of the numerical result from the analytic prediction is readily
apparent for N = 8. For N = 4 the discrete jump in X is fully vanished.

|π| and |π| to 0 (mod 2π), respectively; (e) and (f) depicts curves
forW = 4, and phase transition from 0 to |π| and |π| to 0 (mod 2π),
respectively.Thedifferent topological nature of each phase transition
is signalled by the increased numbers of oscillations for increasedW.
This can be explained by noting that increasing the winding number
W = k, for α ∈ [0,kπ], corresponds to closing the trajectory after k-
windings of 2π of the polar angle φ. Therefore, it is expected to
observe a larger number of oscillations for increased windingsW, as
displayed in Figure 3. Figures 3a, c, e display k oscillations for W =
k, while Figures 3b, d, f present k− 1 oscillations for W = k, since
there is no phase transition from |π| to 0 (modulo 2π) for a single
windingW = 1.

The linear dependence of the total acquired phase vs. α
is ascribed to the global dynamical term e−iα in Equation 7,
resulting in a linear dependence on α for the geometric
phase, when plotting its argument. As it was readily predicted
in [30], for closed steered trajectories the underlying phase
factors involve both dynamical and geometrical terms. Such
dynamical phase components can explain deviations in the
total acquired phase from the discrete values of 0 or |π|. A
plot of the geometric phase excluding dynamical terms is
presented in Supplementary Appendix A.

Our case is analogous to Ref. [2], only restricting our analysis to
trajectories winding along the equator of the Bloch sphere (θ = π/2),
while focusing our attention on the impact of the winding number

(W) on the dynamics of the system. In this scenario, the only possible
valuesX can take, as a consequence of the area subtended by a closed
trajectory returning to its initially state are: X = 0 for an incomplete
winding and an open trajectory, or X = π (modulo |2π|) for a full
winding and a closed trajectory. The difference in the trajectory on
the Bloch sphere for c > ccrit or c < ccrit is given by the corresponding
values of α where the full winding takes place, implying an acquired
geometric phase X = π (modulo |2π|).

4 Numerical results

4.1 Quantization of the geometric phase
for finite-N

The topological character of the phase transition exhibited
at the critical measurement-strength parameter (ccrit), where the
geometric phase (X) makes a |π| discrete jump, is clearly revealed
by the quantization of X between 0 and |π| (modulo 2π). This
quantization can be understood as a signature of the so-called
“topological protection” of the phase, which prevents fluctuations
in the discrete values of the phase acquired by the system under
weak perturbations in the protocol. This quantization of the phase,
confirming the topological nature of the transition, is clearly
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FIGURE 5
3D plots of the geometric phase X for different regions of the N− c landscape. Such regions correspond to parameter values N≫ c, N ≈ c, and N≪ c.
For N≫ c it is observed a constant geometric phase X, with discrete jumps of |π| at the critical measurement-strength parameter ccrit, as predicted by
the analytical result. For N ≈ c, we observe slow oscillatory behaviour in the geometric phase X, anticipating the regions of parameter space for N≪ c,
where we observe fast oscillatory response in the geometric phase X, corresponding to parameter regions where the Kraus operator Mη(+) becomes
imaginary (4c/N > 1). (a–c) correspond to parameter values of 0 <N < 50 and 0 < c < 10, for W = 1,2,3 respectively. (d–f) present numerical simulations
of X considering 100 <N < 500 and 0 < c < 10, for W = 1,2,3 respectively. The magenta appearance of the 3D density plots indicate regions where the
stability of the geometric phase is dramatically reduced. (g–i), for 100 <N < 500 and 100 < c < 400, for W = 1,2,3, respectively. It is observed that
fluctuations in X arise for c > 300, for any value of N. Moreover, in the stable region characterized by N≫ c, there is no apparent critical
measurement-strength parameter where X makes a discrete jump.

valid in the quasicontinuous limit (N→∞), where the analytic
result holds.

In this Section, we analyze the robustness of the quantization of
X, with respect to fluctuations in the total number of measurements
N, meaning that we derive a numerical expression for the geometric
phase for finite-N. Evidently, this analysis cannot be derived
from the analytical result reported in Equation 7, which is only
valid for N→∞ and N≫ Γ, for the exponential approximation
(1+ Γ/N)N ≈ eΓ to hold. In order to obtain a numerical value
for X and analyze its robustness to different type of noise
and perturbations, we follow Equation 5 to obtain a numerical
expression for the N-matrix product δR(Mη( ̂z,+)δR)N−1. Next, we
plot the left upper-most matrix element for different values of N
and c. For N sufficiently large (N > 500) and the measurement-
strength parameter sufficiently small (c≪ N), the analytic result
and numerical results are indistinguishable. We are interested in

understanding at which point the numerical result departs from the
analytic prediction.

Plots of the geometric phase X vs. α for decreasing values of N
are presented in Figure 4, for a measurement-strength parameter
c > ccrit (red curves) and c < ccrit (blue curves), where ccrit ≈ 2.1
for W = 1. For simplicity, we consider a single winding of the
trajectory with the polar angleW = 1, although the same framework
can be applied to W > 1. Figures 4a–d correspond to N = 10,8,6,4,
respectively. We note that the deviation of the numerical result
from the analytic prediction is readily apparent for N = 8, where
the quantization of X between 0 and π vanishes, signaling that the
topological nature of the phase transition vanishes. Furthermore,
for N < 5 the discrete jumps in the geometric phase at the critical
measurement strength are completely washed out. Our numerical
findings confirms that the quantization of (X) not only depends
on the measurement strength c, but also on the total number of

Frontiers in Physics 07 frontiersin.org

https://doi.org/10.3389/fphy.2025.1562928
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


Puentes 10.3389/fphy.2025.1562928

FIGURE 6
Numerical simulations of uncorrelated phase noise in the parameter region 0 <N < 50 and 0 < c < 10 of the N− c landscape. (a–c) correspond to phase
noise with a spread Δα = 2% for W = 1,2,3, respectively; (d–f) correspond to phase noise with a spread Δα = 5% for W = 1,2,3, respectively; (g–i)
correspond to phase noise with a spread Δα = 10% for W = 1,2,3, respectively. For Δα > 2% fluctuations in the phase render the measurement protocol
significantly unstable.

measurements N and its interplay with the c-parameter, with fully
topological character only for N > 4, when considering ccrit = 2.1
(W = 1).

4.2 N− c landscape

In order to analyze the interplay between the quantization
of the geometric phase X, for different values of total number
of measurements N and strength parameter c, we numerically
calculatedX in different relevant regions of theN− c landscape.This
is displayed in the 3D density plot depicted in Figure 5. Figures 5a–c
correspond to parameter values of 0 < N < 50 and 0 < c < 10, for
W = 1,2,3 respectively. Clearly, in the magenta regions of the 3D
plots, it is observed that the stability of the geometric phase is
dramatically reduced for N < 20, meaning that fluctuations in the
geometric phase are readily apparent for N of the same order as c
(N ≈ c).This numerical finding also sets a limit in the actual values of
measurement strength c that can be accepted in the quasicontinuous
limit. Figures 5d–f present numerical simulations of X considering

100 < N < 500 and 0 < c < 10, for W = 1,2,3 respectively. We find
that for N > 100, corresponding to N≫ c, the fluctuations in the
geometric phase vanish, meaning that in this region of the N−
c landscape the analytic result is fully valid, as reported in [2].
Fluctuations are expected to resurge as c approaches values of the
same order of N (N ≈ c) [30], or for values larger than N (N < c).
This is analyzed in detail in Figures 5g–i, for 100 < N < 500 and
100 < c < 400, for W = 1,2,3, respectively. We note that there is
no clear critical measurement-strength parameter in this region
where X makes a discrete jump. Nevertheless, it is observed that
fluctuations in X arise for c > 300, for any value of N, meaning
that the region of validity of the analytical result can only be
considered if N≫ c, in other words N > c is not acceptable for the
analytic result to hold. Evidently, there is no value of N where the
analytic result holds for c > 300. This upperlimit is relevant when
analyzing the strong-measurement limit c→∞, as considered in
Snizhko et al. [30], and for feasible experimental realizations of the
scheme [31, 32].

The resolution considered in Figure 5 corresponds to ΔN =
1,Δc = 0.01 in (a)-(f) and ΔN = 1,Δc = 0.5 for the fast oscillations in
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FIGURE 7
Numerical simulations of uncorrelated phase noise in the parameter region 100 <N < 500 and 0 < c < 10 of the N− c landscape. (a–c) correspond to
phase noise with a spread Δα = 2% for W = 1,2,3, respectively; (d–f) correspond to phase noise with a spread Δα = 5% for W = 1,2,3, respectively; (g–i)
correspond to phase noise with a spread Δα = 10% for W = 1,2,3, respectively. This region of the N− c landscape is significantly robust to uncorrelated
phase noise and the quantization of the phase is typically preserved.

(g)-(i). In addition, we performed an extensive analysis of the impact
of resolution on the slow and fast oscillations in Figure 5 in order to
confirm they are of physical origin and not a numerical artefact. A
detailed discussion on the resolution considered in the numerical
simulations is presented in Supplementary Appendix B.We note,
the Kraus operator Mη( ̂z,+) in Equation 2 should be real in order
to correspond to a measurement-induced polarization rotation,
as required in order to steer the trajectory. This, in turn,
requires 0 ≤ η ≤ 1. For η > 1, Mη( ̂z,+) becomes imaginary, thus
corresponding to a phase retardation. This further explains the
observed deviations of the numerical results from the analytic
prediction in Figures 4, 5. In order to ensure 0 ≤ η ≤ 1, it is possible
to define an effective measurement-strength parameter ηeff = 1−
e−4c, which is independent of N and can be used to analyze
the strong-measurement limit (c→∞), where one obtains Zeno-
like dynamics: The state follows meticulously the measurement
orientation, and the geometric phase becomes the Pancharatnam-
Berry phase [2]. Nevertheless, in this work we are not interested in
such limit, as we want to uncover the point at which the numerical
results deviate from the analytic prediction.

4.3 Phase noise

In order to characterize the robustness of the measurement
protocol to experimental errors arising as a result of phase
fluctuations due to limited temporal stability of the system, which
can result, for example, as a consequence of temperature, spatial,
frequency, or polarizations drifts, among other realistic sources of
errors. We analyze the effect of uncorrelated phase noise on the
geometric phase X in the N− c landscape, although other forms
of correlated noise could be considered, for instance noise linearly
or polynomially correlated with the total number of measurements
N, and the measurement strength c. We model the phase noise
Δα with a normal distribution centred around α0 = π, with varying
spreads Δα = 2%,5%,10%, considering different winding numbers
for the polar angle W = 1,2,3. Plots of the accumulated phase
noise for different regions of the N− c landscape are presented
in Figures 6–8. Numerical simulations of uncorrelated phase noise
in the region 0 < N < 50 and 0 < c < 10 are presented in Figure 6.
Figures 6a–c correspond to phase noise with a spread Δα = 2%
for W = 1,2,3, respectively. Figures 6d–f correspond to phase noise
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FIGURE 8
Numerical simulations of uncorrelated phase noise in the parameter region 100 <N < 500 and 100 < c < 400 of the N− c landscape. (a–c) correspond
to phase noise with a spread Δα = 2% for W = 1,2,3, respectively; (d–f) correspond to phase noise with a spread Δα = 5% for W = 1,2,3, respectively; (g–i)
correspond to phase noise with a spread Δα = 10% forW = 1,2,3, respectively. In this limit, the only region of the N− c landscape robust to phase noise if
for N≫ c and c < 300.

with a spread Δα = 5% for W = 1,2,3, respectively. Figures 6g–i
correspond to phase noise with a spread Δα = 10% for W = 1,2,3,
respectively. Clearly, for Δα > 2% fluctuations in the phase render
themeasurement protocol significantly unstable, and the topological
quantization of the phase between 0 and π is blurred.

Next, numerical simulations of uncorrelated phase noise in
the region 100 < N < 500 and 0 < c < 10 are presented in Figure 7.
Figures 7a–c correspond to phase noise with a spread Δα = 2%
for W = 1,2,3, respectively. Figures 7d–f correspond to phase noise
with a spread Δα = 5% for W = 1,2,3, respectively. Figures 7g–i
correspond to phase noise with a spread Δα = 10% for W =
1,2,3, respectively. Clearly, this region of the N− c landscape
is significantly robust to uncorrelated phase noise, and the
(topological) quantization of the phase is preserved.

Finally, numerical simulations of uncorrelated phase noise in the
region 100 < N < 500 and 100 < c < 400 are presented in Figure 8.
Figures 8a–c correspond to phase noise with a spread Δα = 2%
for W = 1,2,3, respectively. Figures 8d–f correspond to phase noise
with a spread Δα = 5% for W = 1,2,3, respectively. Figures 8g–i
correspond to phase noise with a spread Δα = 10% for W = 1,2,3,

respectively. Clearly, in this limit the only region of the N− c
landscape robust to phase noise if for N≫ c and c < 300, we note
that there is no clear critical measurement-strength parameter c
in this region where X makes a discrete jump. Numerical results
considering phase noise confirm the findings in Figure 5, with the
additional insight that theN− c landscape region 0 < N < 50 and 0 <
c < 10 is not sufficiently robust to phase noise Δα > 2%. Thus the
only entirely acceptable region, regarding uncorrelated phase noise,
is forN≫ c and c < 300, such as the case considered in Figure 7, and
in PNAS2020 [2].

5 Discussion

We presented an analytical and numerical study of a novel type
of geometric phase induced by weak measurements. In contrast
to the case considered by Gebhart et al. [2], the originality of our
approach consists of considering the dependence of the geometric
phase on the winding W of the trajectory with the polar angle
φ, quantifying the number of full 2π-turns the trajectory makes
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until it closes its path, enabling to define a geometric phase X.
This is accomplished by fixing the azymmuthal angle at θ = π/2
for a sequence of weak measurements in the angle φ of increasing
magnitudeφk = ϵk, with k = 1, ,N themeasurement index.We ensure
the trajectory induced by the sequence of weak measurements is
closed, and the geometric phase well defined, by parameterizing
the rotation parameter as α = ϵN/2, where N is the number of
measurements. We find that different winding numbers W can
give rise to unpredictable criticalmeasurement-strength parameters,
where the geometric phase makes a |π| discrete jump and the system
undergoes a topological phase transition. Furthermore, adding
to the novelty of our approach, we not only analyze the weak-
measurement induced geometric phase by a full analytic derivation
based on the exponential approximation proposed in [2], valid
for N→∞, but also we analyze the induced geometric phase
numerically, thus enabling us to understand the finite-N interplay
of X with the measurement-strength parameter c, and its stability to
fluctuations in the protocol.

In particular, we analyzed the impact of uncorrelated phase noise
on the quantization of the geometric phase. We find that while
the parameter region N≫ c of the N− c landscape, characterized
by parameter values 100 < N < 500 and 0 < c < 10, is significantly
robust to phase noise up to Δα ≤ 10%, the parameter region 0 < N <
50 and 0 < c < 10 can only support phase fluctuations within Δα <
2%. For c of the sameorder asN (N ≈ c), or c > 300,we findno critical
measurement-strength parameter where the geometric phase makes
a |π| discrete jump. Other models for correlated noise, for instance
phase noise increasing with the number of measurements N and/or
with the measurement-strength parameter c will be considered in a
forthcoming work.

We argue that the exhibited sharp transition in the acquired
geometric phase indicates that our protocol could find relevant
applications in measurement-induced manipulation and control of
quantum states, for instance via the implementation of polarization
switches or control-NOT gates, among other potential methods
for quantum information processing. More specific, by tuning the
coupling parameter η, for instance by increasing or decreasing
the integration time T, which determines the level of coupling
between the detection qubit and the system qubit, it is possible
to trigger a sharp transition in the geometric phase, which can
be used as a quantum switch to manipulate and control quantum
systems, with high precision. Our findings also have repercussions
on the understanding of the foundations of quantummechanics and
quantum measurement theory itself [33].
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