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X-ray computed tomography (CT) is widely used in clinical practice for screening
and diagnosing patients, as it enables the acquisition of high-resolution images
of internal tissues and organs in a non-invasive manner. However, this has
led to growing concerns about the cumulative radiation risks associated with
X-ray exposure. Low-dose CT (LDCT) reduces radiation doses but results in
increased noise and artifacts, significantly affecting diagnostic accuracy. LDCT
image denoising remains a challenging task in medical image processing. To
enhance LDCT image quality and leverage the flexibility and effectiveness of
plug-and-play denoising methods, this paper proposes a novel deep plug-and-
play denoising method. Specifically, we first introduce a deep residual block
convolutional neural network (DRBNet) with residual noise learning. We then
train the DRBNet using a hybrid loss function combining L1 and multi-scale
structural similarity (M-SSIM) losses, while regularizing the training with total
variation (TV). After training, the DRBNet is integrated as a deep denoiser prior
into a half-quadratic splitting-based method to solve the LDCT image denoising
problem. Experimental results demonstrate that the proposed plug-and-play
method, using the DRBNet prior, outperforms state-of-the-artmethods in terms
of noise reduction, artifact suppression, and preservation of textural and edge
information when compared to standard normal-dose CT (NDCT) scans. A blind
reader studywith two experienced radiologists further confirms that ourmethod
surpasses other denoising approaches in terms of clinical image quality.
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1 Introduction

Currently, X-ray computed tomography (CT), known for its versatile imaging
capabilities and high resolution, is one of the most widely used medical imaging modalities
for clinical diagnosis [1]. CT is employed in various medical fields, including dental CT,
whole-body diagnostic CT, and C-arm CT. However, medical CT involves the exposure of
patients to ionizing radiation, which poses potential risks such as immune function decline,
metabolic abnormalities, and harm to reproductive organs [2, 3]. In light of the hazards
associated with excessive X-ray radiation, researchers have made considerable efforts to
reduce radiation doses during CT scans. Generally, reducing the radiation dose can be
achieved by shortening theX-ray exposure time or lowering the current of theX-ray tube [4].
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FIGURE 1
CT images obtained from normal-dose CT and low-dose CT. (a) Normal-dose CT image, (b) Low-dose CT image. The display window ranges:
160 to 240 HU.

However, decreasing X-ray radiation levels often leads to an increase
in noise and artifacts in the reconstructed CT images [5]. Figure 1
illustrates CT scans obtained using normal-dose CT (NDCT)
and low-dose CT (LDCT), with the LDCT image demonstrating
noticeable noise and artifacts that compromise the accuracy of
clinical diagnoses. In LDCT, image quality is often degraded by
noise and artifacts, which significantly affect the confidence of
radiologists’ assessments. Various approaches have been developed
to improve the image quality of LDCT scans.

In general, there are three primarymethods for denoising LDCT
images: (a) sinogram filtering in raw projection data, (b) iterative
reconstruction (IR) techniques, and (c) post-image processing in
reconstructed LDCT images.

Sinogram filtering techniques involve directly suppressing noise
and smoothing the projection data before the image reconstruction
process. Manduca et al. proposed a bilateral filtering method for
noise reduction in LDCT projection data, which demonstrated
superior denoising performance compared to the reconstruction
kernels provided by vendors [6]. Balda et al. introduced a structure-
adaptive filter to reduce noise while preserving structural integrity
in projection data [7]. Other classical approaches include the
multiscale penalized weighted least-squares algorithm for restoring
low-dose sinogram data and the penalized likelihood method to
smooth projection data [8]. Despite their effectiveness, sinogram
filtering methods are challenging to implement in practice due to
difficulties in accessing raw CT projection data from various CT
scanners produced by different vendors. Iterative reconstruction
(IR) techniques leverage prior information about the target image
domain to resolve LDCT issues iteratively. These techniques
estimate denoised CT images incrementally. Several image priors
for LDCT have been proposed, including total variation (TV) [9,
10], dictionary learning [11–13], non-local means [14], and low-
rank matrix decomposition [15]. Although IR techniques enhance
the quality of denoised LDCT images, they come with a high

computational cost due to the iterative projection and back-
projection stages, which significantly increase the time required for
CT image reconstruction.

Unlike raw sinogram filtering and IR techniques, post-image
processing directly addresses reconstructed LDCT images, rather
than the raw projection data. Moreover, post-image processing
methods can be seamlessly integrated into the workflow of current
CT scanners. Recently, a significant amount of research has
focused on denoising LDCT images through post-image processing
techniques. By leveraging redundant information from previous
normal-dose CT (NDCT) scans, Ma et al. adapted non-local means
(NLM) for noise reduction in LDCT images [16]. Similarly, Li et al.
modified the NLM filter by incorporating a local noise level map
to improve noise reduction in CT images [17]. Inspired by sparse
representation theory, Chen et al. proposed a patch-based dictionary
learning approach to suppress both noise and streak artifacts,
thereby improving the quality of abdominal tumor LDCT images
[18]. Additionally, the block-matching 3D (BM3D) algorithm [19],
which has been successfully applied to denoise CT images in various
studies [20, 21], was also explored. However, the noise and artifacts
in reconstructed LDCT images are complex, often exhibiting a non-
uniform distribution, making them difficult to handle using these
traditional post-processing techniques.

The significant progress made in deep neural networks has
sparked new approaches and holds great potential in fields such
as computer vision (CV), natural language processing (NLP), and
speech recognition [22].This advancement in deep learning has also
inspired researchers to apply these techniques for image denoising,
including noise reduction and artifact suppression in LDCT.
Convolutional neural networks (CNNs), which are hierarchical
multi-layer deep neural networks, have demonstrated efficacy in
several image processing applications, including image classification
[23], super-resolution [24], and noise reduction [25]. Early deep
learning-based approaches for LDCT denoising enhanced feature
extraction and mapping within network models by increasing the
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depth of convolutional layers, such as residual encoder-decoder
[26], 2D CNN [27], 3D CNN [28], and cascaded CNN [29].
However, these methods often result in over-smoothed denoised
images. To address this issue, generative adversarial networks
(GANs) [30] have been introduced to LDCT denoising. In GAN-
based methods, a generative network (G) is trained to produce
realistic images, while a discriminator network (D) is trained to
distinguish between real and fake images. Yang et al. integrated
perceptual loss with theWasserstein GAN (WGAN) loss function to
enhance the effectiveness of LDCT image denoising [31]. Ma et al.
proposed a residual-CNN-block GAN with least squares (LSGAN)
for this task [32]. Although these methods have improved denoising
to some extent, the stability of theGAN training process still requires
refinement.

Given the challenges outlined above, this paper focuses on plug-
and-play image denoising [33] for LDCT image enhancement. Due
to the flexibility and effectiveness of plug-and-play-based algorithms
in solving a wide range of inverse problems, this approach has
attracted significant attention from researchers.The core principle of
plug-and-play image denoising involves using the variable splitting
technique to unroll the energy function and substituting any off-
the-shelf models for the prior term of the associated sub-problem
in image denoising [34]. Unlike conventional image denoising
methods that rely on hand-crafted prior terms, plug-and-play image
denoising approaches implicitly design the prior term through
a plug-and-play denoiser [35]. Notably, deep neural networks,
with their large capacity for feature extraction, can be employed
to learn the LDCT denoiser, thereby yielding promising results
in noise reduction. In this paper, we present DRBNet, a deep
residual block convolutional neural network (CNN) with residual
noise learning for LDCT denoising. The DRBNet is trained with a
constraint of total variation (TV) regularization. The deep denoiser
prior we propose aims to extract the residual noise from the
LDCT image, which is then fed into the model. Our presented
plug-and-play denoising prior, DRBNet, is a learning deep model,
which is different from existing plug-and-play prior. Our plug-
and-play method with learning prior integrates flexibility that the
model-based methods owns and effectiveness that the learning-
based approaches possesses. The denoised CT image is derived by
subtracting the learned residual noise map from the input LDCT
image. The contributions of this work are summarized as follows.

(1) Novel deep plug-and-play denoising method: We introduce a
new approach for LDCT image denoising by employing a deep
residual block CNN (DRBNet) with residual noise learning as
the denoising prior.

(2) Hybrid loss function: The DRBNet prior is trained using
a hybrid loss function, combining L1 loss with multi-scale
structural similarity (MS-SSIM) loss. Additionally, the training
procedure is regularized with total variation (TV) to enhance
denoising performance.

(3) Integration with a plug-and-playmethod:The trainedDRBNet
is incorporated into a half quadratic splitting-based method
to solve the LDCT image denoising problem. This approach
effectively combines the strengths of learning-based methods
and model-based methods, offering both flexibility and
performance.

(4) Superior performance: Extensive experiments demonstrate
that our proposed plug-and-play method with DRBNet
significantly outperforms existing state-of-the-art methods in
suppressing noise and artifacts while preserving textural and
edge information, when comparedwith standardNDCT scans.

The remainder of this article is structured as follows:
Section 2 presents the plug-and-play image denoising method
and the architecture of the deep CNN plug-and-play prior
(DRBNet). Section 3 details the experimental setup and results.
The concluding remarks are provided in the final section.

2 Methods

2.1 Degradation of LDCT images

Access to raw projection data from CT scans is typically
restricted due to encryption by CT scanner vendors, making post-
image processing techniques a viable alternative for LDCT image
denoising. The LDCT denoising problem can be framed as an
image denoising task once the corresponding NDCT image is
available. The primary difference between natural image denoising
and LDCT denoising lies in the statistical properties of LDCT,
which are challenging to model accurately in the image domain.
These statistical properties, characterized by high correlation and
variation, substantially impact the performance of noise-dependent
methods. The quantum noise inherent in X-ray projection data
results in complex noise and artifacts in reconstructed LDCT
images, further complicating noise reduction. Deep neural networks
(DNNs), as learning-basedmethods, are well-suited to address these
challenges, as they leverage large training datasets that are less
dependent on noise type. We now formulate the denoising model
for LDCT images as follows.

2.2 Deep plug-and-play noise reduction
for LDCT

In the image spatial domain, the degradation process of LDCT
images can be modeled by Equation 1. An LDCT image is typically
viewed as a degraded NDCT image corrupted by noise.

x = y ↓s + n (1)

where x ∈ Rm×n denotes the LDCT image, ↓s and n are the
degradation and extra noise (for example, Poisson noise)
respectively. y ∈ Rm×n represents the corresponding NDCT
image. In short, Equation 1 conveys that the LDCT image x is a
deteriorated, blurred, and noised version of a clean NDCT image y.

Using the degradation model described in Equation 1, we can
proceed to formulate its energy function in the next step.The formal
energy function can be derived from the Maximum A Posteriori
(MAP) probability in Equation 2, as follows:

miny
1
2σ2
||x− y ↓s||

2 + λϕ(y) (2)

where 1
2σ2
||x− y ↓s||

2 represents the data fidelity term (or
likelihood term) which determined by LDCT corrupting
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FIGURE 2
Architecture of deep residual blocks CNN (DRBNet) prior. It contains a shallow feature extractor and residual learning blocks.

FIGURE 3
Convergence curves of our proposed DRBNet prior on the training set
in the Mayo CT dataset.

processing of Equation 1, ϕ(y) denotes the regularization term and
λ is the regularized factor. The learning-based inference models
correspond to this energy function, where the deterioration of the
LDCT image is represented by the LDCT and NDCT images.

To solve Equation 2, we employ variable splitting with an
auxiliary variable z, which allows us to reformulate the problem as
an equivalent constrained optimization, as described below.

̂y = argminy
1
2σ2
||x− z||2 + λϕ(y), subject toz = y↓s (3)

For simplicity, Equation 3 can be solved using the half quadratic
splitting (HQS) algorithm. Typically, we approach Equation 3 with
HQS by minimizing the problem presented in Equation 4, which
introduces an additional quadratic penalty term.

Lμ(y,z) =
1
2σ2
||x− z| |2 + λϕ(y) +

μ
2
||z− y↓s||

2 (4)

where μ represents the penalty term parameter. Increasing μ will
cause z to approach y↓s more closely. We observe that when

iteratively solving Equation 4 with Equation (5) and Equation 6, the
parameter μ increases in a non-decreasing manner.

zk+1 = argminz ||x− z||2 + μσ2||z−yk↓s||
2 (5)

yk+1 = argminy||zk+1 − y ↓s||
2 + λϕ(y) (6)

Equation 7 pertains to the variable z, while Equation 8
concerns y, representing two alternating minimization problems. In
particular, we assume that the convolutional operationwith kernelK
is conducted under circular boundary conditions. This assumption
allows for the formulation of a fast closed-form solution for zk+1, as
shown below:

zk+1 = F−1(
F(K)F(x) + μσ2F(yk↓s)

F(K)F(K) + μσ2
) (7)

whereF(·) is the fast Fourier transform (FFT) andF−1(·) represents
the inverse FFT (IFFT), respectively. F(·) is the complex conjugate
with respect to F(·). K is the kernel of convolutional operation.

We analyze Equation 6 on the view of Bayesian perspective and
re-formulate it as follows:

yk+1 = argminy
1

2(1/μ)2
||zk+1 − y↓s||

2 + λϕ(y) (8)

Equation 8 addresses the denoising of zk+1 with a corruption
factor s, assuming that zk+1 is a degraded version of a clear NDCT
image y, corrupted by Poisson noise with a noise level of (1/μ)1/2.
From another perspective, Equation 8 tackles noise reduction using
a simplified degradationmodel as follows (as Equation 9 described):

x = y↓s + n (9)

Consequently, we replace Equation 8 with a DNN-based LDCT
image denoiser, which is trained on corrupted images at low-dose
noise levels. For simplicity, Equation 6 andEquation 8 can be further
consolidated as Equation 10.

yk+1 = Denoiser(zk+1, s, (1/μ)
1/2) (10)

Because the prior term is implicitly defined in Denoiser(·), as
represented in Equation 10, it is referred to as a denoiser prior.
Equations 5, 6 represent two sub-problems that are relatively easy
to solve. On the one hand, the degradation procedure, Equation
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FIGURE 4
Results of a low-dose CT scan produced by compared algorithms from the testing set. (a) Low-dose, (b) NLM, (c) BM3D, (d) K-SVD, (e) RED-CNN (f)
LSGAN, (g) DRBNet (Ours), (h) Full-dose. The display window ranges: 160 to 240 HU.

FIGURE 5
Results of a low-dose CT scan produced by comparing algorithms from the testing set. (a) Low-dose, (b) NLM, (c) BM3D, (d) K-SVD, (e) RED-CNN (f)
LSGAN, (g) DRBNet (Ours), (h) Full-dose. The display window ranges: 160 to 240 HU.
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FIGURE 6
Zoomed ROI (region of interest) parts of labeled by the rectangle in Figure 3. (a) Low-dose, (b) NLM, (c) BM3D, (d) K-SVD, (e) RED-CNN (f) LSGAN, (g)
DRBNet (Ours), (h) Full-dose. The display window ranges: 160 to 240 HU.

FIGURE 7
Zoomed ROI (region of interest) parts of labeled by the rectangle in Figure 4. (a) Low-dose, (b) NLM, (c) BM3D, (d) K-SVD, (e) RED-CNN (f) LSGAN, (g)
DRBNet (Ours), (h) Full-dose. The display window ranges: 160 to 240 HU.
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FIGURE 8
Visualization of feature maps of CT images extracted from different layers in our proposed trained DRBNet.

9 with ↓s derived from a full-dose clean CT image, corresponds
to a closed-form solution, and Equation 5 handles this. On the
other hand, Equation 6 maps the blurred and noisy LDCT image
to a clean NDCT image. After several iterations, the denoised
LDCT image is reconstructed, approximating the corresponding
full-dose image.

In summary, the detailed algorithm for our proposed
deep plug-and-play DRBNet prior for LDCT denoising is
outlined in Algorithm 1.

2.3 Deep denoiser prior for LDCT denoising

It is noteworthy that residual learning deep convolutional
neural networks (CNNs) are both effective and efficient for image
processing and computer vision tasks. Residual deep CNNs can
alleviate challenges related to gradient vanishing and diffusion
during training. By using skip connections, residual CNNs can
learn both local and global features simultaneously. Unlike typical
deep CNN-based image denoisers, which directly predict the
latent clean denoised image, we propose a deep residual block
CNN (DRBNet) with residual noise learning. Specifically, our deep
denoiser prior extracts residual noise from the LDCT image, which
is then input into the model. The latent denoised CT image is
obtained by subtracting the learned residual noise map from the
input LDCT image. The overall architecture of our DRBNet is
illustrated in Figure 2.

Our proposed DRBNet differs from traditional deep neural
networks (DNNs) in several key aspects. First, DRBNet learns
the noise map from the LDCT image and then derives the
latent denoised CT image by subtracting the noise map from
the input LDCT image. In contrast, classic deep CNNs directly

output the latent denoised CT image. Second, in this paper, we
exclude batch normalization layers, as these can introduce extra
artifacts and weaken the generalization power of the model during
training. Third, we increase the number of feature channels in
each convolutional layer, setting the feature channels to 96 in each
residual block of the DRBNet.

Specifically, the first two convolutional layers of DRBNet are
designed to extract shallow feature maps from the input LDCT
image.These feature maps are then passed into the residual learning
blocks. Each convolutional layer is configured with 3 × 3 filters, 96
feature maps, and a stride of 1. For simplicity, each convolutional
layer in the residual learning blocks is set up similarly.

2.4 Hybrid objective loss regularized
through total variation

Once the architecture of the deep CNNdenoiser is established, it
must be trained to learn the features of LDCT images. To capture the
characteristics of noise, we use a hybrid loss function that combines
the multiscale structural similarity index (MS-SSIM) and L1 loss.
L1 loss helps suppress noise and improves the signal-to-noise ratio,
while MS-SSIM loss preserves high-frequency details in CT images.
Additionally, we regularize the optimization with a total variation
(TV) term to better preserve texture and edge information during
training. TV regularization sharpens the denoised LDCT image
while maintaining edges and gradient information, which is crucial
formedical imaging. In summary, the loss function used to train our
proposed DRBNet is formulated as follows (Equation 11):

Ltotal = γ1 × LMS−SSIM + γ2 × L1 + γ3 × LTV (11)
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FIGURE 9
Three typical cases resulted from DRBNet prior for LDCT denoising. The raw CT images are provided by a local hospital. The residual noise is gained
from the full-dose CT images minus the denoised CT images.

where γ1, γ2, and γ3 are the weights for the MS-SSIM loss, L1 loss,
and LTV loss respectively. Ltotal is the overall loss function training
our DRBNet denoiser prior, LMS−SSIM denotes the part of MS-SSIM
loss, and LTV represents the penalty term of the TV regularization.

The introduction of the total variation (TV) regularization term
during the training of DRBNet serves to differentiate among the
potentially infinite solutions for the deep CNN denoiser prior and
select the one with optimal characteristics as the denoised low-
dose CT (LDCT) image. Specifically, the TV regularization term is
defined as follows (Equation 12):

LTV = ‖ ̂y‖TV = ∫‖∇ ̂y(i)‖1di (12)

where∇ ̂y(i) denotes the gradient of the denoised low-dose CT image
̂y at a pixel i. The penalty term of the TV regularization has been

demonstrated to be robust for removing noise and artifacts in the
denoised image ̂y.

3 Experiments and results

3.1 Datasets for experiments

In this study, we used a public clinical CT dataset from the
Mayo Clinic, released for the 2016 NIH-AAPM-Mayo Clinic Low
Dose CT Grand Challenge, to train and test the proposed DRBNet
prior. TheMayo CT dataset includes 2,378 pairs of normal-dose CT
(NDCT) images and their corresponding simulated LDCT images
from 10 anonymized patients. The slice thickness in the dataset is
3.0 mm, and each CT image is of size 512 × 512 pixels. For training
and testing the proposed DRBNet denoiser prior, we selected pairs
of normal-dose and quarter-dose CT images from this dataset. To
ensure fairness, we employed cross-validation in the training and
validation of the model. Specifically, while the model was trained
using CT image pairs from nine patients, the data from the 10th
patient was used for validation.
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TABLE 1 Quantitative results for whole-CT images shown in Figures 4, 5
using different methods.

Figure 4 Figure 5

PSNR SSIM RMSE PSNR SSIM RMSE

Low-
dose

25.9459 0.8171 20.1728 23.4876 0.7698 26.7719

NLM 27.5058 0.8337 16.8566 24.9950 0.7902 22.5066

BM3D 26.8302 0.8183 18.2200 24.7017 0.7775 23.2796

K-SVD 29.4322 0.8517 13.5037 26.3079 0.8103 19.3494

RED-
CNN

30.0710 0.8604 12.5461 27.8539 0.8257 16.1943

LSGAN 30.1439 0.8643 12.4413 27.7798 0.8296 16.3331

DRBNet 30.7906 0.8651 11.5486 28.4901 0.8319 15.0507

Note: The bold font are the optimal value.

TABLE 2 Quantitative measurements for zoomed ROIs shown in
Figures 6, 7 using different methods.

Figure 6 Figure 7

PSNR SSIM RMSE PSNR SSIM RMSE

Low-
dose

21.6165 0.5767 33.2071 20.4087 0.5174 38.1611

NLM 23.5335 0.6273 26.6306 21.9030 0.5538 32.1299

BM3D 22.9043 0.6025 28.6314 21.7464 0.5397 32.7142

K-SVD 25.2907 0.6693 21.7531 23.4051 0.6028 27.0275

RED-
CNN

26.1801 0.6803 19.6359 25.1701 0.6297 22.0574

LSGAN 25.8629 0.6828 20.3663 24.9057 0.6371 22.7391

DRBNet 26.4940 0.6797 18.9390 25.6342 0.6392 20.9098

Note: The bold font are the optimal value.

The performance of deep learning-based noise reduction
methods heavily depends on the availability of a large training
sample size. A substantial volume of valid training data can
significantly enhance the denoising performance of the deep
learning model. To extend the size of the CT dataset and improve
the denoising performance of DRBNet, we applied an overlapping
patch strategy in our experiments. This approach not only captures
spatial interconnections across patches but also expands the training
data by augmenting the patch scale. From the dataset, we randomly
extracted 89,520 image patches of size 64 × 64 pixels for training.

3.2 Training details

The DRBNet denoiser prior was optimized using the Adam
algorithm. We set the mini-batch size to 16 and used the following

TABLE 3 Average values of quantitative performance for the testing set
with other state-of-the-art methods.

PSNR SSIM RMSE

Low Dose 29.2489 0.8759 14.2416

NLM 30.3964 0.8866 12.4114

BM3D 29.3693 0.8662 13.8754

K-SVD 31.8629 0.8927 10.4524

RED-CNN 32.3888 0.9055 9.7888

LSGAN 32.7030 0.9106 9.4841

DRBNet 33.1495 0.9122 8.9889

Note: The bold font are the optimal value.

hyperparameters for Adam α = 10−5, β1 = 0.9, β2 = 0.99. Based on
our experimental observations, the weighting parameters governing
the trade-off among the components of the loss function (11) were
set to γ1 = 0.7, γ2 = 0.2, and γ3 = 0.1. The convolutional kernels
were initialized with a random Gaussian distribution. The initial
learning rate was set to 1e−5, gradually decreasing to 1e−7. The
total number of epochs for training DRBNet was set to 100. The
DRBNet model was implemented using PyTorch, and training was
accelerated using anNVIDIAGPURTX2080TI, with a total training
time of approximately 12 h.

The denoised LDCT images were evaluated using three common
metrics: peak signal-to-noise ratio (PSNR), structural similarity
index (SSIM), and root mean square error (RMSE). Specifically,
PSNR is crucial for assessing the performance of LDCT denoising,
with higher PSNR values indicating greater similarity to the original
clean image. SSIM measures the structural similarity between the
denoised image and its ground truth. A higher SSIM value, closer
to 1, indicates a better approximation to the original image. RMSE
quantifies the difference between the denoised LDCT image and
the ground truth clean full-dose image, with smaller RMSE values
indicating better denoising performance.

3.3 Compared methods

We compared the proposed DRBNet denoiser prior for LDCT
with six other state-of-the-art approaches: NLM, BM3D, K-SVD,
RED-CNN, WGAN, and SMGAN. NLM, BM3D, and K-SVD are
the three most popular conventional noise reduction methods,
which have been commonly employed for LDCT denoising. RED-
CNN, WGAN, and SMGAN are deep learning-based methods
that represent some of the most prominent approaches for LDCT
denoising. The parameters for all the compared methods were
set based on the recommendations from the original studies.
Additionally, the three deep learning-based methods were trained
using the same source data as our proposed DRBNet denoiser prior.
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TABLE 4 Statistical analysis of image quality scores of other state-of-the-art methods.

Noise removal Artefact suppression Overall quality

Full dose -- -- 4.55 ± 0.16

Low dose -- -- 1.87 ± 0.19

NLM 2.68 ± 0.26 2.66 ± 0.22 2.83 ± 0.16

BM3D 2.26 ± 0.19 2.62 ± 0.13 2.69 ± 0.10

K-SVD 3.09 ± 0.21 3.17 ± 0.22 3.33 ± 0.19

RED-CNN 3.54 ± 0.16 3.31 ± 0.15 3.50 ± 0.13

LSGAN 3.68 ± 0.16 3.65 ± 0.17 3.94 ± 0.17

DRBNet 4.03 ± 0.16 3.98 ± 0.14 4.13 ± 0.18

Note: The bold font are the optimal value.

TABLE 5 Quantitative measurements of the experimental results
with/without TV regularization included in the hybrid loss function.

PSNR SSIM RMSE

Low Dose 29.2489 0.8759 14.2416

With TV 33.1095 0.9114 9.0272

Without TV 33.1495 0.9122 8.9889

Note: The bold font are the optimal value.

TABLE 6 Comparisons of parameter size, memory usage, and running
time under different denoising methods (k: kilo, MB: mega bytes, fps:
frame per second).

Parameters Memory
usage

Running time

NLM -- -- 249.416 s

BM3D -- -- 1226.075 s

K-SVD -- -- 45.902 s

RED-CNN 465.889 k 1849.56 MB 0.0874 s

LSGAN 476.13 k 2,469.82 MB 0.0941 s

DRBNet 1552.192 k 2,760.06 MB 0.0683 s

Note: The bold font are the optimal value.

3.4 Convergence

The theoretical convergence of the plug-and-play framework
for noise reduction was examined in [36, 37]. Since our proposed
DRBNet prior represents a specific case of this framework, we
present empirical evidence to demonstrate its convergence in
this study. Figure 3 illustrates the convergence curves of DRBNet on
the training set from theMayo CT dataset. It is evident that DRBNet

converges rapidly to a fixed solution. While training with the
overall loss that includes TV regularization leads to a slightly slower
convergence compared to training without TV regularization, the
inclusion of TV constraints results in higher output image quality.
Given that our DRBNet denoiser prior has been trained end-to-
end on a substantial set of LDCT images, it does not require
iterative noise reduction solutions, whichmarks a distinct advantage
over traditional plug-and-play denoising methods. In practice, we
balance performance and processing speed by adjusting the total
number of epochs during training.

3.5 Visual results

To evaluate the noise reduction performance of our proposed
plug-and-play prior for LDCT image denoising, twodenoised results
of the representative LDCT images are analyzed.

Figures 4–7 show results from proposed DRBNet prior and
the compared denoising methods. Figures 4, 5 show the entire CT
scans, while Figures 6, 7 focus on the regions of interest (ROIs),
marked by red rectangles in Figures 4, 5. The display window
for all figures is set to the range of [-160, 240] HU. CT images
inherently contain rich textures representing organ and tissue
structures. However, as depicted in the figures, the LDCT images
are heavily contaminated with noise and artifacts, which can hinder
clinicians’ ability to accurately assess lesions, diseases, or tissue
morphology. All compared denoising algorithms succeed to some
degree in removing noise and artifacts. However, NLM and BM3D
provide minimal improvement in noise removal, with noticeable
residual noise and artifacts still evident in the enlarged ROI images
(see Figure 6b c; Figure 7b,c). The denoising effect of K-SVD is
marginally better than that of NLM and BM3D. The results from
RED-CNN suffer from over-smoothing, resulting in the loss of fine
texture details in the tissue and anatomical structures due to its use
of the mean squared error (MSE) loss during training.The denoised
CT image from LSGAN reduces noise while maintaining texture
information. However, the results obtained using our proposed
DRBNet prior, as shown in Figure 4g; Figure 7g, effectively remove
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noise and suppress artifacts while preserving crucial texture details
that are vital for clinical diagnosis.

In Figure 6, the zoomed-in ROI, marked in Figure 4 with a
red rectangle, contains rich tissue texture information. This ROI
section includes intricate tissue details that are nearly obscured by
significant noise and artifacts. Notably, the textures indicated by the
red arrow in Figure 6a are blurred and unclear in the original LDCT
input. The NLM, BM3D, and K-SVD methods struggle to restore
these fine textures. RED-CNN causes excessive smoothing, resulting
in further blurring, while LSGAN still leaves some residual noise
that could affect clinical diagnosis. However, in Figure 6g, the result
from our proposed DRBNet prior clearly restores the fine texture
and removes the noise. In Figure 7g, the low attenuation lesions,
highlighted by the red circle and red arrow, along with the subtle
details indicated by the blue arrow, are restored by our approach
and closely resemble the full-dose target. Overall, the observations
from Figures 4–7 demonstrate that the visual results produced by
our DRBNet prior are highly promising.

For visualizing and understanding the internal working
mechanism of our proposed DRBNet, Figure 8 shows feature maps
from our model once the training is finished. Modules in DRBNet
performing CT image feature extraction is significant for tasks
of LDCT image denoising. The Feature maps shown in Figure 8
are organized into an array with size of 8 × 16. Each small sub-
image emphasizes the features of the original CT images, i. e.,
whole structures, edges, and boundaries. Thus, we believe that the
proposed DRBNet can fully learn the features of CT images and can
fully demonstrate its capabilities in the tasks of low-dose CT image
denoising.

We applied a group of LDCT image containing a sum of 200
LDCT images from a local hospital to further validate our proposed
DRBNet. Figure 9 provide three typical cases resulted fromDRBNet
prior. The residual noise is gained from the normal-dose CT images
minus the denoised CT images. From Figure 9, the visual effect
and quantitative metrics (PSNR/SSIM/RMSE) of the denoised CT
images further demonstrate the effectiveness of DRBNet.

3.6 Quantitative analysis

In this section, we present three key evaluation metrics—PSNR,
SSIM, and RMSE—to quantitatively assess the performance of our
proposed DRBNet prior and compare it with other state-of-the-art
approaches. Table 1 provides the quantitative results for the images
shown in Figures 4, 5, while Table 2 summarizes the results for the
zoomed-in ROIs from Figures 6, 7.

As shown in Table 1, our proposed DRBNet prior outperforms
the state-of-the-art methods in terms of PSNR, SSIM, and RMSE.
These results align with the visual improvements observed in
Figures 4, 5. In Table 2, the quantitative measurements of our
DRBNet prior for the zoomed ROIs from Figures 4, 5 also
demonstrate superior performance, with the exception of SSIM
in Figure 6. This deviation may be due to the fact that the
abdomen CT scan, which contains rich soft tissue textures,
benefits from LSGAN’s noise reduction in this particular case.
Furthermore, Table 3 presents the average quantitative performance
of our DRBNet prior on a testing set comprising over two
hundred LDCT scans. From Table 3, we observe that the DRBNet

outperforms the compared state-of-the-art methods in terms of
PSNR, SSIM, and RMSE.

3.7 Blind reader study

To assess the clinical image quality of the denoised LDCT
scans, we conducted a blind reader study using 10 groups of CT
scans. Each group consists of an LDCT image, its corresponding
full-dose version, and denoised LDCT images generated using the
competing methods. In the blind reader study, the low-dose and
full-dose images were used as baseline and gold-standard references,
respectively. Two radiologists, each with over 5 years of clinical
experience, independently rated each denoised LDCT image on a
five-point scale (1 representing poor quality and five representing
excellent quality), focusing on noise reduction, artefact suppression,
and overall image quality. Table 4 provides the mean and standard
deviation (SD) of the final assessments from both radiologists.

From Table 4, it is evident that the LDCT images received the
lowest scores due to their degraded quality. All noise reduction
algorithms improved the scores to varying degrees. However,
compared to the other denoising methods, our proposed DRBNet
prior achieved the highest scores for noise reduction, artifact
suppression, and overall image quality. In summary, the blind reader
study demonstrates the superior capabilities of DRBNet in reducing
noise, suppressing artifacts, and enhancing image quality. More
importantly, the images produced by DRBNet meet the perceptual
requirements of the human visual system (HVS), as shown in
Figure 4; Figure 7.

We also conducted the experiments to compare the denoising
performance of DRBNet alone and plug-and-play + DRBNet
prior (called DRBNet in this study) with mean quantitative
metrics of PSNR, SSIM and RMSE on the test set. The compared
results are 32.9399/0.9092/9.2030 and 33.1495/0.9122/8.9889
(PSNR/SSIM/RMSE) respectively. This demonstrates the merits
of plug-and-play + denoiser prior.

3.8 Ablation with/with TV regularization

To validate the instrument of the TV regularization, we
conduct ablation experiments to demonstrate its effectiveness for
improving the quality of denoised LDCT images. We trained the
DRBNet with/without TV regularization included in the hybrid loss
function. Quantitative measurements of the experimental results
are shown in Table 5. One can see that our presented DRBNet is
improved by training with TV regularization.

3.9 Model efficiency

The complexity of the denoising model is determined by the
architecture of network model, to further explore the efficiency,
complexity, and inference speed of different denoising models,
we compare parameter sizes, memory usage, and inference
speed of the methods in this study. The results are shown in
Table 6. From Table 6, it shows that our proposed DRBNet gets
the least running time, although it has the most parameters and
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Input: Deep DRBNet prior model, degraded low-dose

CT image x, parameter of trade-off λ, number of

iterations K.

Output: Restored CT image yk.

1 Initialize deep DRBNet prior, pre-calculate

value of noise level (1/μ)1/2

2 fork = 1,2, ...,k,do

3  zk+1 = argminz x−z||2 +μσ2z−yk↓s||
2;

4  yk+1 = Denoiser(zk+1,s, (1/μ)
1/2);

5 end

Algorithm 1. Deep Plug-and-play Prior Image Restoration with TV
Regularization for Low-dose CT.

memory usage compared other deep learning-basedmethods.NLM,
BM3D and K-SVD are traditional methods for image denoising
which requiresmore running time.Once training process is finished,
deep learning-based methods only require fewer running time for
inference. In total, according to denoising performance and model
efficiency, DRBNet is competitive algorithm with noise reduction
and artefacts removal for LDCT.

3.10 Model deployment

After training and fine-tuning deep learning model, it can be
deployed to a running environment as a necessary part of the
workflow for CT imaging and medical analysis. Our proposed
DRBNet prior can be encapsulated into an application programming
interface (API) using an appropriate tool such Flask or Djano, so
that it can be called by other applications. Also, DRBNet prior can
be converted into a deployable format utilizing Torchscript so that it
is able to execute in other program language such as C++.

4 Conclusion

This paper introduces a residual deep plug-and-play denoising
method for LDCT image denoising. We first explain the principles
of plug-and-play noise reduction for LDCT, followed by solving the
corresponding energy function using the half-quadratic splitting
algorithm, which leverages the strengths of the plug-and-play
framework. This modular approach is particularly effective for
LDCT image denoising, making the proposed DRBNet prior well-
suited for this task. Additionally, the denoiser prior can be integrated
into a plug-and-play framework for LDCT denoising. Our extensive
experimental results validate the effectiveness and feasibility of the
deep denoiser-based plug-and-play method for LDCT. It is worth
noting that there are opportunities for further enhancement, such
as integrating other types of deep learning-based image priors, such
as deep generative priors or discriminative priors, to improve LDCT
denoising performance.
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