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Integrity monitoring is crucial in applications closely related to the safety of
human life and property, such as aviation, maritime navigation, autonomous
driving, and rail transportation. Receiver autonomous integrity monitoring
(RAIM) has attracted significant attention due to its comprehensive monitoring
coverage and fast alerting capability. The paper provides a comprehensive
review of RAIM algorithms for global navigation satellite system (GNSS)
positioning applications. The parameters related to integrity assessment and
typical fault detection and exclusion methods are reviewed, and RAIM is
categorized into three types of methods: error probability distribution model-
based, set representation-based, and machine learning-based. The latest state-
of-the-art research, along with the strengths and shortcomings of each type
of method, is presented for each type. The opportunities for the future
development of RAIM are analyzed in the light of current challenges and existing
results, aiming to promote further research and provide effective assurance for
GNSS integrity.
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1 Introduction

The global navigation satellite system (GNSS) offers many advantages, such as all-
weather, all-time, and global coverage, providing accurate and extensive positioning,
navigation, and timing services for aviation [1], maritime navigation [2], railway transport
[3], and autonomous driving [4]. Among these, integrity is one of the key criteria for
evaluating GNSS performance. It is used to assess the trustworthiness of the navigation
system, and its concept originally came from the field of aviation, aiming to provide highly
reliable navigation and positioning information for civil aviation users.With the widespread
application of GNSS in fields closely related to the safety of human lives and property, the
concept of integrity has been expanded to other areas and has attracted much attention.

Integrity is defined as the ability to alert the user in a timely manner when the
performance of the navigation information provided by GNSS fails to meet specified
requirements [5, 6]. In January 2024, two ship groundings occurred in the Israeli ports
of Haifa and Ashdod, as a result of excessive global positioning system (GPS) positioning
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FIGURE 1
Faults or anomalies that may threaten integrity.

deviation but the receivers did not warn the crews in time [7],
which shows that safeguarding GNSS integrity is crucial for the
safety of human lives and property. On the other hand, due to
the vulnerability of the GNSS signals themselves, they are highly
susceptible to jamming and spoofing. On 6 September 2024,
OPSGROUP, an organization of aviation practitioners, compiled
statistics on GPS spoofing in civil aviation, and the data showed
that in the first three-quarters of 2024, an average of up to 1,500
flights were subjected to GPS spoofing every day [8]. The frequent
occurrence of jamming and spoofing events will seriously weaken
GNSS integrity, at the same time, ephemeris and clock failures,
ionospheric and tropospheric fluctuations, and common multipath
and non-line-of-sight (NLOS) signals in urban canyons may pose
a threat to GNSS integrity, leading users to incorrectly believe
and adopt navigation information with excessive errors, which
can jeopardize the safety of human life and property. Therefore,
providing accurate and reliable integrity services for GNSS users is
an urgent issue, and integrity monitoring of GNSS is crucial and
irreplaceable.

Depending on the stage of implementation of integrity
monitoring, it can be divided into system-level and user-level
methods. System-level methods rely on integrity information
broadcast by satellite-based or ground-based monitoring stations.
User-level methods, on the other hand, do not rely on external
information or facilities, but only utilize their own redundant
measurement information for integrity monitoring [9], and their
main means of implementation is receiver autonomous integrity
monitoring (RAIM). As shown in Figure 1, RAIM is theoretically
able tomonitor faults and abnormalities in the space segment, signal
propagation segment, and user segment, with a comprehensive
monitoring scope. Additionally, because RAIM is directly deployed
at the user terminal, it can respond quickly to all kinds of faults and
alert the user in time, and the response speed is usually much better
than that of system-level integrity monitoring methods.

Several review works have summarized the research progress of
RAIM. For instance [5], focuses on the advancements of RAIM in
aviation [6], summarizes the integrity detection algorithms used in
urban canyon environments [9], systematically reviews the integrity
monitoring methods in GNSS and inertial navigation system (INS)

FIGURE 2
Navigation performance pyramid [6].

integrated navigation for autonomous driving applications, and [10]
highlights the progress in autonomous integrity monitoring within
multi-source fusion navigation. However, these works do not
provide a systematic overview of the more novel machine learning
(ML)-based and set representation-based RAIM algorithms.
Furthermore, many innovative developments in traditional RAIM
have emerged, which are not covered in the existing reviews.

Therefore, this paper systematically describes the state-of-
the-art RAIM algorithms for GNSS positioning applications. The
remaining chapters are organized as follows: Section 2 reviews the
parameters related to integrity assessment and typical fault detection
and exclusion (FDE)methods. Section 3 introduces the state-of-the-
art of three types of RAIMs: those based on the error probability
distribution models, set representation, and ML, respectively, and
analyzes the strengths and weaknesses of each. Section 4 examines
the future development opportunities for RAIM by considering
current challenges and existing research results. Finally, Section 5
provides conclusions and future outlooks.

2 Basic definition and theory

2.1 Integrity performance evaluation and
related parameters

Four metrics—accuracy, integrity, continuity, and
availability—are usually used to evaluate GNSS navigation
performance, and the relationship between them can be represented
by the navigation performance pyramid [6], as shown in Figure 2.

Among them, integrity is used to assess the trustworthiness of
GNSS, which ismeasured by a series of parameters such as alert limit
(AL), time to alert (TTA), integrity risk (IR), protection level (PL),
etc. [6, 11], taking the positioning application as an example, these
parameters are defined as follows:

AL: The maximum tolerable position error (PE), usually preset
according to user requirements. Different requirements often exist
in the horizontal and vertical directions, so it can be further divided
into horizontal alert limit (HAL) and vertical alert limit (VAL).
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TTA: The maximum tolerable time from when the PE exceeds
the AL to when the user receives an alert.

IR: The maximum tolerable probability that the PE exceeds the
AL but the user is not alerted within the TTA.This is usually given in
terms of per hour or per mile [9]. Alternatively, IR can be defined as
the maximum tolerable probability that RAIM fails to alert the user
in time in case of a position failure.

PL: Since PE is often difficult to calculate directly, PL is used to
represent the statistical bounds of PE. PL should fulfill the following
condition: when PE exceeds AL, the probability that PL is less than
AL should not exceed the specified IR, as shown in Equation 1.

P(PE > AL&PL < AL) ≤ IR (1)

PL is usually calculated by the user to determine the availability
of the navigation system, declaring the navigation system available
when PL < AL, and declaring the navigation system unavailable
and alerting the user when PL ≥ AL. Similar to AL, PL can be
further classified into horizontal protection level (HPL) and vertical
protection level (VPL) [6].

The relationship between the integrity parameters can be
more intuitively understood by using the Stanford Diagram [12],
as shown in Figure 3. When the system is working normally, PE <
PL < AL, corresponding to region ① in the figure. When PL ≥ AL,
RAIM will declare the navigation system unavailable and issue an
alert that the user should not trust the current navigation system,
corresponding to regions ③, ④, and ⑤ in the figure, where the
events in region ③ unnecessarily declares the navigation system
unavailable and reduces the availability.When the actual PE exceeds
PL, the navigation system provides misleading information to the
user, and the probability of its occurrence is called the probability
of misleading information PMI, corresponding to regions ②, ⑤,
and ⑥ in the figure. The events in regions ② and ⑤, only provide
misleading information and the system is not in a dangerous state,
but the events in region⑥, in which the PE still exceeds AL despite
the declaration of the navigation system’s availability, results in the
user mistakenly trusting the wrong navigation information and is
in a dangerous state, and its occurrence probability is called the
hazardous misinformation probability PHMI.

The RAIM algorithm should minimize the probability of events
in region ③ to improve system availability; and minimize PMI and
PHMI so that they do not exceed at least the preset IR to guarantee
integrity.

2.2 Typical fault detection and exclusion
method

RAIM usually requires fault detection, identification, and
exclusion based on redundant measurement information. This
subsection introduces several typical FDE methods to set the stage
for the subsequent introduction of RAIM algorithms.

2.2.1 χ2 test
The χ2 test [13], which is the most typical fault detection

method, constructs the residual in the least squares (LS) algorithm
or the innovation in the Kalman filter (KF) as a test statistic tk,
as shown in Equation 2:

tk = rTkS
−1
k rk (2)

FIGURE 3
Stanford Diagram [12].

In the equation, rk is the residual or innovation, Sk is its
covariance matrix, and k is the index of the measurement epoch,
assuming that themeasurement noise follows a zero-meanGaussian
distribution, tk will obey a central χ2 distribution under the fault-free
hypothesis H0 (fault-free case), and a non-central χ2 distribution
under the fault hypothesisH1 (faulty case), as shown in Equation 3:

tk ∼
{
{
{

χ2(d f) H0

χ2(d f,λ) H1

(3)

where d f is the degree of freedom of the χ2 distribution, depending
on the number of visible satellites, and λ is the non-centrality
parameter.

When tk is greater than the detection threshold Tk, the fault
hypothesis H1 is accepted to alert the user, and vice versa, the
fault-free hypothesis H0 is accepted. The false alarm rate PFA
and the missed detection rate PMD are usually set according
to the application requirements, and their relationship with Tk
is shown in Figure 4.

After a fault is detected by the χ2 test, the fault can be further
identified by the subset χ2 test [14], a method that recalculates the
test statistic by removing one satellite measurements in turn, and
ultimately selects the set of satellite measurements that passes the χ2

test with the smallest test statistic.

2.2.2 W-test
The w-test [15, 16] implements the FDE by performing

a mean-shifted Gaussian test on each component of the
normalized residual or innovation, and its test statistic is calculated
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FIGURE 4
Principle of the χ2 test.

as shown in Equation 4:

w(i)k =
||||

|

r(i)k

√S(i,i)k

||||

|

(4)

where r(i)k is the i-th component in the residual or innovation
rk, and S(i,i)k is the i-th diagonal element in its covariance matrix
Sk. If w(i)k exceeds the detection threshold N1−PFA/2(0,1), the i-th
satellite measurement is considered to be possibly faulty, and after
completing the test for all satellite measurements, the maximum
value exceeding the detection threshold is usually considered faulty
and excluded, after which the w-test is re-run to verify that no other
faulty measurements still exist. Typically, the w-test is used for fault
identification and exclusion when a fault is detected in the χ2 test.

2.2.3 Solution separation
The solution separation (SS) [17, 18] method is no longer

carried out in the range domain but directly implements fault
detection on the position domain and is able to synchronize fault
identification and exclusion. The computation process of its test
statistics is shown in Figure 5, It accepts the fault hypothesis Hi and
excludes the corresponding faultmeasurementwhen the test statistic
d(i)k exceeds the corresponding detection threshold D(i)k .

2.2.4 Likelihood ratio test
The likelihood ratio test [11] is able to give the optimal result

for hypothesis testing, using the ratio of the likelihood function of
themeasurement vector under opposing hypotheses to construct the
test statistic, as shown in Equation 5:

lk = ln(
p(yk ∣Hm)
p(yk ∣H0)

) (5)

In the equation, p(yk ∣H0) is the likelihood function under the
fault-free hypothesis H0, and p(yk ∣Hm) is the likelihood function
under the fault hypothesis Hm. In practical RAIM applications,
p(yk ∣Hm) is usually computed after excluding the measurement

under the corresponding fault hypothesis [19, 20], and this approach
is similar to the SS method, which can also be synchronized to
achieve FDE.

3 RAIM algorithms

RAIM algorithm usually consists of two modules: the FDE
module and the error bounding module. The FDE module
detects, identifies and excludes faulty measurements based on
the consistency checking principle using redundant measurement
information. For a single-constellation receiver, at least five visible
satellites are required to perform fault detection, and at least six
visible satellites are required to perform fault exclusion [6]. The
error bounding module is usually realized by calculating the PL,
which is calculated by the user according to the requirements of
the IR and other parameters, and compared with the preset al to
discriminate the availability of the navigation system in real time.
Currently, there are two main ways of calculating PL, one is to
quantify the PE caused by undetected faults in the FDE module, and
the other is to try to directly characterize the PE and then calculate
its statistical bounds. Figure 6 provides a typical flow of RAIM, and
it should be noted that not all RAIM algorithms strictly follow this
general flow, and some algorithms may include additional steps or
omit specific steps.

Initially, traditional RAIM algorithms relied on prior modeling
of the probability distribution of measurement errors or state
estimation errors, which in turn led to the derivation of the
probability distribution model of the test statistic for constructing
hypothesis tests and calculating PL. However, since error probability
distribution models are often difficult to build and validate
accurately, the performance of RAIM based on these models is
limited by the accuracy of the models, while RAIM based on
set representation sidesteps this challenge by no longer treating
errors as random quantities, but as unknown deterministic values.
In addition, the data-driven ML approach provides another way
of thinking for integrity monitoring, showing great potential and
advantages in complex scenarios that are difficult to handle with
traditional RAIM.

3.1 RAIM based on error probability
distribution model

RAIM based on the error probability distribution model is the
most widely used, which has the advantages of clear mathematical
expression and the detection threshold can be calculated by the
preset PFA. Many studies have further divided the RAIM into
snapshot scheme and filtering scheme, according to the number
of measurement epochs used. The snapshot scheme is based on
the current single-epoch measurement data only, and usually
employs the LS algorithm for navigation solution calculation; The
filtering scheme is based on current and historical measurement
data, and usually employs the filtering methods such as the KF,
extended KF (EKF), unscented KF (UKF) and the particle filter
(PF), among other estimation methods for navigation solution
calculation.
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FIGURE 5
Calculation flowchart of the SS method.

FIGURE 6
General RAIM algorithm flow [10].

3.1.1 Classic LS RAIM
The classic LS RAIM is one of the most typical snapshot

schemes. It models the pseudo-range error as a zero-mean Gaussian
distribution in the fault-free case, introduces a mean deviation for
the error distribution in the faulty case, and considers only the
single fault case. The classic LS RAIM includes the pseudo-range
comparisonmethod [21], the least squares residualmethod [22], and
the parity vectormethod [23].The equivalence of thesemethodswas
theoretically demonstrated by [24], where the parity vector method
employs an orthogonal transformation to convert residual vectors

into parity vectors, providing computational simplicity and high
efficiency in calculating test statistics [25].

In the FDE module, the classic LS RAIM employs the χ2

test for fault detection, which constructs the normalized sum of
squares of the pseudo-range residual vectors as a test statistic
as shown in Equation 2; after a fault has been detected, the w-test
is usually used to further identify and exclude fault.

In the error bounding module, Brown et al [26] pioneered the
approximated radial protection (ARP) algorithm for calculating the
PL, whose computational principle is shown in Figure 7 [13]; if the
measurement noise is ignored, there is a linear relationship between
the test statistic t and the horizontal PE (HPE), and different satellites
i have their own characteristic slope SLOPEi [27], assuming that
the HPE caused by the failure of a single satellite is certain, the
corresponding test statistic t is the smallest when the failure occurs
on the satellite with the largest characteristic slope SLOPEMAX,
making the failure most difficult to be detected. Based on this
assumption, the calculation method of HPL is given as shown in
Equations 6, 7:

HPL = SLOPEMAX · √λmin · σ (6)

PMD =
Tk

∫
0

fχ2(n−4,λmin)
(x)dx (7)

In the equation, σ is the standard deviation of the measurement
noise, and λmin is the minimum non-centrality parameter required
to satisfy the specified PFA and PMD. This parameter can be can be
calculated according to Equation 7, where n is the number of visible
satellites.

Since the ARP algorithm ignores the effect of measurement
noise, in this regard, Sang and Kubik [28] proposed an improved
ARP algorithm by incorporating a term related to measurement
noise to the PL calculation.The calculation principle is also shown in
Figure 7 [13], when themeasurement noise is ignored, theminimum
detectable fault corresponds to point A in the figure, when the
measurement noise is taken into account, the distribution of the
test statistic t and the HPE will be elliptical, and the center of the
ellipse corresponds to point B in the figure. The HPL is thus divided
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FIGURE 7
Principle of PL calculation in classic LS RAIM [13].

into bias term and noise term, as shown in Equations 8, 9. The bias
term is calculated using the typical ARP algorithm, and the noise
term is calculated by multiplying the expansion factor k and the
standard deviation σH of the HPE, which is borrowed from the
kSigma algorithm commonly used in themonitoring of system-level
integrity [29].

HPL = SLOPEMAX · pbias + k · σH (8)

pbias = √λmin · σ (9)

In the equation, k is the expansion factor related to PMD, and σ
is the standard deviation of the measurement noise.

3.1.2 Advanced RAIM and relative RAIM
Classic LS RAIM is unable to meet the high integrity

requirements of the precision approach phase of civil aviation.
In response, the GNSS Evolutionary Architecture Study (GEAS)
Panel developed advanced RAIM (ARAIM) algorithm [30–34].
Compared with the classic LS RAIM algorithm, ARAIM has several
advantages, including the ability to detect and recognize multi-
faults, applicability to multi-constellation GNSS, the ability to
monitor integrity in the vertical direction, and the capability to
eliminate the first-order ionospheric delay using dual-frequency
measurements.

ARAIM employs the Multiple Hypothesis Solution Separation
(MHSS) [35, 36] algorithm for FDE, which allows for multi-faults
detection by additionally considering multi-faults scenarios on top
of the traditional SS method. In addition, ARAIM assigns a specific
PFA and PHMI values to each fault hypothesis, performs independent
hypothesis testing and PL computation, and assigns a specific PHMI
to the fault-free hypothesisH0 for the computation of PL in the case
of fault-free. Ultimately, it takes the maximum value as the final PL.
The detailed algorithm of ARAIM can be found in [37].

The ARAIM algorithm relies on periodically received integrity
support messages (ISM) [38]. To guarantee integrity over longer
reception intervals, relative RAIM (RRAIM) has been proposed
[30, 39]. The RRAIM algorithm employs a time-differenced carrier
phase measurement, defining the epoch of the received ISM as the
initial time, and defines the interval from the current epoch back
to the initial time as the coasting time. The algorithm combines the
pseudo-range of the initial time and the variation of the carrier phase
within the coasting time to construct a new measurement model,
which employs a residual-based χ2 test for fault detection. Similar to
ARAIM, PL is calculated under each hypothesis separately, and the
maximum of all results is taken as the final PL [40]. pointed out that
system availability is closely related to the length of the coasting time,
with the best availability achieved when the coasting time is around
1 min; after this, availability gradually decreases with the extension
of the coasting time.

So far, there are still ongoing research efforts aimed at
improving to the ARAIM algorithm to improve its performance,
and these improvements are mainly focused on the following
four aspects:

1) When the number of visible satellites is large and the
maximum number of faults (the hypothesis that the number
of faults is greater than this value is ignored) is large, the
computational burden of ARAIM increases significantly, so
there are researches aiming to improve its computational
efficiency.

2) The traditional ARAIM algorithm assigns PFA and PHMI fixed
to each fault hypothesis Hi, and simply averages them for the
same type of fault hypotheses, in this regard, some studies
have proposed to optimize the allocation of PFA and PHMI to
improve the availability.

3) ARAIM also models the measurement errors as Gaussian
distributions and obtains parameters such as the mean and
variance of the error model based on the ISM parameters, and
some studies aim to improve the performance of ARAIM by
accurately calculating the model parameters or improving the
error model.

4) The traditional ARAIM is based on pseudo-range only, in
view of the high accuracy advantage of carrier phase, some
studies have adopted carrier phase measurement on the basis
of ARAIM framework.

This paper summarizes the latest ARAIM improvement studies
in the above four aspects as shown in Table 1.

3.1.3 KF-based RAIM
The above two types of methods belong to the category of

snapshot scheme, which only uses single-epoch measurements, and
can quickly detect step errors, but the detection ability of slowly
growing errors (SGEs) is seriously insufficient; in addition, they are
only applicable to receivers that use the LS algorithm for navigation
solving, and can not be applied to the real time kinematic (RTK) or
precise point positioning (PPP) receivers that have to use filtering
methods such as KF. The KF-based RAIM (KF-RAIM) algorithm
introduced next can well solve the above problems. Traditional KF-
RAIM borrows from the classic LS RAIM and employs residuals or
innovations for FDE, such as autonomous integrity monitoring by
extrapolation (AIME) [52, 53], extended RAIM (ERAIM) [54, 55],
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TABLE 1 Status of ARAIM improvement research.

Category of improvement Overview of the approach Comment References

Improve computational efficiency

Since satellites in the same orbital plane
are subject to similar disturbing force,
using the orbital plane as a unit instead
of satellites in MHSS can effectively

reduce the number of subsets

Since measurement errors are not only
related to the orbital plane, they can

affect the FDE capability

[41]

A feedback structure with probability
Accumulation scheme is proposed to
synchronize hypothesis testing and

error bounding so as to avoid
redundant subset computation

Reduced computation time by nearly
40% and was able to increase system

availability somewhat

[42]

By solving for the subset error
covariance matrices upper bounds, it

avoids the need to compute each subset
one by one

Reduce computation by more than 95% [43]

Propose a fault grouping strategy to
merge a larger number of double fault
subsets into a constellation fault subset.

Reduce computation by more than 90% [44]

Optimize PFA and PHMI allocation

The problem is transformed into an
optimization problem under

constraints, and a search algorithm for
the optimal configuration is provided

based on sequential quadratic
programming

Availability is effectively improved, at
some computational cost

[45]

Solving optimal allocation
configurations using dynamic particle

swarm optimization algorithm

Availability is effectively improved, but
computationally expensive

[46]

Assign larger PHMI directly to fault
hypotheses with suboptimal satellite

geometry

Availability is improved with little or no
computational cost

[47]

Optimization error model

The non-Gaussian and correlation
components of the measurement errors

are taken into account, and the
position-domain Gaussian

overbounding method is used to model
the PE.

Availability is improved [48]

Calculation of residual tropospheric
delay variance using the general

extreme value (GEV) analysis method
for accurate calculation of pseudo-range

variance parameters in the ISM.

Availability is improved [49]

Estimating receiver noise variance
using least square variance component

estimation (LS-VCE) method

Availability is improved, but results in
increased PMI

[50]

Introducing carrier phase Applying ARAIM algorithm in
single-epoch precise point positioning
based on real-time kinematic networks

(PPP-RTK) framework

PL reach meter and even sub-meter
level, with significant increase in

availability

[51]

and other typical algorithms. AIME constructs the normalized sum
of squares of the innovations rk as the test statistic s2k, and to improve
the detection of SGEs, performs a weighted average within a sliding
time window, as shown in Equations 10–12:

s2k = (r
T
avg)(S

−1
avg)(ravg) (10)

ravg = (S−1avg)
−1

k

∑
j=k−τ+1

S−1j rj (11)

S−1avg =
k

∑
j=k−τ+1

S−1j (12)
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where τ is the time window length, rj is the innovation, and Sj is
its covariance matrix. The detection delay of the AIME algorithm
for the SGEs is inversely proportional to its growth rate, in order
to further reduce the detection delay, Bhatti and Ochieng [56]
proposed a rate detection method, which adds a KF based on the
AIME algorithm to monitor the rate of change of s2k, reducing the
SGEs detection delay by more than 33%.The ERAIM algorithm
[54, 55], on the other hand, combines the predicted state vectors
and measurement vectors in the KF, constructs a new measurement
model and calculates the residuals, which in turn is used for the
FDE using the χ2 test and the w-test. In addition, the correlation
coefficients between the test statistics are also calculated by ERAIM,
which is used to analyze the separability of the faults.

Carrier phase measurements are usually several orders of
magnitude more accurate and more robust to noise compared to
code measurements. Therefore, Feng et al. [57] developed carrier
phase-based RAIM (CRAIM) using innovations to guarantee the
integrity of relative positioning, and Schuster et al. [58] further
utilized CRAIM for RTK positioning. The CRAIM algorithm uses
the double difference of pseudo-range, wide lane, and carrier phase
measurements as the EKF measurements, estimating the ambiguity
of whole cycles as states to assist in ambiguity resolution. In addition,
CRAIM can use the carrier phase measurements to construct a
specialized test statistic for detecting cycle slip faults. Addressing
the lack of fault identification capability in the CRAIM algorithm,
Liu et al. [59] further proposed an extended w-test method with
multi-fault detection and identification capability.

In addition to the KF-RAIM based on residuals or innovations,
the KF-RAIM based on SS is also widely used [17]. Its test statistics
are computed as shown in Figure 4, featuring the unique capability
of using both main filter and sub-filters to compute the full solution
x̂(0)k and sub-solution x̂(i)k in parallel. However, the method proposed
in [17] lacks multi-fault detection capability and cannot detect INS
fault in GNSS/INS integrated navigation. To address this problem,
Bhatti et al. [60] proposed a FDE method using a multi-stage
parallel subset filter based on the MHSS, which can detect and
identify double faults, including INS fault. Zhang et al. [61] further
improved the filter bank scheme so that it can be applied to carrier
phases for integrity monitoring in PPP, and noting that periodic
initialization of the filters can reduce the maximum number of
faults that need to be considered, thereby effectively reducing the
computational burden.Meng et al. [62], instead of adopting the filter
bank scheme, consider the new measurement model constructed
in ERAIM as a “pseudo-snapshot” model, and then use the least
squares form of the SS method to compute the full solution x̂(0)k
and the sub-solution x̂(i)k , which reduces the computational burden
to some extent. Gao et al [63] further applied this method to
integrity monitoring in RTK positioning and used it to detect fault
ambiguity solution.

In terms of error bounding, the innovation or residual-based
KF-RAIM divides the PL into a noise term and a bias term [64],
where the noise term represents the upper bound of the PE caused
by the noise, and the bias term represents the upper bound of the PE
caused by measurement bias. In contrast, the SS-based KF-RAIM
directly takes the detection threshold D(i)k in each fault hypothesis
Hi as a bias term, as shown in Equation 13:

PLk =max
i
{a(i)k +D

(i)
k } (13)

where the noise term a(i)k can be solved based on PMD and the state
covariance matrix of each sub-filter. Tanil et al. [65] compared the
above two types of methods in GNSS/INS integrated navigation
in an urban environment, and the results showed that when the
number of visible satellites is more than four, the KF-RAIM based
on the SS method has a smaller PHMI, but the computational burden
is heavier.

In view of the high accuracy of carrier phase measurements,
the PL calculated by KF-RAIM with the introduction of carrier
phase is significantly smaller, reaching meter or even sub-meter
level. This improvement enhances the availability of the system, and
the experimental results of Schuster et al. [58] show that the HPL
calculated by the CRAIM algorithm is in the range of 0.5 m in the
case of fault-free. In addition, since carrier phase measurements
usually require a ratio test [66] to verify whether the ambiguity of
whole cycles is correctly fixed, Li et al. [67] introduced the concept of
completeness to the ambiguity validation by defining an ambiguity
protection level. When the ambiguity protection level exceeds the
ambiguity alarm threshold, the ambiguity validation is considered
to have failed, and an alarm is generated.

Since KF and EKF are always limited by Gaussian error
models, the actual measurement error and state estimation error
are affected by various factors such as receiver motion, linearization
modeling errors of nonlinear models, and residual tropospheric
and ionospheric errors. As a result, the Gaussian assumption is
not appropriate, leading to inherent limitations in KF-RAIM [68].
In response to this challenge, some studies have begun to explore
KF-RAIM based on non-Gaussian error models.

Madrid et al. [69] proposed an integrity monitoring scheme
called Kalman integrated protection level (KIPL) based on the
isotropy assumption (the residual vector points in any directionwith
equal probability over the measurement space) [70]. The approach
models the measurement error as a Student’s t-distribution, which
in turn leads to the derivation of a Student’s t-distribution model
for the state estimation error, which ultimately allows for the
computation of the PL based on the preset IR. Validation results
from Gottschalg et al. [71] show that the HPL calculated by KIPL is
smaller compared to that calculated by traditional KF-RAIM under
the same IR requirement. Wang et al. [72] further extended this
algorithm for application in PPP. Similarly, Shao et al. [68] used
a robust KF based on the Student’s t distribution [73] for state
estimation, which models both measurement and process noises as
student’s t-distributions. This method uses a variational Bayesian
approach to approximate the state estimation error as a Gaussian
distribution for calculating the PL [68]. also discusses multi-faults
detection and identification schemes accordingly.

3.1.4 PF-based RAIM
PF allows better state estimation in nonlinear systems and

non-Gaussian noise conditions, eliminating the Gaussian noise
assumption restriction found in traditional KF-RAIM. Moreover,
the posteriori particle ensemble of PF provides a new approach for
error bounding.

Li and Kadirkamanathan [74] were the first to propose the
introduction of the likelihood ratio test in PF to achieve fault
detection. Based on this, some studies [20, 75, 76] borrowed the
concept of the SS method and used the likelihood ratio test for
integrity monitoring by constructing a parallel filter bank. They
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calculated the cumulative log-likelihood ratio LLR(i)k in the time
window under different fault hypothesis Hi as a test statistic, as
shown in Equation 14:

LLR(i)k =
k

∑
j=k−τ+1

ln(
∑N

r=1
p(z j|x

(i)
j (r))

∑N
r=1

p(z j|x
(0)
j (r))
) (14)

where τ is the time window length, k denotes the current epoch, i
is the fault hypothesis index, r is the particle index, N is the total
number of particles, p(z j|x

(i)
j (r)) and p(z j|x

(0)
j (r)) are the likelihood

functions under the fault hypothesisHi and the fault-free hypothesis
H0, respectively.Themaximumvalue of LLR(i)k is usually taken as the
test statistic. The fault detection threshold of this method typically
needs to be selected empirically, for this problem, He et al [77]
proposed to optimize the computation of the detection threshold
using a genetic algorithm.

The above fault detection methods require several parallel PFs,
which can impose a significant computational burden in the case
of a large number of visible satellites. To address this, Han et al.
[78] proposed constructing the test statistic using the measurement
residuals vector corresponding to the particle of maximum weight,
pointing out that the correlation between the residual vector
and the satellite projection vector can be used to identify faulty
satellites. Hafez et al. [79] proposed constructing the test statistic
using the weighted average measurement predicted value of the
particle ensemble.

The error bounding method of PF-RAIM is more special,
evaluating the actual IR based on the a posteriori set of particles
to achieve error bounding, known as Bayesian RAIM (BRAIM)
[80]. BRAIM calculates the error of each particle state with respect
to the a posteriori estimation and accumulates the weights of
the particles whose errors exceed the AL to obtain the estimated
integrity risk. This risk is then compared with the preset IR to
determine availability, as illustrated in Figure 8 [81]. Gabela et al.
[82, 83] further improved this scheme by introducing spatial feature
constraint information to assist the weight update step in PF.
Empirical results show that with the HAL set to 5 m and the IR
requirement specified, the navigation system’s availability exceeds
99%, regardless of whether the measurement noise is modeled
as a Gaussian model or a three-component Gaussian mixture
model (GMM).

However, the integrity risk estimated by BRAIM is only the
empirical risk based on the set of particles, which has limitations.
Because the number of particles in the PF is always limited, it
does not fully reflect the state posterior distribution, leading to
some underestimation of the estimated integrity risk. Regarding
this problem, Gupta et al [81, 84] proposed an improved BRAIM
algorithmbased on probably approximately correct- Bayesian (PAC-
Bayesian) theory, which introduces the divergence risk to quantify
the uncertainty caused by the above problem, and derives a
method for calculating the upper bound on IR, which is also
schematically shown in Figure 8 [81]. Additionally, this study
models the measurement noise as a GMM while employing the
expectation-maximization (EM) algorithm to determine the model
parameters, thereby reducing the difficulty of model parameter
estimation.

On the other hand, the particle impoverishment problem, i.e.,
reduced particle diversity, arises from the resampling operation in

PF, which affects the performance of PF-RAIM. In this regard,
several studies have proposed improvements to address particle
impoverishment, including: introducing a Markov chain Monte
Carlo (MCMC) moving step for each particle [75, 85], utilizing
selection, crossover, and mutation operations in genetic algorithms
to replace the traditional resampling method [86], employing
backpropagation neural network (BPNN) to adjust the particle
weights [87], and using chaotic particle swarm optimization
algorithms to increase particle diversity [20].

3.1.5 Brief summary
Table 2 provides a comparative analysis of different RAIM

algorithms based on the error probability distribution model.
Among them, the snapshot scheme can quickly detect step errors;
however, due to its reliance on only a single epoch measurement,
its detection capability is seriously insufficient for SGEs caused by
aging satellite equipment or clock drift. In this regard, some studies
[88, 89] have improved the snapshot scheme by averaging the test
statistics within a sliding time window to enhance SGEs detection
capability. Additionally, the filtering scheme can be easily integrated
with the INS, and the additional redundant information provided
by the INS can effectively improve the system’s availability. However,
the introduction of the INS also brings an additional source of
integrity risk.

3.2 RAIM based on set representation

Traditional RAIM always assumes that the error probability
distribution model is known, but in practice, there are significant
challenges in the accurate construction and validation of the error
probability distribution model. RAIM based on set representation is
able to get rid of the limitation of traditional statistical distribution
models, and this type of approach treats the error as an unknown
deterministic value, aiming to construct the set characterizing the
state estimation error by determining the uncertainty intervals of the
error, which is used for further FDE and error bounding.

3.2.1 FDE module
In the FDE module [90], proposes an innovative fault detection

strategy based on set representation theory, converts the navigation
problem into a convex polytope solving problem by applying the
uncertainty interval [−e,e] of the observation error to the observed-
minus-computed values (OMC) vector y as shown in Equation 15.

y − e ≤ Aδx ≤ y + e (15)

In the above equation, A is the design matrix and δx is the
state estimation vector. It has been shown that the volume of the
polytope is negatively correlated with the degree of consistency of
the measurements, therefore, a decrease in the volume predicts an
increase in the probability of the existence of fault measurements,
which in turn leads to the proposal of a new inconsistency metric
that warns the user when it exceeds a threshold value. In addition,
when the fault value is large, the polytope will be the empty set, so
some studies also directly achieve fault detection by determining
whether the set of polytope characterizing the state estimation error
is empty [91, 92], it is worth noting that [91] compares this method
with the traditional classical LSRAIMandARAIMalgorithms based
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FIGURE 8
Braim and improved BRAIM Schematics [81].

on the SS method, under the assumption of Gaussian noise were
compared, but found to be inferior to the traditional methods in
terms of fault detection rate and PHMI metrics [92]. further proposed
a corresponding fault identification and exclusion scheme based on
the SS idea on the basis of this method.

3.2.2 Error bounding module
The advantage of RAIM based on set representation is reflected

in the error bounding module, which can compute the set
characterizing the state estimation errors in real time. Among many
studies, a special polytope, namely, the zonotope, has been widely
chosen as a set representation of the state estimation errors due
to its favorable mathematical properties (e.g., Minkowski sum,
linear transformation) [93]. The zonotope ℤ was first used by
Combastel [94] to characterize the state estimation errors δx, which
is defined as:

ℤ =< c,H >= {δx ∈ ℝn ∣ δx = c+Hb|‖b‖∞ ≤ 1} (16)

in Equation 16, c ∈ ℝn is called the center vector,H ∈ ℝn×m is called
the generation matrix, and m is the order of the zonotope ℤ.
By adjusting the order m, the number of faces and the shape of
ℤ can be changed, making it more flexible in characterizing the
state estimation errors. Usually, zonotope is used in combination
with filter estimation methods. Liu et al. [93] used zonotope for
error bounding and PL calculation in tightly coupled GNSS/INS
navigation systems, and pioneered the use of the extendedH-infinity
filter (EHF), which treats the noise as an unknown deterministic
quantity instead of a random quantity, to replace the traditional
EKF for state estimation. And the validation results show that the

proposed method has higher system availability and lower PMI than
the traditional KF-RAIM.

Referring to the [93, 95], this paper summarizes the generalized
flowchart of error bounding based on zonotope set representation
at the k-th epoch in Figure 9. It is worth noting that, as epoch
k advances, the order of the zonotope set characterizing the
state estimation error will increase, which will generate a huge
computational burden and affect the real-time performance of the
algorithm, in this regard [93], proposes an order limitation scheme
based on the zonotope reductionmethod, with the upper limit of the
order being customized by the user, and experimentally explores the
effect of the order on the computational time and PL.

In addition to the above studies using the standard zonotope set,
there have been some studies using variants of the zonotope for error
bounding.Ashraf et al. [95] proposed to use constrained zonotope to
characterize the state estimation error, whichmakes the geometry of
the set more closely match the actual state space and further reduces
the conservatism of error bounding. Shetty et al. [96], on the other
hand, chose to adopt probabilistic zonotopes as a set representation
tool while still assuming that the measurement errors and process
errors follow aGaussian distribution.This allows the state estimation
error set to be solved according to the preset confidence level;
however, there are some limitations, as the Gaussian distribution
assumption is not strictly valid. Additionally [96], employs urban
3D maps and ray-tracing to determine multipath errors uncertainty
intervals, in turn, the uncertainty interval of the measurement
errors is determined. Su et al [92, 97], on the other hand, proposed
an extended point confidence region for characterizing the state-
domain error set, which uses a zonotope set to quantify the impact
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TABLE 2 Comparative Analysis of RAIM based on error probability distribution model.

Category Algorithm Input data FDE method Advantages Disadvantages Ref.

Snapshot Scheme

Classic LS RAIM GNSS Code χ2-test, w-test Low computational
burden

Single-constellation
only; no multi-fault

detection and
identification
capability

[21–23, 26, 28]

ARAIM GNSS Code
ISM

MHSS Suitable for
multi-constellation,

can detect and
identify multi-fault

High computational
burden when the
maximum number
of faults is large

[30–34]

RRAIM GNSS Code,
Time-Differenced

Carrier Phase

χ2-test Can ensuring the
integrity of ARAIM
in the ISM reception

interval

Performance is
limited by the length

of coasting time

[30, 39]

Filtering Scheme

AIME GNSS Code χ2-test, rate
detection method,

w-test

Strong detection
capability for SGEs

Performance is
strongly correlated
with the length of
the time window

[52, 53]

ERAIM GNSS Code, INS χ2-test, w-test Can detect and
identify multi-fault

INS measurements
must be required

[54, 55]

CRAIM GNSS Code, Carrier
Phase

χ2-test, extended
w-test

System availability is
very high

Need to consider the
ambiguity of whole

cycles

[57, 58]

SS KF-RAIM GNSS Code
(optional: Carrier

Phase, INS)

MHSS Can detect and
identify multi-fault

Multiple parallel
filters are often
required, high
computational

burden

[17, 60–63]

KIPL GNSS Code
(optional: Carrier

Phase, INS)

N/A Error probability
distribution is

modeled as Student’s
t-distribution, high

availability

No ability to detect
and identify fault

[69, 71, 72]

PF-RAIM GNSS Code
(optional: INS)

likelihood ratio test Can escape the
limitation of the
Gaussian noise
assumption

Performance is
limited by the

number of particles,
high computational

burden

[20, 75, 76, 80–83]

caused by systematic errors, and at the same time uses the traditional
confidence ellipsoid or ellipsoid set to quantify the impact caused by
stochastic errors, and finally take the Minkowski sum of the two sets
as the final set of state estimation errors.

3.2.3 Brief summary
At present, there are not many studies on RAIM based on set

representation. Theoretically, this approach does not rely on the
error probability distribution model; however, many studies still
use the traditional Gaussian distribution assumption to determine
the error uncertainty interval based on the preset confidence
level. Only some studies have discussed the determination of
measurement error intervals, such as those for multipath errors [92,
96] and residual tropospheric and ionospheric errors [98]. These
studies cover only part of the measurement errors and lack the

determination of process error intervals. There have been studies
using ML methods to estimate pseudo-range errors [99, 100],
suggesting that attempts could be made to predict the uncertainty
intervals of pseudo-range errors with the help of ML, which may be
a direction for further research in the future.

3.3 ML-based RAIM

ML-based RAIM (ML-RAIM) has great potential and
advantages, as it can effectively address the challenges posed by
nonlinear systems and non-Gaussian noise, and it supports integrity
monitoring in complex scenarios where it is difficult to model error
probability distributions in traditional RAIM (e.g., urban canyon).
In addition, sinceML-RAIMmostly follow the idea of characterizing
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FIGURE 9
Generalized flowchart of error bounding based on zonotope set representation.

the PE in calculating the PL, it makes the two modules of FDE and
error bounding relatively independent of the study.

3.3.1 FDE module
According to whether the training data need labels, ML

algorithms can be classified into two main categories: supervised
learning and unsupervised learning. Supervised learning relies on
labeled datasets for training, while unsupervised learning does not
require data labels.

In terms of supervised learning research, it can be categorized
as traditional pattern recognition, traditional neural networks, and
deep learning based on theML algorithms employed in the research.
Traditional pattern recognition methods with inherent advantages
such as high interpretability and fast training speed are widely used
to detect and identify faulty measurements, especially for NLOS
signals [101]. used support vector machine (SVM) algorithm to
classify LOS signals and NLOS signals, and six commonly used
features were analyzed, and it was found that the feature of pseudo-
range residuals had no significant contribution [102]. systematically
evaluated the detection effectiveness of various ML algorithms
under different fault thresholds and found that the k-nearest
neighbor (KNN) algorithm exhibits an optimal fault detection rate.

Compared to single models, ensemble learning has good
robustness and stability by combining the prediction results of
multiple base learners. Comparative studies in [103] have shown
that boosting and bagging ensemble learning algorithms exhibit

better performance in NLOS signal detection compared to single
models such as support vector regression (SVR), KNN and gradient
boosting decision tree (GBDT). Among them, the random forest
(RF) algorithm with Bagging strategy performs most prominently.
Based on RF algorithm [104], used factor analysis to aggregate
the original features into three more interpretable common factors,
which improved computational efficiency by about 30%. While the
base learner of the above two types of ensemble learning is limited
to the same class of models [105], innovatively detects NLOS signals
based on the stacking ensemble learning (SEL) algorithm, which
supports the use of different classes of models as the base learner.
It achieves better generalization ability in different scenarios such as
static, low-speed, and high-speed dynamic.

Many studies have also used traditional neural network (NN)
algorithms with relatively simple structures for FDE [106]. directly
predicts the receiver fault rate based on multi-layer perceptron
(MLP) algorithm and alerts the user when the prediction exceeds a
specified threshold [107], proposes a NLOS signal detection scheme
based on the MLP algorithm, which effectively improves the PPP-
RTK positioning accuracy.

Among the traditional NN algorithms, radial basis function
neural network (RBFNN) has received a lot of attention from
researchers due to its fast training speed and applicability to
small sample datasets. Zheng et al. [108] used probabilistic neural
network (PNN), which is an RBFNN integrated with Bayesian
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theory, to propose a fault detection scheme that employs a
particle swarm optimization algorithm to compute a specific fitness
function, ensuring the preset PFA and PMD [108]. also proposed
a novel dataset acquisition method to generate training data
by sampling the position error distribution in fault and fault-
free modes according to the variance inflation model. Huang
et al. [109] also used a similar method to acquire training data,
employing nonparametric estimation-based neural network (NE-
NN) for fault detection and combining it with the SS method for
fault identification. Wu et al. [110] similarly proposed a PNN-based
fault detection and identification method characterized by the use
of single-satellite multi-epoch pseudo-range residuals as feature
vectors, which has higher sensitivity compared to classic LS RAIM.

Deep learning algorithms consist of multi-layer NNs that
can automatically learn and extract higher-order features from
the data and have high generalization ability. Zhu et al [111]
enriched and enhanced one-dimensional features within a time
window into two-dimensional features and proposed an NLOS
signal detection scheme based on convolutional neural network
(CNN). Sun et al [112] used a long short-term memory (LSTM) for
fault detection, and specially designed a loss function to synthesize
the advantages of the snapshot scheme and the filtering scheme,
thus improving the detection performance for small magnitude
step errors and SGEs [113]. used Hopfield network for NLOS
signals detection, and the experimental results show that accuracy is
effectively improved compared with traditional SVM and gradient
boost machine (GBM) algorithms.

In addition, it has been found that the emergence of NLOS
signals has obvious spatiotemporal correlation [114–116], and the
self-attention mechanism is able to capture long-range dependence
and global contextual information by calculating the relational
weights between any two elements in the sequence. Therefore [116],
proposed a dual self-attentionmechanism (DSN)model to construct
two self-attention channels to extract spatial environment features
and signal time features, respectively; the former inputs the feature
data of allmeasurements, while the latter inputs the historical feature
data of the target measurement, which significantly improves the
detection effect of NLOS signals.

On the other hand, in order to cope with the difficulty of
adapting the trained model to new environments, and to further
improve the model generalization ability [115], further introduced
the Siamese neural network architecture based on DSN model, so
that the model can be quickly adapted to new environments under
the condition of few-shot labeled data. Similarly, Sun et al [117, 118]
also proposed a continuous learning-based NLOS detection scheme
based on LSTM model, and the experimental results show that
the proposed method improves the NLOS signal detection rate by
5%–12% in new environments compared with the traditional model
fine-tuning scheme. Table 3 summarizes the above supervised
learning-based FDE studies for comparison.

Compared to supervised learning, FDE methods based on
unsupervised learning do not rely on acquiring difficult labeled
data and are able to cope with fault types that do not occur
during training. The current research can be divided into two
categories, one method is based on traditional clustering or single
classification algorithms, and the other method is based on deep
learning reconstructed models.

In the field of research based on traditional clustering or
one-class classification algorithms, Xia et al [119] used the
hierarchical density-based spatial clustering of applications with
noise (HDBSCAN) algorithm to cluster and identify fault [120,
121]. compared three clustering algorithms, k-means, Gaussian
mixed clustering and fuzzy c-means, and found that the k-means
algorithm has the optimal performance in identifyingNLOS signals.
Wang et al. [122] proposed a fault detection scheme based on the
one-class support vector machine (OCSVM) algorithm, which uses
only the data from the fault-free case as the training dataset. A fault
is detected when the similarity measure of the OCSVM outputs is
less than a specified threshold.

Another type of fault detection principle based on deep learning
reconstruction model is: using the data in the fault-free case
to train the model with data reconstruction ability, when the
difference between the model output and the real sample is too
large, it indicates that there is a fault. Kim et al. [123] utilized a
time-delayed neural network (TDNN) to make predictions based
on historical test statistics and compared them with the current
test statistics for fault detection. Gogliettino et al. [106] proposed
an autoencoder-based fault detection scheme by calculating the
difference between the input data and the reconstruction results
from the autoencoder, determining that it is a faulty case when
the difference exceeds a specified threshold. Shen et al. [124]
proposed a combination of a generative adversarial network (GAN)
and a recurrent neural network (RNN) for GNSS/INS integrated
navigation integrity monitoring. The verification results show that
the detection performance for small magnitude step errors and
SGEs is improved compared to traditional KF-RAIM; however,
this method assumes that the INS is always fault-free and ignores
the potential fault risk of the INS. Table 4 summarizes the above
unsupervised learning-based FDE studies for comparison.

3.3.2 Error bounding module
In terms of error bounding studies [109], borrowed the idea of

PL calculation from the classical LSRAIMalgorithm, i.e., to quantify
the effect of undetected faults on PE, and proposed to calculate the
maximum PE caused by undetected faults in the FDE module based
on the search strategy, and then obtain the PL.

In addition, some studies have chosen to use ML algorithms to
directly predict PL. Mendonca et al [125] proposed to use decision
tree (DT) and NN algorithms to directly predict PL respectively,
both of which have smaller PHMI compared to the traditional
KF-RAIM. The conformal regression algorithm has the ability to
output the confidence interval of the prediction result under the
specified confidence level. Kuratomi et al [126] combined conformal
regression with RF algorithm and proposed conformal regression
forests (CRF) for predicting PE intervals at specified confidence
levels, which provides insights for PL calculation. The confidence
level was set to 99.999% in the paper, and the prediction is
considered successful if the actual PE falls within the prediction
interval. Unfortunately, the optimal set of experimental results in the
paper only achieved a 99.99%prediction success rate, which requires
further research.

Probabilistic regression ML algorithms provide the credibility
or probability distribution model of the prediction results along
with the output of the prediction results, so some researchers
have tried to use probabilistic regression ML algorithms to predict
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TABLE 3 FDE based on supervised learning.

Category Advantages Disadvantages ML model Dataset type and
labeling

Ref

Traditional pattern
recognition

High interpretability;
support small-scale data;

fast training speed;
real-time FDE ability

Poor generalization
ability; reliance on
artificially designed
normative features

SVM Real measurement,
UrbanLoco open source
dataset, labeling based

on fisheye camera

[101]

KNN Real measurement,
labeling inferred from
actual pseudo-range

error and fault threshold

[102]

RF Real measurement, open
dataset from Chemnitz

University of
Technology, labeling
inferred from actual
pseudo-range error

[103]

SEL Real measurement,
labeling based on fisheye

camera and 3D map

[105]

Traditional neural
network

Fast training speed,
especially for RBFNN
algorithm; real-time

FDE ability

Poor generalization
ability; poor

interpretability; medium
data scale requirement

MLP Real measurement, open
source dataset, labeling
based on fisheye camera

[107]

NE-NN, PNN Simulation, dynamically
sampling the position
error distribution and

get labels

[108, 109]

PNN Simulation, add
simulated fault and

obtain labels

[110]

Deep learning

Support continuous
learning; high

generalization ability;
can automatically extract

higher-order features
from data

Very poor
interpretability; require
large-scale data; low
training speed; poor

real-time performance

CNN Real measurement,
labeling based on 3D

map

[111]

LSTM Real measurement, add
simulated faults and

obtain label

[112]

Hopfield network Real measurement,
labeling based on fisheye

camera

[113]

DSN, Siamese neural
network

Real measurement,
labeling based on fisheye

camera

[115, 116]

LSTM, continual
learning

Real measurement,
UrbanNav open source
dataset, labeling based

on 3D map

[117, 118]

the statistical characteristics of PE, thus realizing error bounding.
Geragersian et al. [127] proposed the use of a Bayesian-LSTM
algorithm to predict PE, and since the parameters of the Bayesian
neural network are random quantities, the PE standard deviation
can be estimated using Monte Carlo methods, and then obtain
the PL. Isik et al. [128] proposed a scheme for PL calculation
based on natural gradient boosting (NGBoost). The NGBoost

algorithm is capable of predicting a probability distribution model
that matches the input samples, but it requires pre-determination
of the type of the probability distribution model. In this study, PE
is assumed to be Gaussian distributed, and the mean and variance
are predicted separately, which can be combined with a predefined
confidence level to calculate the PL. The experimental results
show that system availability is significantly improved in simulated
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TABLE 4 FDE based on unsupervised learning.

Category Advantages Disadvantages ML model Dataset type Ref

Traditional clustering or
single classification

High interpretability;
support small-scale data;

fast training speed;
real-time FDE ability

Poor generalization
ability

k-means Real measurement [119]

HDBSCAN Real measurement [120, 121]

OCSVM Simulation, add
simulated faults

[122]

Reconstruction models
based on deep learning

High generalization
ability; can handle fault
situations that have not

been encountered during
the training process

Poor interpretability;
require large-scale data;
low training speed; poor
real-time performance

TDNN Combination of
simulated and real data

[123]

Autoencoder Simulation, add
simulated faults

[106]

GAN, RNN Real measurement, add
simulated faults

[124]

TABLE 5 ML-based error bounding studies.

Category Characteristic ML model Dataset type and
labeling

Ref.

Quantifying the effect of
undetected faults on PE

Based on Gaussian
distribution; search for the
minimum detectable fault

variance expansion factor and
fault deviation value,

respectively

NE-NN Simulation, dynamically
sampling the position error
distribution and get labels

[109]

Direct predicting PL based on
ML algorithm

no need to predetermine the
type of probability distribution

model

DT, NN Real measurement, labeling
based on RTK high-precision

positioning results

[125]

CRF 132 land-vehicle challenging
urban kinematic GNSS

datasets

[126]

Based on probabilistic
regression ML algorithm

predicting the probability
distribution of PE; need to

predetermine the type of the
probability distribution model

Bayesian -LSTM Simulation, the actual PE is
known

[127]

NGBoost Simulation, the actual PE is
known

[128]

suburban, urban, and urban canyon environments compared to
classic LS RAIM. Table 5 summarizes and compares the above
availability discriminative studies in ML-RAIM.

3.3.3 Brief summary
Currently, there have been many ML-based GNSS jamming and

spoofing detection studies [129–131], but relatively few studies have
been applied to integrity monitoring. Although there are similarities
between the two, the additional IR requirements of RAIM itself,
along have made ML-RAIM studies relatively challenging. Firstly,
the datasets used in existing studies are usually limited to a single
scenario, failing to comprehensively reflect multiple factors such as
satellite faults, ionospheric fluctuations, multipath effects, spoofing,
and jamming. This results in flaws in the generalization ability of
the trainedmodels. Secondly,most currentML-based FDE strategies
lack corresponding error bounding module studies, and in the few

studies of error bounding, it is still limited to the traditionalGaussian
distribution assumption. Thirdly, there is a lack of relevant research
dedicated to feature extraction and selection.

3.4 Comparison and summary

The advantages and disadvantages of the above three types of
RAIM algorithms are shown in Table 6.

4 Challenges and opportunities of
RAIM research

With the wide application of GNSS, existing RAIM research
faces the following challenges: Firstly, due to the vulnerability of
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TABLE 6 Characteristics of the three types of RAIM.

Category Advantage Disadvantage

RAIM based on error probability distribution model Mathematical expression is clear, IR and PMD can be
estimated analytically

Commonly used Gaussian models have limitations, it
is often difficult to establish and validate error

probability distribution models in complex scenarios

RAIM based on set representation Avoiding the difficult task of modeling error
probability distributions, the set of state estimation

errors that can be characterized

Performance is limited by the accuracy of determining
the measurement and process error uncertainty

intervals

ML-RAIM Better cope with non-linear systems, non-Gaussian
noise environment, support for integrity monitoring in

complex scenarios

Dependence on reliable datasets, poor generalization
ability, insufficient research on the error bounding

module

the GNSS signals themselves, it is very susceptible to jamming and
spoofing [132]. Additionally, for the vast number of urban users,
multipath and even NLOS signals are very common, which leads
RAIM to operate in a more complex and harsh electromagnetic
environment. Secondly, in key applications such as assisted driving,
autonomous driving, and low-altitude unmanned aerial vehicles
(UAVs), the required PL is usually small, often in the meter or
even sub-meter level [9]. However, the PL calculated by existing
RAIM is often overly conservative (reaching up to tens of meters
or even hundreds of meters), resulting in seriously inadequate
system availability. Thirdly, most existing RAIM algorithms are
based on the Gaussian error model, but the study by [133]
have shown that actual measurement and position error often
exhibit characteristics of heavy-tailed distributions, making the
Gaussian assumption that do not hold strictly. In addition to
considering the multipath effects, jamming and spoofing, etc., it is
even more difficult for the actual error to follow the assumption
of the Gaussian distribution, and at this time, if the Gaussian
distribution is still used for modeling errors, an excessively
large variance is required to ensure that the estimation of the
error is conservative enough, thus seriously reducing the system
availability [134].

Considering the current challenges and existing results, future
opportunities for RAIM development lie in the following areas:
the development and application of adaptive non-Gaussian error
probability distributions; the application of more flexible and tight
error bounding techniques; and the improvement of the ML-RAIM
methods’ generalization ability.

4.1 Adaptive non-Gaussian error
probability distributions

Firstly, there have been studies using student’s t-distribution
[68] and GMM [84, 135] for modeling measurement or process
errors and for integrity monitoring, with experimental results
showing superior performance compared to traditional Gaussian
model-based approaches. In addition, several other models have
been employed to discuss error modeling, including the Rayleigh
distribution and the generalized Pareto distribution (GPD) [136],
the Dirichlet process mixture (DPM) model [137, 138], and
the generalized extreme value (GEV) distribution [133]. Among

these, the GPD and GEV distribution are based on extreme
value theory and are specifically designed to analyze rare but
potentially severe extreme events, focusing on the tail distribution
properties of random variables. This aligns well with the needs of
integrity studies and has been used for integrity risk assessment
and validation [139]. The use of these non-Gaussian error
models in conjunction with non-Gaussian noise estimators, such
as PF, is expected to effectively improve integrity monitoring
performance.

Secondly, almost all existing RAIM systems ignore the
temporal correlation of measurement noise. However, colored
noise is unavoidable and cannot be overlooked due to
hardware noise, multipath effects, and unmodeled errors [140].
Gao et al. [141, 142] exploited the temporal correlation of
colored noise by modeling it as a first-order Gaussian-Markov
process. The proposed colored Kalman filter outperforms
the traditional KF-RAIM in integrity monitoring. Therefore,
studying and utilizing the temporal correlation of errors for
error modeling will be an important opportunity for the future
development of RAIM.

Finally, the error model will change with time, electromagnetic
environment, and receiver type, making it a challenge to adaptively
select the appropriate error model. This challenge can be improved
or even solved by using artificial intelligence (AI) methods to
automatically recognize receiver electromagnetic environment [143]
(e.g., suburban, urban, and urban canyon) and then automatically
and intelligently select the appropriate types and parameters of
error models.

4.2 More flexible and tight error bounding

In terms of error bounding module, most RAIM algorithms are
usually given in the scalar form of HPL and VPL. It is assumed
that the maximum PE in the horizontal plane and vertical line
does not exceed the HPL and VPL in each direction, respectively,
with the properties of isotropy and symmetry about the origin.
However, in complex applications, users often have different AL
requirements in different directions, e.g., autonomous driving
usually has different AL requirements in the longitudinal and
lateral directions [144], and the traditional HPL discriminative
method instead constrains the system availability. In view of
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the above limitations of the traditional scalar form of PL,
opening up and applying more flexible error bounding techniques
such as ellipsoid or ellipsoid models constructed based on
matrix quadratic [145], zonotope sets [93], and extended point
confidence region [92, 97] can help to improve navigation system
availability.

On the other hand, existing error bounding techniques have
the problem of being too conservative, constructing error bounds
that are much larger than the actual PEs, leading to a significant
increase in the number of events that unnecessarily declare the
system unavailable, which seriously reduces the availability. In this
regard, the nominal information metric proposed by [125] based
on the quantity of information theory, and the average bound gap
(ABG) metric proposed by [128] can better assess this issue. The
former nominal information metric quantifies the reference value
of the information provided by the error bounds, and its larger value
implies the stronger ability of the error bounds to envelope the actual
PE. The latter ABG is defined as:

ABG = 1
NALL
∑
k
(PLk − PEk)When PLk > PEk (17)

in Equation 17, where NALL is the total number of epochs, and
PLk and PEk are the PL and actual PE for the k-th epoch.
Minimizing the ABG of the RAIM algorithm while ensuring that
it does not increase the PMI can further improve the availability
of the navigation system. By developing a more appropriate error
probability distribution model, applying a more flexible error
bounding form, and integrating advanced AI algorithms, a tighter
error bounding technique can be developed with the goal of
optimizing nominal information and ABG, under the premise of
guaranteeing that the core integrity related indexes of PMI and PHMI
meet the standards. This will be another development opportunity
for RAIM algorithm in the future.

4.3 Improvement of ML-RAIM
generalization ability

The current ML-RAIM research generally overly relies on
training data from specific regions or scenarios, and performs
poorly in the face of changes in the region as well as brand
new measurement anomalies, and the generalization ability is
still insufficient. For this problem, comprehensive and reliable
datasets should be constructed first. Current datasets for integrity
monitoring often rely on simulated faults and lack realistic
anomalies such as satellite failures, ionospheric and tropospheric
fluctuations, spoofing and jamming. Therefore, efforts should be
made to collect data under various application scenarios (e.g.,
civil aviation, automobiles, personal cell phones, etc.) and to
incorporate various types of anomalous conditions. And the
dataset should be expanded and enhanced by combining it with
AI methods, such as GANs. In addition, the dataset features
should be rich enough to cover pre-correlation domain features
(e.g., radio frequency fingerprint), spatial domain features (e.g.,
angle of arrival), and correlation domain features (e.g., carrier to
noise density) prior to the navigation solving phase, in addition to
the widely used measurement domain features. The constructed
dataset is also important for error probability distribution
modeling and validation, RAIM algorithm testing and validation,

in addition to effectively improving the generalization ability
of ML-RAIM.

On the other hand, by introducing advanced training strategies
such as incremental learning [117], continuous learning [118],
and transfer learning [143], ML-RAIM is able to quickly adapt
to data in brand new regions and scenarios, and improve the
model generalization ability. Meanwhile, automatic identification
of receiver electromagnetic environment based on AI technology
[143, 146], so as to target the selection of appropriate trainedmodels,
may be a further development opportunity forML-RAIM algorithm
in the future.

5 Conclusion

Integrity monitoring is crucial to safeguard the lives and
properties of GNSS users, and RAIM has always attracted
significant attention due to its advantages of comprehensive
monitoring range and fast alerting. With the wide application
of GNSS, existing RAIM algorithms are facing a more complex
electromagnetic environment and higher demands for integrity. To
assist scholars in related fields in exploring and developing more
advanced RAIM algorithms, this paper systematically describes
the basic principles of RAIM algorithms and the current status
of research in GNSS. The advantages and shortcomings of three
types of methods are analyzed: RAIM based on error probability
distribution model, RAIM based on set representation, and ML-
RAIM. Additionally, the paper discusses the opportunities for future
development in light of the latest research on RAIM and the
challenges faced.

Finally, although the research onRAIM algorithms in the field of
GNSS hasmade great progress, there are still deficiencies in integrity
standard, hardware implementation and algorithm testing, which
are outlooked in this paper:

1) At present, the GNSS integrity standard in the civil aviation
field has been relatively mature, but for ground applications
such as autonomous driving and low-altitude UAVs, the
formulation of the corresponding GNSS integrity standard is
still an urgent problem to be solved.

2) Almost all RAIM algorithms are developed based on software
platforms and offline datasets, and how to implement these
RAIM algorithms in hardware while taking into account
computational efficiency and real-time performance still needs
to be explored in depth.

3) Integrity monitoring strategies usually require performance
testing and evaluation, but given the extremely low probability
of integrity event, it remains a challenge to effectively,
quickly and cost-effectively verify that the performance meets
the standard.
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