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This study examines the stochastic bifurcation phenomenon in a fractional and
multistable Rayleigh–Duffing oscillator subjected to recycling noise excitation.
First, using the harmonic balance method and minimizing the mean-square
error, an approximate integerorder equivalent systemwas derived for the original
fractional-order system. Subsequently, the steady-state probability density
function (sPDF) of the system amplitude was obtained via stochastic averaging.
The critical conditions for stochastic P-bifurcation (SPB) were then determined
using the singularity theory. The stationary PDF curves of the system amplitude
were qualitatively analyzed across regions delineated by transition set curves.
Finally, Monte Carlo simulations confirmed the analytical findings, validating
the theoretical framework. These results provide insights for improving system
response control through fractional-order controller design.
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1 Introduction

Fractional calculus extends classical calculus to non-integer orders, enabling the
characterization of memory effects in viscoelastic materials more effectively than integer-
order derivatives.The fractional derivative, expressed as a convolution, inherently represents
memory and cumulative effects over time. Consequently, it has proven to be a superior
mathematical tool for modeling memory properties [1–4] and has found applications
in various fields, including anomalous diffusion, non-Newtonian fluid mechanics, soft
matter physics, and viscoelastic mechanics. Compared to integer-order calculus, fractional
derivatives provide amore precise description of diverse reaction processes [5–9]. Given the
prevalence of ambient noise in engineering, it is crucial to investigate the dynamic properties
of stochastic systems and the influence of fractional-order parameters and noise excitations.

Recent studies have extensively examined the dynamics of nonlinearmultistable systems
under various noise excitations, yielding significant results [10–14]. For integer-order
systems, research on Duffing–Van der Pol oscillators under Lévy noise [12], colored
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noise [13], and combined harmonic and random excitations [10, 11,
14] has garnered considerable attention. Wu and Hao [15] analyzed
the tri-stable stochastic P-bifurcation (SPB) in a generalized
Duffing–Van der Pol oscillator subjected to multiplicative colored
noise, deriving an analytical expression for the system’s steady-
state probability density function (sPDF) and evaluating the
effects of noise intensity and system parameters. Qian and Chen
[16] investigated the random vibration of a modified single-
degree-of-freedom vibro-impact oscillator with a recovery factor
under broadband noise and determined the sPDF of the system’s
energy and amplitude envelope using the Markov approximation.
This approach was validated through numerical examples. He
[17] proposed an improved amplitude–frequency formulation for
nonlinear oscillators and verified the reliability by considering
the solution of a Duffing oscillation. Fan [18] utilized He’s
frequency–amplitude formulation to solve the Duffing harmonic
oscillator problem.The results indicated that not only is the solution
procedure simple, but also, the result obtained is valid for the whole
solution domain with high accuracy.

For fractional-order systems, Huang and Jin [19] examined the
response and sPDFof a strongly nonlinear single-degree-of-freedom
system underGaussianwhite noise. Sun andYang [20] employed the
random averaging method and the generalized harmonic function
method to assess the stability of a fractional-order energy acquisition
system under Gaussian white noise, focusing on the effects of
noise intensity, fractional derivative order, and coefficients on the
system’s stochastic response. Li et al. [21] explored bistable SPB in
a Duffing–Van der Pol system with fractional derivatives under
concurrentmultiplicative and additive colored noise, demonstrating
that variations in linear damping, fractional derivative order, and
noise intensity induce SPB.

Nonlinear oscillations [22] have been widely studied because
of their relevance in energy harvesting [23], nonlinear controller
design [24], and multi-degree-of-freedom systems, including three-
degree-of-freedom auto-parametric systems [25] and six-degrees-
of-freedom rigid body systems [26]. Li and He [27, 28] proposed
a fractional complex transform to convert fractional differential
equations into ordinary differential equations so that all analytical
methods devoted to advanced calculus can be easily applied to
fractional calculus, and some examples were given to verify the
effectiveness of the proposed method. He [29, 30] proposed a new
perturbation method that does not require a small parameter in an
equation to analyze the nonlinear oscillators, and the effectiveness
of the proposed method was verified through examples. Wang and
He [31] used the variational iteration method to give an extremely
simple and elementary derivation of the temperature distribution
of a reaction-diffusion process. It was shown that the method is
very effective and convenient compared with the exact solution. He
[32] proposed an improved fractional variational iteration method
to solve the space and time fractional telegraph equations more
effectively. He and his colleagues utilized the fractal variational
principle to explore the solutions of numerous fractional equations
[33–36].

Owing to the complexity of fractional derivatives, it is generally
only possible to qualitatively analyze their parametric effects on
the vibration characteristics of fractional-order systems, making it
difficult to determine critical parameter values [37–39]. However,
identifying critical parameter conditions is essential for the analysis

and design of fractional-order systems. Fractals are self-similar
structures with repeating patterns across scales, and the fractal
oscillators always show that the oscillator components exhibit fractal
geometry and multi-band resonance or hierarchical frequency
responses due to self-similar structures, such as the fractal micro-
electromechanical systems (MEMS). He et al. [40] mainly study
the vibration system in a fractal space. Unlike fractals, fractional
calculus introduces memory effects and power-law dynamics,
often modeling complex materials or non-local interactions.
Furthermore, fractional oscillators always indicate the dynamical
systems governed by fractional-order differential equations that
contain the fractional-order derivative element dαx(t)

dtα
, where α is

a non-integer, and display power-law relaxation, non-exponential
decay, and frequency responses that diverge from classical harmonic
oscillators.

In this study, we have mainly investigated the nonlinear
vibration of fractional-order stochastic systems by examining the
effects of fractional derivatives and noise excitations. A generalized
multistable Rayleigh–Duffing system with a fractional element
excited by additive recycling noise is used as the dynamic
model. Using singularity theory and stochastic averaging, critical
parametric conditions for SPB are derived, followed by an analysis
of sPDF across different regions in the parametric plane.

2 Derivation for the isovalent system

There are many definitions of fractional derivatives. The
following definitions are introduced:

TheCaputo derivative of the function x(t)defined on the interval
[a,b] is formulated as

C
aD

p[x(t)] = 1
Γ(m− p)

∫
t

a

x(m)(u)
(t− u)1+p−m

du, (1)

where p represents the order of the fractional derivative C
aD

p[x(t)],
m− 1 < p ≤m,m ∈ N, t ∈ [a,b], Γ(m) is the Euler Gamma function,
and x(m)(t) is the m order derivative of x(t).

The Riemann–Liouville derivative of the function x(t) defined
on the interval [a,b] is formulated as

aD
p[x(t)] = 1

Γ(m− p)
dm

dtm
∫
t

a

x(u)
(t− u)1+p−m

du, (2)

where p represents the order of the fractional derivative
aD

p[x(t)], and m− 1 < p ≤m,m ∈ N, t ∈ [a,b], Γ(m) is the Euler
Gamma function.

The two-scale fractal derivatives with respect to t and x are
defined respectively as [41]

utα =
∂u
∂tα
(t0,x)

= Γ(1+ α) lim
t− t0→Δt
Δt ≠ 0

u(t,x) − u(t0,x)
(t− t0)

α ,

= Γ(1+ α) lim
t− t0→Δt
Δt ≠ 0

u(t,x) − u(t0,x)
Δtα

(3)
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uxβ =
∂u
∂xβ
(t,x0)

= Γ(1+ β) lim
x− x0→Δx
Δx ≠ 0

u(t,x) − u(t,x0)

(x− x0)
β
,

= Γ(1+ β) lim
x− x0→Δx
Δx ≠ 0

u(t,x) − u(t,x0)
Δxβ

(4)

where p represents the fractal in time and the order of the fractal
derivative.

He’s fractal derivative of the function x(t) is formulated as
[42–44]

dx(t)
dtp
= lim

t、−t

x(t) − x(t、)
tp − t、p , (5)

where p represents the fractal in time and the order of the fractal
derivative.

Comparing with the fractional derivatives mentioned in
Equations 1–5, the initial conditions of the Caputo fractional
derivative have a clear physical interpretation and align with those
of integer-order differential equations. Therefore, it is employed in
this study and expressed as

{{
{{
{

C
aD

p[x(t)] = 1
Γ(m− p)

∫
t

a

x(m)(u)
(t− u)1+p−m

du,m < p <m+ 1,

C
aD

p[x(t)] = x(m)(t),p =m
(6)

where p represents the order of the fractional derivative C
aD

p[x(t)],
m− 1 < p ≤m,m ∈ N, x(m)(t) is the mth integer-order derivative for
x(t), and Γ(m) is the Gamma function.

Slightly differing from the fractional derivative’s
definition in Equation 6 and for a deterministic physical system,
the initial motion time of the oscillators is t = 0, and the Caputo
fractional derivative is commonly adopted as

C
0D

p[x(t)] = 1
Γ(m− p)

∫
t

0

x(m)(u)
(t− u)1+p−m

du, (7)

wherem− 1 < p ≤m,m ∈ N.
This study explores the generalized Rayleigh-Duffing

oscillator system with the fractional-order damping element
described in Equation 7 and driven by recycling noise as

̈x− (−ε+ α1ẋ2 − α2ẋ4)ẋ+w2x+ α0x3 + β
C
0D

px = η(t), (8)

where ε denotes the coefficient of linear damping, while α1, α2, α3,
and α4 denote the coefficients for nonlinear damping in the system.
The term C

0D
p[x(t)] refers to the Caputo derivative with order p

(0 ≤ p ≤ 1). The recycling noise is represented by η(t), which can be
indicated as η(t) = ξ(t) + kξ(t− τ), where ξ(t) denotes the Gaussian
white noise with intensity D. τ is the time delay, and |k| ≤ 1 is the
fraction of the secondary noise.The autocorrelation function of η(t)
is indicated as

⟨ζ(t)ζ(0)⟩ = 2D[(1+ k2)δ(t) + kδ(t− τ) + kδ(t+ τ)] (9)

and the power spectral density for η(t) can be obtained as

S(w) = 2D[1+ k2 + 2k cos (wτ)]. (10)

The recycling noise is strongly correlated at time t and t± τ.

The fractional derivative incorporates both damping and
stiffness forces [45–47]. He and Liu [48] further emphasized that the
fractal–fractional derivative combines damping and inertial forces.
Based on this, the isovalent system in this study can be denoted as

̈x(t) − (−ε+ α1ẋ2 − α2ẋ4 +C(p,w))ẋ+ (K(p,w) +w2)x+ α0x3 = η(t),
(11)

whereC(p,w) andK(p,w) represent the undetermined coefficients of
the isovalent restoring and damping forces of C0D

p[x(t)], respectively.
The discrepancy between the systems (Equation 8) and

(Equation 11) is

e = C(p,w)ẋ+ βC0D
px−K(p,w)x. (12)

By following the isovalent principle [49] and minimizing
the mean-square error given in Equation 12, the undetermined
coefficients C(p,w) and K(p,w) can be indicatedd as follows:

{
∂E[e2]/∂(C(p,w)) = 0
∂E[e2]/∂(K(p,w)) = 0.

(13)

The substitution of Equation 12 into Equation 13 yields

{{{{{{
{{{{{{
{

E[−c(a)ẋ2 +w2(a)xẋ− ẋC0D
px] = lim

T→∞

1
T
∫
T

0
(−c(a)ẋ2 +w2(a)xẋ− ẋC0D

px)

dt = 0

E[−c(a)ẋx+w2(a)x2 − xC0D
px] = lim

T→∞

1
T
∫
T

0
(−c(a)ẋx+w2(a)x2 − xC0D

px)

dt = 0

.

(14)

Assuming that the original system (Equation 8) exhibits a
stationary solution in the periodic form, as described below

x(t) = a(t)cos φ(t), (15)

where φ(t) = wt+ θ, then

{
ẋ(t) = −wa(t) sin φ(t)
̈x(t) = −w2a(t)cos φ(t).

(16)

The substitution of Equations 15, 16 into Equation 14 yields

lim
T→∞

1
T
∫
T

0
(−c(a)ẋ2 +w2(a)xẋ− ẋC0D

px)dt

= lim
T→∞

1
T
∫
T

0
(−c(a)a2w2 sin2φ− a2ww2(a) sin φ cos φ+ aw sin φC

0D
px)dt

= −
−c(a)a2w2

2
+ 1
Γ(1− p)

lim
T→∞

1
T
∫
T

o
[(aw sin φ)∫

t

0

ẋ(t− τ)
τα

dτ]dt

= −
−c(a)a2w2

2
− 1
Γ(1− p)

lim
T→∞

1
T
∫
T

o

(a2w2 sin φ∫
t

0

sin φ cos (wτ) − cos φ sin (wτ)
τα

)dt = 0

.

(17)

lim
T→∞

1
T
∫
T

0
(−c(a)ẋx+w2(a)xx− xC0D

px)dt

= lim
T→∞

1
T
∫
T

0
(c(a)a2w sin φ cos φ+ a2w2(a)cos2 φ− a cos φC0D

px)dt

=
a2w2(a)

2
− 1
Γ(1− p)

lim
T→∞

1
T
∫
T

o
[(a cos φ)∫

t

0

ẋ(t− τ)
τα

dτ]dt

=
a2w2(a)

2
+ 1
Γ(1− p)

lim
T→∞

1
T
∫
T

o

(a2w cos φ∫
t

0

sin φ cos (wτ) − cos φ sin (wτ)
τα

)dt = 0

.

(18)
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To further simplify Equations 17, 18 , asymptotic integrals are
introduced as follows:

{{{
{{{
{

∫
t

0

cos (wτ)
τp

dτ = wp−1(Γ(1− p) sin(
pπ
2
)+

sin (wt)
(wt)p
+ ο((wt)−p−1))

∫
t

0

sin (wτ)
τp

dτ = wp−1(Γ(1− p)cos(
pπ
2
)−

cos (wt)
(wt)p
+ ο((wt)−p−1))

.

(19)

By inserting Equations 15, 16, and 19 into Equations 17, 18 and
executing the integral averaging of φ, the final expressions of C(p,w)
and K(p,w) can be obtained as

{{
{{
{

C(p,τ) = −βwp−1 sin(
pπ
2
)

K(p,τ) = βwp cos(
pπ
2
)
. (20)

Combining the detailed expression of Equation 20 and thus,
the equivalent oscillator corresponding to the system (Equation 11)
could be rewritten as

̈x(t) − γẋ+w2
0x+ α0x

3 = ξ(t), (21)

where

{{
{{
{

γ = −ε+ α1ẋ
2 − α2ẋ

4 − βwp−1 sin(
pπ
2
).

w2
0 = w

2 + βwp cos(
pπ
2
)

(22)

3 Stationary PDF for the system
amplitude

To derive the sPDF of the system amplitude, we assume that
the system (Equation 21) possesses the solution with periodic form,
and following the methodology outlined in [50], we implement the
transformation as follows:

{{
{{
{

X = x(t) = a(t)cos Φ(t)
Y = ẋ = −a(t)w0 sin Φ(t),
Φ(t) = w0t+ θ(t)

(23)

where w0 denotes the intrinsic frequency of the isovalent system
(Equation 21) and is described as in Equation 22, a(t) and θ(t)
denote the magnitude and temporal alignment characteristics of the
system response, respectively, and in that order, both are random
processes.

By inserting Equation 23 into Equation 21 and utilizing the
deterministic averaging approach, we can obtain

{{
{{
{

da
dt
= F11(a,θ) +G11(a,θ)η(t)

dθ
dt
= F21(a,θ) +G21(a,θ)η(t)

(24)

in which

{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{{
{

F11(a,θ) =
sinΦ
w0
[aw0 sin Φ(−ε+ α1a2w2

0 sin
2Φ− α2a4w4

0 sin
2Φ

−βwp−1 sin(
pπ
2
)) + α0a3 cos3Φ]

F21(a,θ) =
cosΦ
aw0
[aw0 sin Φ(−ε+ α1a2w2

0 sin
2Φ− α2a4w4

0 sin
2Φ

−βwp−1 sin(
pπ
2
)) + α0a3 cos3Φ]

G11 = −
sinΦ
w0

G21 = −
cosΦ
aw0

.

(25)

The stochastic differential equation in Equation 24 is interpreted
within the Stratonovich framework [51]. By incorporating
the requisite Wong–Zakai correction [52], the resulting Itô
representation can be formulated as follows:

{
da = [F11(a,θ) + F12(a,θ)]dt+ σ11(a,θ)dB(t)
dθ = [F21(a,θ) + F22(a,θ)]dt+ σ21(a,θ)dB(t)

, (26)

where B(t) denotes the unit Wiener process and we can obtain

{{{{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{{{{{{
{

F12(a,θ) = S(w)
∂G11

∂a
G11 + S(w)

∂G11

∂θ
G21 =

cos2(Φ)
2aw2

0
S(w)

F22(a,θ) = S(w)
∂G21

∂a
G11 + S(w)

∂G21

∂θ
G21 = −

sin (2Φ)
2a2w2

0
S(w)

σ11
2(a,θ) = ∫

∞

−∞
G11(a,θ)G11(a,θ, t+ h)R(h)dh

=
2sin2(Φ)

w2
0

S(w)

σ22
2(a,θ) = ∫

∞

−∞
G21(a,θ)G21(a,θ, t+ h)R(h)dh

=
2cos2(Φ)
a2w2

0
S(w)

.

(27)

Combining the expression of Equations 9, 10 and employing
the stochastic averaging approach [53], and further applying the
period averaging to Equation 26 over Φ, we can derive the relevant
Itô stochastic differential formula as follows:

{
da =m1(a)dt+ σ1(a)dB(t)
dθ =m2(a)dt+ σ2(a)dB(t)

. (28)

The accurate expression for the averaged diffusion and drift
coefficients can be determined as:

{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{
{

m1(a) = −
1
2
(βwp−1 sin(

pπ
2
)+ ε)a+ 3

8
α1w

2
0a

3

− 5
16

α2a
5 + σ2

2aw2
0

σ1
2(a) = 1

2π
∫
2π

0

2sin2(Φ)
w2
0

S(w)dΦ = 2σ
2

w2
0

m2(a) =
3α0a2

8w0

σ2
2(a) = 1

2π
∫
2π

0

2cos2(Φ)
a2w2

0
S(w)dΦ = 2σ2

a2w2
0

, (29)

where w2
0 = w

2 + βwp cos( pπ
2
), σ2 = D[1+ k2 + 2k cos (wτ)].
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Equations 28, 29 show that the averaged Itô equation for the
amplitude a(t) does not depend on θ(t); therefore, the random
process a(t) represents a one-dimensional diffusion process. Thus,
the corresponding Fokker–Planck–Kolmogorov (FPK) formula for
a(t) can be written as:

∂ρ(a, t)
∂t
= − ∂

∂a
[m1(a)ρ(a)] +

1
2
∂2

∂a2
[(σ12(a))ρ(a)]. (30)

The conditions for boundary fulfillment of ρ(a) in
Equation 30 are

{{
{{
{

ρ(a) = c,c ∈ (−∞,+∞)asa = 0

ρ(a) → 0,
∂p
∂a
→ 0 asa→∞

. (31)

According to the boundary conditions (Equation 31), the system
amplitude’s sPDF is expressed as:

ρ(a) = C
σ1

2(a)
exp[∫

a

0

2m1(u)
σ1

2(u)
du], (32)

where C is the constant after normalization.
By inserting Equation 29 into Equation 32, the detailed equation

for the system amplitude’s sPDF is expressed as:

ρ(a) =
Caw2

0

σ2
exp[−

a2w2
0Δ

7680σ2
]

in which

Δ = 3840(ε+ βwp−1 sin(
pπ
2
))− 1440α1w

2
0a

2 + 800α2w
4
0a

4 (33)

4 SPB for the system amplitude

The SPB phenomenon refers to the variation in the number of
peaks observed in the sPDF curves. In this section, we utilize the
singularity theory to discuss the parametric impacts on the SPB
behaviors of the system and to determine the crucial parametric
conditions.

For simplicity, ρ(a) is presented by

ρ(a) = CR(a,k,τ,ε,w,p,α1,α2) · exp [Q(a,k,τ,ε,w,p,α1,α2)], (34)

where

{{{{{{{{{{{{{
{{{{{{{{{{{{{
{

R(a,σ,ε,w,p,α1,α2) =
aw2

0

σ2

Q(a,σ,ε,w,p,α1,α2) = −
a2w2

0

7680σ2
(3840(ε+ βwp−1 sin(

pπ
2
))

−1440α1w
2
0a

2 + 800α2w
4
0a

4)

w2
0 = w

2 + βwp cos(
pπ
2
)

σ2 = D[1+ k2 + 2k cos (wτ)]

.

(35)

Based on the singularity theory [54], the system amplitude’s
sPDF must fulfill the requirements

{{{
{{{
{

∂ρ(a)
∂a
= 0

∂2ρ(a)
∂a2
= 0
. (36)

FIGURE 1
Transition set curves under additive recycling noise (taking p and D as
the unfolding parameters).

Inserting Equations 33, 34 into Equation 36, we can derive the
conditions as follows [15, 21]:

H = {R′ +RQ′ = 0,R″ + 2R′Q′ +RQ″ +RQ′2 = 0}, (37)

where H denotes the crucial condition for the variations of the
number of peaks in the sPDF curve.

Equations 34, 35, and 37 show that the fractional derivative’s
order p, the correlation time τ in the noise, and the noise intensity
D can all induce the SPB behaviors of the system. The impacts of
the three-dimensional parametric surface are difficult to display and
describe; therefore, we only show the two-dimensional cross-section
for the transition set to reveal the influences of the noise delay τ and
noise intensity D below.

4.1 Taking (p,D) as unfolding parameters

Taking the parameters as ε = − 0.2, α1 = 2.45, α2 = 4.6, w =
1, β = 1, k = 1, τ = 0.1, based on Equation 37, the boundary set
for SPB of the system (Equation 21) with parameters p and D
are obtained (Figure 1).

As shown in Figure 1, the transition set curve’s intercepts at
D = 0 represent the bifurcation values p1 = 0.126 and p2 = 0.388,
respectively. Under the influence of additive recycling noise, the
boundary set curve of the system (Equation 21) takes on a triangular
shape. Moreover, the unfolding parametric plane is assigned to two
sub-regions by the boundary set curve. Based on the theory of
singularity analysis , the topological structure of the sPDF curve at
various points (p,D) within the same region is qualitatively similar.

Initially, we investigated the sPDF ρ(a) of the system amplitude
with the joint PDF p(x, ẋ) for a point (p,D) in the two sub-
regions shown in Figure 1 separately. Subsequently, we contrasted
the theoretical solution with the numerical result obtained through
Monte Carlo simulation (MCS) of the initial system (3) utilizing
the numerical simulation method of fractional derivative [45].
Figures 2, 3 show the respective outcomes.

As shown in Figure 2, the parametric region (p,D), where
the sPDF curves are multi-modal, is enclosed by the nearly
triangular region in Figure 1, and Region 1 can form a bi-modal
region of the sPDF curve for the system amplitude.

Considering (p,D) as p = 0.3 and D = 0.005 in Region 1, the
sPDF ρ(a) of the system has two peaks, and a stable limit cycle
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FIGURE 2
PDF ρ(a) of amplitude in different sub-regions of Figure 1 (taking p and D as unfolding parameters). (a) Parameters (p,D) in Region 1 of Figure 1, (b)
Parameters (p,D) in Region 2 of Figure 1, and (c) Parameters (p,D) in Region 3 of Figure 1.

FIGURE 3
Joint PDF ρ(x, ẋ) in different sub-regions of Figure 1 (taking p and D as the unfolding parameters). (a) Parameters (p,D) in Region 1 of Figure 1, (b)
Parameters (p,D) in Region 2 of Figure 1, and (c) Parameters (p,D) in Region 3 of Figure 1.

emerges with a corresponding amplitude a distant from the original
position. Notably, the probability around the origin is nonzero,
indicating the concurrent coexistence of the equilibrium point and
the limit cycle within the system (Figures 2A, 3A). Conversely, when
the folding parameters (p,D) set asg p = 0.3,D = 0.004 in Region 2,
the peak of the sPDF ρ(a) is distant from the origin, and a stable limit
cycle persists within the system (Figures 2B, 3B); thus, the system is
in a monostable state at this moment. When the folding parameters
(p,D) are considered p = 0.7 and D = 0.002 in Region 3, the peak of
the sPDF ρ(a) is near the origin, and the system has an equilibrium
point (Figures 2C, 3C); thus, the system is also in a monostable state
at this moment.

4.2 Taking (τ,D) as unfolding parameters

Taking the folding parameters as ε = − 0.2, α1 = 2.45, α2 = 4.6,
w = 1, β = 1, k = 1, p = 0.35, based on Equation 37, the critical
parametric curve (transition set) of SPB for system (21) about
unfolding parameters τ and D can also be obtained (Figure 4).

As shown in Figure 4, the unfolding parametric plane is
segmented into three geometrically separated zones by the transition

FIGURE 4
Transition set curves under additive recycling noise (taking τ and D as
the unfolding parameters).

set curve. Based on the singularity analysis theory discussed above,
the sPDF curves ρ(a) for different parameters (τ,D) in the same
region exhibit qualitatively similar topological structures.

Here, we discuss the steady-state PDF ρ(a) of the amplitude with
the joint PDF ρ(x, ẋ) for a given point (τ,D) in each sub-region
(Figure 4). Subsequently, we contrast the theoretical outcomes with
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FIGURE 5
PDF ρ(a) of system amplitude in different sub-regions of Figure 4 (taking τ and D as the unfolding parameters). (a) Parameters (τ,D) in Region 1 of
Figure 4, (b) Parameters (τ,D) in Region 2 of Figure 4, and (c) Parameters (τ,D) in Region 3 of Figure 4.

FIGURE 6
Joint PDF ρ(x, ẋ) in the different sub-regions of Figure 4 (taking τ and D as the unfolding parameters). (a) Parameters (τ,D) in Region 1 of Figure 4, (b)
Parameters (τ,D) in Region 2 of Figure 4, and (c) Parameters (τ,D) in Region 3 of Figure 4.

the numerical result obtained by the MCS of the initial system (3)
utilizing the numerical simulation technique of fractional derivative
[45]. Figures 5, 6, respectively, show the corresponding outcomes.

In Figure 4, when the folding parameters (τ,D) are adopted in
Region 1, the sPDF curve ρ(a) of the system amplitude exhibits a
prominent peak located at a significant distance from the origin, and
ρ(x, ẋ) has a circular basin, as shown in Figures 5A, 6A. Thus, the
system only has a limit cycle (large amplitude motion) at this time.
In Region 2, the sPDF curve ρ(a) also has a remarkable peak near the
original point, and the probability far away from the origin point is
nonzero. ρ(x, ẋ) also has a circular basin and a peak (Figures 5B, 6B).
A limit cycle and an equilibrium point exist in the given system (3)
simultaneously. Further in Region 3, the PDFs ρ(a) and ρ(x, ẋ) both
have an apparent peak close to the origin (Figures 5C, 6C); therefore,
the system has only one equilibrium point at this time.

The results obtained above indicate that the sPDF curve of the
system amplitude can arise in various types depending on the values
of the order p for the fractional derivative, the correlation time τ
in the noise, and the noise intensity D. The findings imply that the
sPDF ρ(a) could be modulated by the system parameters p, D, and
τ, respectively. Additionally, comparing the numerical data derived

from MCS and the analytical solutions derived from the stochastic
averaging technique demonstrates good alignment, validating the
conceptual analysis process.

5 Conclusion

This study investigated the SPB behavior of a fractional
bistable Rayleigh–Duffing system subjected to additive recycling
noise. Using the isovalent principle, the original fractional-order
system was transformed into an equivalent integer-order system of
comparable significance. The sPDF of the system amplitude was
derived by applying the stochastic averaging method. Furthermore,
employing the singularity theory, critical parametric conditions
for SPB were established. The results indicate that the fractional
derivative order p, correlation time τ, and recycling noise intensity
D can each induce SPB, leading to a transition from a single- to
a dual-peak sPDF curve, depending on the unfolding parameters.
By selecting appropriate unfolding parameters according to the
critical parametric conditions acquired, the system response can be
confined to minor vibrations near equilibrium, thereby mitigating
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instability and potential damage caused by nonlinear jumps or large
amplitude oscillations. These findings provide valuable theoretical
insights for system design in engineering fields such as mechanical
engineering and electrical engineering. The agreement between
numerical results obtained via MCS and analytical solutions further
validates our theoretical analysis.

However, the system studied in the article is the single-
degree-of-freedom system, and the complexity and the abstraction
of the state space increase the difficulty of analyzing the high-
dimensional dynamic system. The investigation of two-degrees-of-
freedom systems or even higher dimensional and coupled systems
driven by other noises, such as Lévy noise or Poisson noise, should
be the next focus of research .

Data availability statement

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

Author contributions

Y-JL: formal analysis and writing – original draft. Z-QW: formal
analysis, methodology, and writing – original draft. Y-TS: writing –
review and editing. X-YZ: data curation and writing – review and
editing. S-LC: data curation and writing – review and editing.

Funding

The author(s) declare that financial support was received for
the research and/or publication of this article. This work in this

paper was funded by the National Natural Science Foundation of
China (Grant Nos. 12002120, 12072222, 11672349, and 11902287),
the Natural Science Foundation of Henan Province (Grant No.
252300420315), the Youth Backbone Teacher Training Project,
and the Academic and Technical Leader of Henan University
of Urban Construction (Grant Nos. YCJQNGGJS202-111 and
YCJXSJSDTR202308).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Generative AI was used in the
creation of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product thatmay be evaluated in this article, or claim
thatmay bemade by itsmanufacturer, is not guaranteed or endorsed
by the publisher.

References

1. Xu MY, Tan WC. Theoretical analysis of the velocity field, stress field and vortex
sheet of generalized second order fluid with fractional anomalous diffusion. Sci China
Ser A-mat (2001) 44:1387–99. doi:10.1007/BF02877067

2. Sabatier J, Agrawal OP, Machado JAT. Advances in fractional calculus. Dordrecht:
Springer (2007).

3. Podlubny I. Fractional-order systems and P controllers. IEEE Trans Autom Contol
(1999) 44:208–14. doi:10.1109/9.739144

4. Monje CA, Chen YQ, Vinagre BM, Xue DY, Batlleet VF. Fractional-order systems
and controls: fundamentals and applications. London: Springer-Verlag (2010).

5. He JH, Qian MY. A fractal approach to the diffusion process of red ink in a saline
water.Therm Sci (2022) 26:2447–51. doi:10.2298/TSCI2203447H

6. Zuo YT. Effect of SiC particles on viscosity of 3-D print paste: a fractal
rheological model and experimental verification. Therm Sci (2021) 25:2405–9.
doi:10.2298/TSCI200710131Z

7. Liang YH, Wang KJ. A new fractal viscoelastic element: promise and
applications to Maxwell-rheological model. Therm Sci (2021) 25:1221–7.
doi:10.2298/TSCI200301015L

8. Chen W. An intuitive study of fractional derivative modeling and fractional
quantum in softmatter. J VibControl (2008) 14:1651–7. doi:10.1177/1077546307087398

9. Dai DD, Ban TT, Wang YL, Zhang W. The piecewise reproducing kernel method
for the time variable fractional order advection-reaction-diffusion equations.Therm Sci
(2021) 25:1261–8. doi:10.2298/TSCI200302021D

10. RongHW,Wang XD, XuW,Meng G, Fang T. On double-peak probability density
functions of a Duffing oscillator under narrow-band random excitations. Acta Phys Sin
(2005) 54:2557–61. doi:10.7498/aps.54.2557

11. Rong HW,Wang XD,Meng G, XuW, Fang T. On double peak probability density
functions of duffing oscillator to combined deterministic and random excitations. Appl
Math Mech-engl (2006) Ed(27):1569–76. doi:10.1007/s10483-006-1115-z

12. Xu Y, Gu R, Zhang H, Xu W, Duan J. Stochastic bifurcations in a bistable
Duffing-Van der Pol oscillator with colored noise. Phys Rev E (2011) 83:056215.
doi:10.1103/PhysRevE.83.056215

13. Gu RC, Xu Y, Hao ML, Yang ZQ. Stochastic bifurcations in Duffing-
van der Pol oscillator with Lévy stable noise. Acta Phys Sin (2011) 60:1466–7.
doi:10.7498/aps.60.060513

14. Zakharova A, Vadivasova T, Anishchenko V, Koseska A, Kurths J. Stochastic
bifurcations and coherencelike resonance in a self-sustained bistable noisy oscillator.
Phys Rev E (2010) 81:011106. doi:10.1103/PhysRevE.81.011106

15. Wu ZQ, Hao Y. Stochastic P-bifurcations in tri-stable van der Pol-Duffing
oscillator with multiplicative colored noise. Acta Phys Sin (2015) 64:060501.
doi:10.7498/aps.64.060501

16. Qian JM, Chen LC. Random vibration of SDOF vibro-impact oscillators with
restitution factor related to velocity under wide-band noise excitations.Mech Syst Signal
Pr (2021) 147:107082. doi:10.1016/j.ymssp.2020.107082

17. He JH. An improved amplitude-frequency formulation for nonlinear oscillators.
Int J Nonlin Sci Num (2008) 9:211–2. doi:10.1515/IJNSNS.2008.9.2.211

18. Fan J. He’s frequency–amplitude formulation for the Duffing harmonic oscillator.
Comput Math Appl (2009) 58:2473–6. doi:10.1016/j.camwa.2009.03.049

19. Huang ZL, Jin XL. Response and stability of a SDOF strongly nonlinear stochastic
system with light damping modeled by a fractional derivative. J Sound Vib (2009)
319:1121–35. doi:10.1016/j.jsv.2008.06.026

Frontiers in Physics 08 frontiersin.org

https://doi.org/10.3389/fphy.2025.1567842
https://doi.org/10.1007/BF02877067
https://doi.org/10.1109/9.739144
https://doi.org/10.2298/TSCI2203447H
https://doi.org/10.2298/TSCI200710131Z
https://doi.org/10.2298/TSCI200301015L
https://doi.org/10.1177/1077546307087398
https://doi.org/10.2298/TSCI200302021D
https://doi.org/10.7498/aps.54.2557
https://doi.org/10.1007/s10483-006-1115-z
https://doi.org/10.1103/PhysRevE.83.056215
https://doi.org/10.7498/aps.60.060513
https://doi.org/10.1103/PhysRevE.81.011106
https://doi.org/10.7498/aps.64.060501
https://doi.org/10.1016/j.ymssp.2020.107082
https://doi.org/10.1515/IJNSNS.2008.9.2.211
https://doi.org/10.1016/j.camwa.2009.03.049
https://doi.org/10.1016/j.jsv.2008.06.026
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


Li et al. 10.3389/fphy.2025.1567842

20. Sun YH, Yang YG. Stochastic averaging for the piezoelectric energy harvesting
system with fractional derivative element. IEEE Access (2020) 8:59883–90.
doi:10.1109/ACCESS.2020.2983540

21. Li W, Zhang MT, Zhao JF. Stochastic bifurcations of generalized Duffing-van
der Pol system with fractional derivative under colored noise. Chin Phys B (2017)
26:090501–69. doi:10.1088/1674-1056/26/9/090501

22. He CH, El-Dib YO. A heuristic review on the homotopy perturbation
method for non-conservative oscillators. J Low Freq Noise V A (2022) 41:572–603.
doi:10.1177/14613484211059264

23. He CH, Amer TS, Tian D, Abolila AF, Galal AA. Controlling the kinematics of
a spring-pendulum system using an energy harvesting device. J Low Freq Noise (2022)
41:1234–57. doi:10.1177/146-13484221077474

24. He CH, Tian D, Moatimid GM, Salman HF, Zekry MH. Hybrid rayleigh-van der
pol-duffing oscillator: Stability analysis and controller. J Low Freq Noise V A (2022)
41:244–68. doi:10.1177/14613484211026407

25. He JH, Amer TS, Abolila AF, Galal AA. Stability of three degrees-of-
freedom auto-parametric system. Alex Eng J (2022) 61:8393–415. doi:10.1016/
j.aej.2022.01.064

26. He JH, Amer TS, El-Kafly HF, Galal AA. Modelling of the rotational motion of
6-DOF rigid body according to the Bobylev-Steklov conditions. Results Phys (2022)
35:105391. doi:10.1016/j.rinp.2022.105391

27. Li ZB, He JH. Fractional complex transform for fractional differential equations.
Math Comput Appl (2010) 15:970–3. doi:10.3390/mca15050970

28. Li ZB. An extended fractional complex transform. Int J Nonlin Sci Num (2010)
11:335–8. doi:10.1515/IJNSNS.2010.11.S1.335

29. He JH. Homotopy perturbation method: a new nonlinear analytical
technique. Appl Math Comput (2003) 135:73–9. doi:10.1016/S0096-3003
(01)00312-5

30. He JH. The homotopy perturbation method for nonlinear oscillators
with discontinuities. Appl Math Comput (2004) 151:287–92. doi:10.1016/S0096-
3003(03)00341-2

31. Wang SQ, He JH. Variational iteration method for a nonlinear reaction-diffusion
process. Int J Chem React Eng (2008) 6:1–8. doi:10.2202/1542-6580.1630

32. He JH. An approximation to solution of space and time fractional telegraph
equations by the variational iteration method. Math Probl Eng (2012) 2012:394212.
doi:10.1155/2012/394212

33. He JH. On the fractal variational principle for the Telegraph equation. Fractals
(2021) 29:2150022. doi:10.1142/S0218348X21500225

34. He JH. Variational principle for the generalized KdV-burgers equation with
fractal derivatives for shallow water waves. J Appl Comput Mech (2020) 6:735–40.
doi:10.22055/JACM.2019.14813

35. He JH, HouWF, He CH, Saeed T, Hayat T. Variational approach to fractal solitary
waves. Fractals (2021) 29:2150199. doi:10.1142/S0218348X21501991

36. He JH, He CH, Saeed T. A fractal modification of Chen-Lee-Liu
equation and its fractal variational principle. Int J Mod Phys (2021) 35:2150214.
doi:10.1142/S0217979221502143

37. Li Y, Wu Z, Lan Q, Cai Y, Xu H, Sun Y. Stochastic transition behaviors in a tri-
stable van der Pol oscillator with fractional delayed element subject to Gaussian white
noise.Therm Sci (2022) 26:2713–25. doi:10.2298/TSCI2203713L

38. Li Y, Wu Z, Lan Q, Cai Y, Xu H, Sun Y. Transition behaviors of system
energy in a bi-stable van Ver Pol oscillator with fractional derivative element
driven by multiplicative Gaussian white noise. Therm Sci (2022) 26:2727–36.
doi:10.2298/TSCI2203727L

39. Shen Y, El-Dib Y. A periodic solution of the fractional Sine-Gordon equation
arising in architectural engineering. J Low Freq Noise V A (2021) 40:683–91.
doi:10.1177/1461348420917565

40. He JH, Moatimid GM, Zekry MH. Forced nonlinear oscillator in a fractal space.
Facta Uiv-ser Mech (2022) 20:001–20. doi:10.22190/FUME220118004H

41. He JH. Fractal calculus and its geometrical explanation. Results Phys (2018)
10:272–6. doi:10.1016/j.rinp.2018.06.011

42. He JH, El-Dib YO. A tutorial introduction to the two-scale fractal calculus
and its application to the fractal zhiber-shabat oscillator. Fractals (2021) 29:2150268.
doi:10.1142/S0218348X21502686

43. Wang QLX, Shi XY, He JH, Li ZB. Fractal calculus and its application
to explanation of biomechanism of polar bear hairs. Fractals (2018) 26:1850086.
doi:10.1142/S0218348X1850086X

44. He JH. A new fractal derivation. Therm Sci (2011) 15:145–7.
doi:10.2298/TSCI11S1145H

45. Chen LC, Wang WH, Li ZS, Zhu W. Stationary response of Duffing oscillator
with hardening stiffness and fractional derivative. Int J Nonlin Mech (2013) 48:44–50.
doi:10.1016/j.ijnonlinmec.2012.08.001

46. Chen LC, Li ZS, Zhuang QQ, Zhu W. First-passage failure of single-degree-
of-freedom nonlinear oscillators with fractional derivative. J Vib Control (2013)
19:2154–63. doi:10.1177/1077546312456057

47. Shen YJ, Yang SP, Xing HJ, Ma H. Primary resonance of Duffing oscillator
with two kinds of fractional-order derivatives. Int J Nonlin Mech (2012) 47:975–83.
doi:10.10-16/j.ijnonlinmec.2012.06.012

48. He CH, Liu C. Amodified frequency-amplitude formulation for fractal vibration
systems. Fractals (2022) 30:2250046. doi:10.1142/S0218348X22500463

49. Yang YG, Xu W, Sun YH, Gu XD. Stochastic response of van der Pol oscillator
with two kinds of fractional derivatives under Gaussian white noise excitation. Chin
Phys B (2016) 25:020201–21. doi:10.1088/1674-1056/25/2/020201

50. Chen LC, ZhuWQ. Stochastic response of fractional-order van der Pol oscillator.
Theor Appl Mech Lett (2014) 4:013010–72. doi:10.1063/2.1401310

51. Xu C, Roberts AJ. On the low-dimensional modelling of Stratonovich stochastic
differential equations. Physica A (1996) 225:62–80. doi:10.1016/0378-4371(95)00387-8

52. Wu ZQ, Hao Y. Three-peak P-bifurcations in stochastically excited van der Pol-
Duffing oscillator. Sci Sin Phys Mech Astron (2013) 43:524–9. doi:10.1360/132012-692

53. Zhu WQ. Random vibration. Beijing, China: Science Press (1992).

54. Ling FH. Catastrophe theory and its applications. In: Shang hai jiao tong.
Shanghai, China: University Press (1987).

Frontiers in Physics 09 frontiersin.org

https://doi.org/10.3389/fphy.2025.1567842
https://doi.org/10.1109/ACCESS.2020.2983540
https://doi.org/10.1088/1674-1056/26/9/090501
https://doi.org/10.1177/14613484211059264
https://doi.org/10.1177/146-13484221077474
https://doi.org/10.1177/14613484211026407
https://doi.org/10.1016/j.aej.2022.01.064
https://doi.org/10.1016/j.aej.2022.01.064
https://doi.org/10.1016/j.rinp.2022.105391
https://doi.org/10.3390/mca15050970
https://doi.org/10.1515/IJNSNS.2010.11.S1.335
https://doi.org/10.1016/S0096-3003(01)00312-5
https://doi.org/10.1016/S0096-3003(01)00312-5
https://doi.org/10.1016/S0096-3003(03)00341-2
https://doi.org/10.1016/S0096-3003(03)00341-2
https://doi.org/10.2202/1542-6580.1630
https://doi.org/10.1155/2012/394212
https://doi.org/10.1142/S0218348X21500225
https://doi.org/10.22055/JACM.2019.14813
https://doi.org/10.1142/S0218348X21501991
https://doi.org/10.1142/S0217979221502143
https://doi.org/10.2298/TSCI2203713L
https://doi.org/10.2298/TSCI2203727L
https://doi.org/10.1177/1461348420917565
https://doi.org/10.22190/FUME220118004H
https://doi.org/10.1016/j.rinp.2018.06.011
https://doi.org/10.1142/S0218348X21502686
https://doi.org/10.1142/S0218348X1850086X
https://doi.org/10.2298/TSCI11S1145H
https://doi.org/10.1016/j.ijnonlinmec.2012.08.001
https://doi.org/10.1177/1077546312456057
https://doi.org/10.10-16/j.ijnonlinmec.2012.06.012
https://doi.org/10.1142/S0218348X22500463
https://doi.org/10.1088/1674-1056/25/2/020201
https://doi.org/10.1063/2.1401310
https://doi.org/10.1016/0378-4371(95)00387-8
https://doi.org/10.1360/132012-692
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org

	1 Introduction
	2 Derivation for the isovalent system
	3 Stationary PDF for the system amplitude
	4 SPB for the system amplitude
	4.1 Taking (p,D) as unfolding parameters
	4.2 Taking (τ,D) as unfolding parameters

	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References

