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The anisotropic quantum Rabi
model with diamagnetic term

Jorge A. Anaya-Contreras1, Irán Ramos-Prieto2,
Arturo Zúñiga-Segundo1 and Héctor M. Moya-Cessa2*
1Instituto Politécnico Nacional, ESFM, Departamento de Física, Mexico City, Mexico, 2Instituto
Nacional de Astrofísica Óptica y Electrónica, Puebla, Mexico

Weemploy a squeeze operator transformation approach to solve the anisotropic
quantum Rabi model that includes a diamagnetic term. By carefully adjusting the
amplitude of the diamagnetic term, we demonstrate that the anisotropic Rabi
model with the A2 term can be exactly reduced to either a Jaynes-Cummings
or an anti-Jaynes-Cummings model without requiring any approximations.
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1 Introduction

The interaction of atoms with cavity fields [1-3] is of great importance not only because
of the fundamental questions that may be answered, but also because of the possible
technological applications [4-6] as entanglement, at the core of such interaction, is the key
ingredient of quantum information processing.

When analyzing this interaction several approximations are done, namely, the
diamagnetic term [7-11] is dropped, the dipole and rotating wave approximations are made
and the interaction with environments [12] is not considered, this is, studies are focused on
high-Q cavities. However, there are intensity regimes where such approximations are not
any more valid and then it is needed to consider the full interaction, i.e., the quantum Rabi
model [13]. Solutions for this problem have been already provided [14-17], usually in terms
of infinite continued fractions [14].

It has been shown that the diamagnetic term may be of importance in the deep-strong-
coupling (DSC) and ultra-strong-coupling regimes (USC) [9]. In the atom-field interaction,
the diamagnetic term is usually dropped as it is a term that it is of the order of counter
rotating terms [8]. However, in other regimes the impact of the diamagnetic term is non-
negligible and it may become dominant in the DSC regime [9, 11].

Generalizations of the quantum Rabi model, such as the anisotropic quantum Rabi
model [18-20], have been studied. In particular it has been shown the existence of
entanglement [20] and antibounching-to-bounching transitions of photons [19].

In this contribution we show that an anisotropic Rabi model that
includes the diamagnetic term may be reduced, by using a transformation
that involves the squeeze operator [21], to the Jaynes-Cummings [1]
and anti-Jaynes-Cummings models [22]. These kind of systems have been
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shown to have partner Hamiltonians in the theory of
supersymmetry (SUSY) [23, 24] that allows the connection of
physical models via supersymmetric operators, i.e., mapping the
corresponding Hilbert spaces.

2 The anisotropic quantum Rabi
model

The Hamiltonian for the anisotropic quantum Rabi model,
including the diamagnetic term, can be expressed as (with ℏ = 1):

Ĥ = ωâ†â+
ω0
2
σ̂z + (g1â+ g2â

†) σ̂+ + (g1â
† + g2â) σ̂− +D(â+ â

†)2,

= ωDâ
†â+

ω0
2
σ̂z + (g1â+ g2â

†) σ̂+ + (g1â
† + g2â) σ̂− +D(â

2 + â†2) +D,
(1)

where ωD = ω+ 2D. Here, â and â† represent the annihilation and
creation operators of the bosonic field, satisfying the commutation
relation [â, â†] = 1. The Pauli atomic operators σ̂± and σ̂z describe
the two-level atomic system, obeying the commutation relations:
[σ̂+, σ̂−] = σ̂z and [σ̂z, σ̂±] = ± 2σ̂±. Additionally, ω and ω0 denote the
field frequency and the atomic transition frequency, respectively,
while D quantifies the diamagnetic amplitude. The coupling
constants g1 and g2 characterize the interaction strength between
the atom and the field. The parameters {ω,ω0,g1,g2,D} are known
quantities. Aswewill demonstrate later, depending on the parameter
regime and without approximations, it is possible to recover
either the Jaynes-Cummings or the anti-Jaynes-Cummings model,
respectively, by adjusting judiciously one of them (exceptω0 that will
not play a role on which of the models is obtained).

To eliminate the residual diamagnetic term (â2 + â†2) from
Equation 1, we apply a unitary transformation defined by the
squeeze operator: Ŝ(r) = exp[ r

2
(â2 − â†2)] [2], where r is the

squeezing parameter to be determined subsequently. Under
this transformation, the annihilation and creation operators
transform as:

Ŝ† (r) âŜ (r) = μâ− νâ†, Ŝ† (r) â†Ŝ (r) = μâ† − νâ, where

μ = cosh (r) , ν = sinh (r) .

Applying the transformation ĤS = Ŝ
†(r)ĤŜ(r), the Hamiltonian

becomes:

ĤS = [ωD (μ
2 + ν2) − 4Dμν] â†â+

ω0

2
σ̂z

+ (μg1 − νg2)(âσ̂+ + â
†σ̂−) + (μg2 − νg1)(âσ̂− + â

†σ̂+)

+ [D(μ2 + ν2) − μνωD](â2 + â†2) + ν2ωD − 2Dμν+D.

By imposing the condition D
ωD
= μν

μ2+ν2
, theHamiltonian simplifies to:

ĤS =
ωD

μ2 + ν2
â†â+

ω0

2
σ̂z + (μg1 − νg2)(âσ̂+ + â

†σ̂−) + (μg2 − νg1)

× (âσ̂− + â†σ̂+) +ωD(ν2 −
2μ2ν2 − μν
μ2 + ν2

).

(2)

Thus, the squeezing transformation eliminates the residual
diamagnetic term, thereby simplifying the system to the anisotropic

quantum Rabi model. In the special case where g1 = g2, the model
reduces to the standard quantum Rabi model [13, 17]. However,
this work focuses on the scenario where g1 ≠ g2. Specifically, we
investigate two distinct cases: (a) g2 < g1, which corresponds to
the Jaynes-Cummings model, and (b) g1 < g2, associated with
the anti-Jaynes-Cummings model [22, 23]. The Hamiltonian
described by Equation 2 represents one of the key contributions
of this work, providing a comprehensive framework for exploring
the interplay between anisotropy, squeezing, and light-matter
interactions within the anisotropic quantum Rabi model.

2.1 Jaynes-Cummings model

Once the Hamiltonian in Equation 2 is established, we fix the
squeezing parameter r within the parameter regime defined by g2 <
g1 to recover the Jaynes-Cummings model. This requires imposing
the condition μ

ν
= g1

g2
, where μ = cosh (r) and ν = sinh (r) are the

hyperbolic functions associated with r. Under this condition, the
Hamiltonian ĤS simplifies to the Jaynes-Cummings Hamiltonian,
which takes the following form:

ĤJCM = ωeffâ
†â+

ω0

2
σ̂z + geff (âσ̂+ + â

†σ̂−) + f0,

where the effective frequency ωeff, the effective coupling constant
geff, and the zero-point energy shift f0 are explicitly defined as:

ωeff = ωD(
g21 − g

2
2

g21 + g
2
2
), geff = √g

2
1 − g

2
2, and f0 = ωD(

g1g2 − g
2
2

g21 + g
2
2
).

For the specific case where g2 < g1, the condition eliminates the
residual diamagnetic term, which takes the following form in this
parameter regime:

D
ωD
=

μν
μ2 + ν2
=
tanh (2r)

2
=

g1g2
g21 + g

2
2
. (3)

This condition, together with the inequality g2 < g1,
establishes the parameter regime in which the anisotropic
quantum Rabi model transitions to the Jaynes-Cummings model.
Consequently, the squeezing transformation is fully described by
the hyperbolic functions:

cosh (r) =
g1

√g21 − g
2
2

, sinh (r) =
g2

√g21 − g
2
2

.

These results demonstrate how the squeezing transformation
not only removes the diamagnetic term but also establishes a direct
connection between the physical parameters of the system and the
mathematical structure of the Jaynes-Cummings model.

Finally, to establish the complete relationship between the
Jaynes-Cummings Hamiltonian and the Hamiltonian of the
anisotropic quantum Rabi model with the diamagnetic term,
Equation 1, for the case g2 < g1, it is essential to recall the relation
ĤJCM = Ŝ

†(r)ĤŜ(r). This relation is fundamental for finding the
eigenvalues of Ĥ in this parameter regime.Therefore, bymultiplying
the relation Ŝ†(r)ĤŜ(r) by Ŝ(r), we obtain:

ĤŜ (r) |ψJCM
n ,±〉 = E

JCM
n,± Ŝ (r) |ψJCM

n ,±〉,
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where the eigenvalues EJCMn,± and the eigenvectors |ψJCM
n ,±〉 are those

of the Jaynes-Cummings Hamiltonian, determined by:

EJCMn,± = ωeff(n+
1
2
)± 1

2
√(ω0 −ωeff)

2 + 4g2eff (n+ 1) + f0,

Ŝ (r) |ψJCM
n ,+〉 = Ŝ (r) (cos(θn) |n,↑〉 + sin(θn) |n+ 1,↓〉) ,

Ŝ (r) |ψJCM
n ,−〉 = Ŝ (r) (− sin(θn) |n,↑〉 + cos(θn) |n+ 1,↓〉) ,

with tan (2θn) =
2geff√n+1
ω0−ωeff

. Here, |n,↑〉 = |n〉 ⊗ |↑〉 and |n+ 1,↓〉 =
|n+ 1〉 ⊗ |↓〉 are the basis vectors in the Fock space and
the atomic subspace, respectively. Clearly, the eigenvalues of
Ĥ, given by Equation 1, are the same as those of the Jaynes-
Cummings Hamiltonian. Moreover, the eigenstates of Ĥ are
connected to those of the Jaynes-Cummings model through the
action of the squeeze operator Ŝ(r) on the eigenstates |ψJCM

n ,±〉.

2.2 Anti- Jaynes-Cummings model

On the other hand, starting from Equation 2 and considering
the parameter region defined by g1 < g2, the squeezing parameter
r necessary to recover the anti-Jaynes-Cummings model is derived
by imposing the condition μ

ν
= g2

g1
. Under these conditions, the

Hamiltonian ĤS adopts the following form:

ĤAJCM = ω̃effâ
†â+

ω0

2
σ̂z + ̃geff (âσ̂− + â

†σ̂+) + ̃f0,

where

ω̃eff = ωD(
g22 − g

2
1

g21 + g
2
2
), ̃geff = √g

2
2 − g

2
1, and ̃f0 = ωD(

g1g2 − g
2
1

g21 + g
2
2
).

Consequently, in a manner analogous to the previous case,
and in addition to Equation 3, which eliminates the diamagnetic
term, the anti-Jaynes-Cummings model can be recovered within the
parameter region defined by g1 < g2. Therefore, in this parameter
regime, it follows that:

cosh (r) =
g2

√g22 − g
2
1

, sinh (r) =
g1

√g22 − g
2
1

. (4)

Finally, to establish the complete relationship between
the anti-Jaynes-Cummings Hamiltonian and the Hamiltonian
of the anisotropic quantum Rabi model with the
diamagnetic term, Equation 1, for the case g1 < g2, it is essential
to recall the relation ĤAJCM = Ŝ

†(r)ĤŜ(r). Therefore, by multiplying
the relation Ŝ†(r)ĤŜ(r) by Ŝ(r), we obtain:

EAJCMn,± = ω̃eff(n+
1
2
)± 1

2
√(ω0 + ω̃eff)

2 + 4 ̃g2eff (n+ 1) + ̃f0,

Ŝ (r) |ψAJCM
n,+ 〉 = Ŝ (r) (cos(θn) |n+ 1,↑〉 + sin(θn) |n,↓〉) ,

Ŝ (r) |ψAJCM
n,− 〉 = Ŝ (r) (− sin(θn) |n+ 1,↑〉 + cos(θn) |n,↓〉) ,

where tan (2θn) =
2 ̃geff√n+1
ω0+ω̃eff

. The eigenvectors are given by linear
combinations of the states |n+ 1,↑〉 and |n,↓〉. This structure aligns
with the anti-Jaynes-Cummings model, where the anti-resonant
coupling links the states |n+ 1,↑〉 and |n,↓〉, in contrast to the
Jaynes-Cummingsmodel, which connects |n,↑〉 and |n+ 1,↓〉. Once
again, the eigenvalues are identical to those of the anti-Jaynes-
Cummings Hamiltonian, and the eigenvectors are related via the
squeeze operator, Ŝ(r)|ψAJCM

n ,±〉.

3 Results and discussion

In this section, we analyze the eigenvalues and atomic inversion
for the anisotropic quantum Rabi model with diamagnetic term in
the two distinct parameter regimes: (a) g2 < g1, corresponding to the
Jaynes-Cummings model, and (b) g1 < g2, associated with the anti-
Jaynes-Cummings model. We first discuss the eigenvalues in both
regimes and then examine the behavior of the atomic inversion.

The eigenvalues En,± of the Hamiltonian Ĥ are determined by
the effective parameters obtained from the squeezing transformation
Ŝ(r) in each parameter regime: (a) g2 < g1 and (b) g1 < g2 (with
g1 ≠ g2). As established in the previous section, these eigenvalues are
expressed as:

En,± =
{{
{{
{

ωeff(n+
1
2
)± 1

2
√(ω0 −ωeff)

2 + 4g2eff (n+ 1) + f0, if g2 < g1,

ω̃eff(n+
1
2
)± 1

2
√(ω0 + ω̃eff)

2 + 4 ̃g2eff (n+ 1) + ̃f0, if g1 < g2.
(5)

Figure 1 displays the first energy levels for both the (a) Jaynes-
Cummings and (b) anti-Jaynes-Cummings models as a function of
the coupling parameter g2, without loss of generality, taking g1 = 1.
(a) In the regime g2 < g1, corresponding to the Jaynes-Cummings
model, the energy levels EJCMn,± depend on g2, with their structure
dictated by the effective coupling strength geff = √g

2
1 − g

2
2. As g2

approaches g1 from the left, the energy levels gradually converge due
to the vanishing effective coupling, geff→ 0, and effective frequency,
ωeff→ 0. (b) For g2 > g1, the system transitions to the anti-Jaynes-
Cummings regime, where the energy levels EAJCMn,± are now governed
by the effective coupling ̃geff = √g22 − g

2
1. As g2 gradually increases

beyond g1, the effective coupling constant and effective frequency,
̃geff and ω̃eff, respectively, start from zero in the limiting case and

increase with g2. Although Figure 1 focuses on the first energy levels,
a clear pattern emerges for higher-order eigenvalues: they either
converge toward g1 or diverge from it as g2 varies. This behavior
underscores the role of the coupling parameters in shaping the
energy spectrum and provides insight into the system’s response to
variations in g2.

To conclude this section, we present an analysis of the atomic
inversion for the anisotropic quantumRabi model with diamagnetic
term in the two distinct coupling regimes. The atomic inversion,
denoted as W(t), is a fundamental quantity that characterizes the
dynamics of the system. It is defined as the difference in population
between the atomic states |↑〉 and |↓〉, and is mathematically
expressed as: W(t) = ⟨σ̂z(t)⟩. This quantity provides insight into
the temporal evolution of the atomic populations and serves as
a key indicator of the system’s behavior under different coupling
conditions. In the two parameter regimes under consideration, the
atomic inversion is given by:W(t) = ⟨ψ(0)|Û†(t)σ̂zÛ(t)|ψ(0)⟩, where
Û(t) represents the time evolution operator.This operator is defined
as: Û(t) = exp [−iĤt]. Here, |ψ(0)〉 denotes the initial state of the
system, which is the tensor product of the field state and the initial
atomic state. The atomic inversion captures the interplay between
the atomic and field degrees of freedom, reflecting the influence of
the coupling parameters g1 and g2. For each parameter regime, the
atomic inversion takes the following form:

W (t) = { ⟨ψ (0) |Ŝ (r) Û
†
JCM (t) Ŝ

† (r) σ̂z Ŝ (r) ÛJCM (t) Ŝ
† (r) |ψ (0)⟩, if g2 < g1,

⟨ψ (0) |Ŝ (r) Û†AJCM (t) Ŝ
† (r) σ̂z Ŝ (r) ÛAJCM (t) Ŝ

† (r) |ψ (0)⟩, if g1 < g2.
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FIGURE 1
Energy levels of the anisotropic quantum Rabi model for the first ten states (n,± = 10) are plotted as a function of the coupling parameter g2, with fixed
parameters ωD = 2.5, ω0 = 1.0, and g1 = 1.0. In Panel (a), the eigenvalues correspond to the Jaynes-Cummings regime (g2 < g1), where the energy levels
EJCMn,± are derived from Equation 5. Panel (b) illustrates the eigenvalues for the anti-Jaynes-Cummings regime (g2 > 1), with the energy levels EAJCMn,± also
determined by Equation 5. This separation highlights the distinct behaviors of the system in the two coupling regimes.

The time evolution operator for the anisotropic quantum Rabi
model with diamagnetic term is expressed as:

Û (t) = {
Ŝ (r) ÛJCM (t) Ŝ

† (r) , for g2 < g1,
Ŝ (r) ÛAJCM (t) Ŝ

† (r) , for g1 < g2.
(6)

The evolution operators corresponding to the Jaynes-Cummings
and anti-Jaynes-Cummings Hamiltonians are given by:

ÛJCM = e
−itωeff(â

†â+ σ̂z
2
)[

ÛJCM
11 (t) ÛJCM

12 (t)
ÛJCM
21 (t) ÛJCM

22 (t)
] ,

ÛAJCM = e
−itω̃eff(â†â−

σ̂z
2
)[

ÛAJCM
11 (t) ÛAJCM

12 (t)
ÛAJCM
21 (t) ÛAJCM

22 (t)
] ,

respectively. The matrix elements of the evolution operators are
explicitly given by:

ÛJCM
11 (t) = cos(

Ωn̂+1t
2
)− i

Δeff

Ωn̂+1
sin(

Ωn̂+1t
2
),

ÛJCM
12 (t) = −i2geff

sin(Ωn̂+1t
2
)

Ωn̂+1
â,

ÛJCM
21 (t) = −i2geffâ

†
sin(Ωn̂+1t

2
)

Ωn̂+1
,

ÛJCM
22 (t) = cos(

Ωn̂t
2
)+ i

Δeff

Ωn̂
sin(

Ωn̂t
2
),

where Δeff = ω0 −ωeff, and Ωn̂ = √Δ2
eff + 4g

2
effn̂ (with n̂ = â†â).

Similarly, for the anti-Jaynes-Cummings model:

ÛAJCM
11 (t) = cos(

Ω̃n̂t
2
)− i

Δ̃eff

Ω̃n̂
sin(

Ω̃n̂t
2
),

ÛAJCM
12 (t) = −i2 ̃geffâ

†
sin( Ω̃n̂+1t

2
)

Ω̃n̂+1
,

ÛAJCM
21 (t) = −i2 ̃geff

sin( Ω̃n̂+1t
2
)

Ω̃n̂+1
â,

ÛAJCM
22 (t) = cos(

Ω̃n̂+1t
2
)+ i

Δeff

Ω̃n̂+1
sin(

Ω̃n̂+1t
2
),

with Δ̃e f f = ω0 + ω̃e f f , and Ω̃n̂ = √Δ̃
2
e f f + 4 ̃g

2
e f f n̂.

Figure 2 illustrates the time evolution of the atomic inversion
W(t) for the anisotropic quantum Rabi model, including the
diamagnetic term, in two distinct coupling regimes: (a) g2 < g1 and
(b) g1 < g2. The initial state of the system is chosen as |ψ(0)〉 =
|α〉 ⊗ |↑〉 = |α,↑〉, where |α〉 represents a coherent state of the
field. Therefore, considering the corresponding evolution operator,
Equation 6, the atomic inversion is given by

W (t) =

{{{{{
{{{{{
{

∞

∑
n=0
|An|

2(
Δ2
eff + 4g

2
eff (n+ 1)cos(Ωn+1t)

Δ2
eff + 4g

2
eff (n+ 1)

) if g2 < g1,

∞

∑
n=0
|Ãn|2(

Δ̃2
eff + 4 ̃g

2
effn cos(Ω̃nt)

Δ̃2
eff + 4 ̃g

2
effn

) if g1 < g2,

where

An =
1

√cosh (r)
exp(−
|αr|2

2
−
tanh (−r)

2
α∗2r )

tanhn/2 (−r)

2n/2√n!
Hn

×[[

[

αr
1+ tanh (−r)

√2 tanh (−r)

]]

]

,

with αr = α cosh (r) + α
∗
sinh (r), and Hn(x) being the n-th

Hermite polynomial. Here, An determines the photon probability
distribution |An|2 for g2 < g1, while |Ãn|2, obtained from Equation 4,
describes the distribution for g1 < g2, corresponding to the anti-
Jaynes-Cummings model. These coefficients arise from the initial
coherent state |α〉 and the squeeze operator Ŝ†(r), derived from
the evolution operator in Equation 6, such that Ŝ†(r)D̂(α)|0〉 =
D̂(αr)Ŝ

†(r)|0〉 [25]. The typical revivals of the Jaynes-Cummings
model depend on the effective coupling geff = √g

2
1 − g

2
2, reflecting

coherent energy exchange between the atom and the field. However,
Ŝ†(r) modifies these dynamics by altering the photon distribution
and enhancing or suppressing transitions based on the squeezing
parameter r. In the anti-Jaynes-Cummings regime (g2 ≫ g1), revivals
stabilize, characterized by ̃geff = √g

2
2 − g

2
1. As shown in Figure 3, the

average photon number and Fock state populations are influenced
by g2: higher Fock states populate as g2 approaches g1, while they
depopulate for g2 ≫ g1. This behavior underscores the role of Ŝ†(r)
in modulating quantum dynamics across both regimes.

Finally, in Figure 3, we show the probability distribution (a1),
the average photon number ⟨n(t)⟩ (a2), and the field quadrature
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FIGURE 2
Dynamics of the atomic inversion in the anisotropic quantum Rabi model. The figure illustrates the temporal evolution of the atomic inversion W(t) for
two distinct coupling regimes: (a) g2 < g1 and (b) g1 < g2. The initial state of the system is chosen as |ψ(0)〉 = |α〉 ⊗ |↑〉 = |α,↑〉, where |α〉 represents a
coherent state of the field with α = 3. Additionally, we have considered different values of g2 for the two distinct parameter regimes with g1 = 1, and we
set ω = ω0 = 1.

FIGURE 3
Dynamics of the anisotropic quantum Rabi model in two distinct coupling regimes: (a) Jaynes-Cummings regime (g2 < g1) and (b)
anti-Jaynes-Cummings regime (g2 > g1), with g1 = 1 and ω = ω0 = 1. The panels show a1, b1 the photon probability distribution |An|

2 or |Ãn|
2, a2, b2 the

average photon number ⟨n̂(t)⟩, a3, b3 the quadrature dispersion ΔQ, and a4, b4 the quadrature dispersion ΔP, as functions of time t.

dispersions ΔQ2 = ⟨x2(t)⟩ − ⟨x(t)⟩2 and ΔP2 = ⟨p2(t)⟩ − ⟨p(t)⟩2 (a3
and a4, respectively; the same is shown for bj): Jaynes-Cummings
g2 = [0.1,0.3] and anti-Jaynes-Cummings g2 = [1.8,2.0].The average
photon number in the Jaynes-Cummings regime is given by

⟨n̂ (t)⟩ = 1
g21 − g

2
2
[g22 + (g

2
1 + g

2
2)
∞

∑
n=0
|An|

2 (n|τ(11)n+1|
2
+ (n+ 1)2|τ(21)n+1|

2
)

− 2g1g2 ×
∞

∑
n=0

√(n+ 1) (n+ 2)Re{A∗nAn+2e
−i2ωefft [(τ(11)∗n+1 τ(11)n+3)]

+(n+ 3)τ(21)∗n+1 τ(21)n+3]}]

where τ(11)n = cos (Ωnt/2) − iΔeff sin (Ωnt/2)/Ωn, and τ(21)n = −
i2geff sin (Ωnt/2)/Ωn. On the other hand, the average photon
number in the anti-Jaynes-Cummings regime is

⟨n̂ (t)⟩ = 1
g22 − g

2
1
[g21 + (g

2
1 + g

2
2)
∞

∑
n=0
|Ãn+1|

2 ((n+ 1) | ̃τ(11)n+1|
2
+ n (n+ 1) | ̃τ(21)n+1|

2
)]

− 2g1g2
∞

∑
n=0

Re{Ã∗nÃn+2√(n+ 1) (n+ 2)e−i2ω̃efft ̃τ(11)∗n ̃τ(11)n+2

+ Ã∗n+1Ãn+3 (n+ 1)√(n+ 2) (n+ 3)e−i2ω̃efft ̃τ(21)∗n+1 ̃τ
(21)
n+3}

where ̃τ(11)n = cos (Ω̃nt/2) − iΔ̃eff sin (Ω̃nt/2)Ω̃n, and ̃τ(21)n = −
i2 ̃geff sin (Ω̃nt/2)Ω̃n. The squeeze operator Ŝ†(r) fundamentally
modifies both the average photon number ⟨n̂(t)⟩ and quadrature

dispersions ΔQ, ΔP in Jaynes-Cummings (g2 < g1) and anti-Jaynes-
Cummings (g1 < g2) regimes. Its action transforms photon operators
as Ŝ†(r)â†âŜ(r) = μ2â†â− μν(â2 + â†2) + ν2ââ†, demonstrating how it
enhances/suppresses fluctuations via parameter r.When applied to a
coherent state initial condition |α〉, it generates a squeezed coherent
state |αr,−r〉 = Ŝ

†(r)|α〉, whose photon statistics and quadrature
properties are distinctly modified compared to the unsqueezed case,
with αr = α cosh r+ α

∗
sinh r characterizing the displaced squeezed

state. These results demonstrate the operator’s role in controlling
quantum dynamics in each regime.

4 Conclusion

It has been demonstrated that, by judiciously tuning the
diamagnetic amplitude, the anisotropic quantum Rabi model
can be reduced to either the Jaynes-Cummings model or the
anti-Jaynes-Cummings model through the application of a
squeezing transformation. Specifically, when the condition μ

ν
=

g1
g2

or μ
ν
= g2

g1
is satisfied, where μ = cosh (r) and ν = sinh (r) are

the hyperbolic functions associated with the squeezing parameter
r, the Hamiltonian of the anisotropic quantum Rabi model
transforms into the Jaynes-CummingsHamiltonian for g2 < g1 or the
anti-Jaynes-Cummings Hamiltonian for g1 < g2. In the case of the
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standard quantum Rabi model (i.e., when g1 = g2), the system
cannot be reduced to either the Jaynes-Cummings or anti-Jaynes-
Cummings models. However, the squeezing transformation still
allows us to eliminate the diamagnetic term, thereby removing
the A2 interaction from the Hamiltonian. This result highlights
the versatility of the squeezing transformation in simplifying the
anisotropic quantum Rabi model and its connection to well-known
models in quantum optics.
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