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This study aims to investigate the computationally complex cardiac dynamics
of the well-known human ventricular model of Ten Tusscher and Panfilov from
2006. The corresponding physical system of the cellular model is described by
a set of nonlinear differential equations containing various system parameters. If
one or a set of specific system parameters crosses a certain threshold, the system
is forced to change dynamics, which might result in dangerous cardiac dynamics
and can be precursors to cardiac death. To perform an efficient numerical
analysis, the original model is revised and simplified such that the modified
models perfectly match the trajectory (time-dependent cardiac potential) of
the original model. Moreover, it is demonstrated that the reduced models have
the same dynamics. Furthermore, using the lowest dimensional model, it is
shown by means of bifurcation analysis that combinations of reduced slow
and rapid potassium currents and an enhanced calcium current may lead to
early afterdepolarizations, which are pathological voltage oscillations during the
repolarization or plateau phase of cardiac action potentials and are considered
potential precursors to cardiac arrhythmia. Finally, to outline synchronization
effects and pattern formation on a larger scale (macro scale), a two-dimensional
epicardial monodomain equation is studied.

cardiac dynamics, early afterdepolarization, model reduction, bifurcation analysis,
monodomain equation, pattern formation

1 Introduction

Computational physiology and medicine, computational physics, biology and
biophysics, mathematics for healthcare, and modeling of biomedical applications
have gained importance in numerous interdisciplinary and multidisciplinary research
projects [1-4]. Mathematical modeling has become an integral part and contributes
significantly to a better understanding of real-world phenomena, such as cardiac or
neuronal dynamics [5-14]. In addition to mathematical modeling and simulations,
the analysis of these complex systems has increasingly become the focus of research.
In the field of mathematical and computational cardiology, a strong focus is on
the investigation of certain cardiac arrhythmias, such as early afterdepolarizations
(EADs). EADs are pathological voltage oscillations during the repolarization or plateau
phase of cardiac action potentials (APs) (cf. Figure 1) and are considered potential
precursors to cardiac arrhythmia, often associated with potassium deficiency or elevated
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Simulations of a human ventricular cell model by Ten Tusscher and Panfilov from 2006 (TPO6 model), [15]. (Left) Characteristic action potential. (Right)

Early afterdepolarizations.

calcium or sodium currents caused, for example, by ion channel
diseases, drugs, or oxidative stress.

The presence of EADs strongly correlates with the onset
of dangerous cardiac arrhythmia, including forsades de pointes,
polymorphic ventricular tachycardia, and fibrillation, which are
specific types of abnormal heart rhythms that can lead to sudden
cardiac death [16, 17]. This potential spreading of EADs from cells
to the whole heart, resulting in dangerous cardiac arrhythmias,
provided the number of affected cells is large enough, is called
EAD synchronization [16]. It is therefore highly important to fully
understand the mechanism of such a phenomenon on the cellular as
well as the tissue/organ level.

The main emphasis in this research field has been the modeling
of cardiac muscle cells and the heart and the computational
studies of these models [18, 19]. However, nowadays the focus
moves towards systematic and more mathematical investigations of
phenomena on the cellular level, such as EADs [20-23]. Bifurcation
theory has proven to be a good tool for analyzing these systems
by investigating changes in the qualitative or topological structure
of a particular family of dynamic systems. It seeks to explain
how the behavior of a system (e.g., its stable states or periodic
cycles) changes with variation in a system parameter. In the
context of cardiac dynamics, this often means studying how cardiac
muscle cell dynamics such as action potentials or the heart rhythm
can change—from normal sinus rhythm to arrhythmias such as
tachycardia or fibrillation—when physiological parameters (such as
ionic conductance, and pacing rate) are altered. Bifurcation theory is
useful because it helps identify thresholds or critical points where the
dynamics of the cardiac cell or the heart shift from one behavior to
another, such as a small change in a physiological parameter leading
to sudden cardiac arrhythmia. Bifurcation theory is particularly
suited to systems with nonlinear dynamics, where other approaches
fail; thus, bifurcation analysis is utilized in this manuscript.

This approach has mainly been used for studies of low- (up
to four) dimensional ODE models [21, 24, 25]. Potential reasons
for this are that bifurcation analysis of high-dimensional nonlinear
systems is more challenging and might fail more easily due to
imprecise settings. Further reasons are issues occurring due to the
modeling of cell models themselves since they might not be smooth
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and regular enough. However, one main issue considering such a
reduced problem is the loss of information [26, 27]. On the other
hand, one can argue (for example, in [24, 25, 28]) that some sort of
time-scale separation argument [29] is used to identify the gating
variable of the K* current as the slowest variable to reduce the
dimension n of the system to # — 1, n > 3 by using this gating variable
as a bifurcation parameter. The advantage of this approach is that
the analysis of the rapid subsystem is easier, but again, one may lose
information cf. [27]. Moreover, this approach is not applicable to
studying the effect of the Ca®* current or the Na* current since their
gating variables are faster than that of the K current.

The aim of the paper is to provide a mathematically feasible and
physiologically realistic model for analyzing the electrophysiological
dynamics of a cardiac muscle cell. Based on the reduced model,
the bifurcation analysis enables the systematic investigation of the
ionic current interactions, particularly the interaction of the calcium
current with the slow and fast potassium currents. This analysis
provides a deeper insight into how an enhanced calcium current in
combination with reduced slow and fast potassium currents leads
to EADs. In addition, the result of the bifurcation analysis allows
quantification of these dangerous interactions. This study is divided
into three parts. 1) To decode the dynamical structure that leads to
EADs, we perform model reductions for the highly nonlinear and
high-dimensional cell model. The reduced models are compared,
and their advantages are emphasized. Furthermore, we show that the
simplified models reproduce the dynamics of the full model. The aim
is to obtain a model that is as simple and numerically efficient as
possible to simulate and analyze it without losing information about
the behavior of the voltage of the original model. These reduced models
retain the essential nonlinear features of the full system but are better
suited for mathematical analysis, such as bifurcation theory. 2) We
investigate the reduced model by means of numerical bifurcation
analysis and determine the complex behavior of the cardiac cell model.
Furthermore, we will show that the occurrence of EADs in both the full
and reduced model is determined by the same underlying bifurcation
mechanism—a period doubling cascade. This shows that EADs arise
on a generic route to chaos, which can also be captured and explained
in simplified models. In the case of a stable period doubling cascade,
chaos can also be simulated. Using bifurcation analysis, we identify
critical transitions in the behavior of the system when key parameters
are varied. In particular, we focus on the occurrence of EADs through
a period doubling cascade. This approach allows (i) confirmation
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of the validity of the reduction; (ii) accurate determination of the
conditions for the occurrence of EADs; (iii) predictions that can serve
as a basis for further numerical or experimental studies. 3) Finally,
based on these results, we will perform numerical simulations for
the two-dimensional monodomain model to determine macroscale
synchronization effects.

The motivation for this is as follows. Cardiac myocytes can exhibit
complex oscillatory patterns, such as spiking and bursting, that are
related to ion-current interactions. In addition to normal APs of a
cardiac myocyte, certain types of cardiac arrhythmias can occur. These
include certain types of cardiac arrhythmias that can lead to sudden
cardiac death. Furthermore, irregular behavior such as (deterministic)
chaos or chaotic EADs has been observed in both experimental
and computational studies (cf. [30-33] and the references contained
therein). Moreover, heart dynamics or the heart rhythm can react very
sensitively to the influence of certain medications, and computational
studies can provide new insights and help make better predictions cf.
[34-39]. To this end, we modified and simplified the cardiac muscle
cell model of Ten Tusscher and Panfilov from 2006 [15, 40] to perform
numerical bifurcation analysis. This allows the investigation of the
dynamics of the TP06 model and prediction of the occurrence of
normal APs or cardiac arrhythmias, such as EADs. The focus of this
study is on the model reduction and enhancement of the efficiency
of the numerical bifurcation analysis without loss of information to
the original TP06 model.

2 Methods

This section focuses on the methodology used in this
manuscript, including the modeling of cardiac single models and
the heart, as well as model reduction. Moreover, the bifurcation
analysis and the numerical methods are discussed.

2.1 Cardiac single-cell modeling

Here, we briefly describe the cardiac model we will investigate in
this paper. The mathematical modeling of action potentials (APs) of
excitable biological cells, such as cardiac myocytes, has its origin in
the Hodgkin-Huxley model [41]. Here, an approach was developed
to model the APs of excitable biological cells through a system
of ordinary differential equations (ODEs). These conductance-
based models represent a minimal biophysical interpretation of
excitable biological cells in which current flow across the membrane
is due to the charging of membrane capacitance and movement
of ions through ion channels that are selective for certain ion
species. An initial stimulus activates the ion channels once a certain
threshold potential is reached. Then, these ion channels open and/or
close, allowing an ion current to flow that changes the membrane
potential. This electrophysiological behavior of a cardiac myocyte is
represented by the following ODE:

dv

ma——l- n+I

stim>

where V denotes the voltage (in mV) and t the time (in ms),
while I,

ion 18 the sum of all transmembrane ionic currents. The
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(epi-, mid-myo,- and endocardial) human ventricular TP06 model
contains several different ion currents, ion pump, ion exchanger, and
background currents:

Iion = IKl + Ilo + IKr + IKs + ICaL + INaK + INa + IbNa + INaCa + IbCa + IpK + IpCa'

These currents depend on individual ionic conductances G en

and Nernst potentials E_,,..,.- Moreover, they may depend on gating

variables which are important for the activation and inactivation of

ion currents. The gating variables satisfy the differential equation
dg _ 808

dt_“g(l_g)_bgg:“g_(“g+bg)g_ T, M

where g represents the gating variables, while g =g (V)=
ag~(ag+bg)’1 denotes the equilibrium of the gating variable g
and Tgi= Tg(V) = (ag+ bg)_1 its time scale. Furthermore, the ionic
concentrations of the TP06 model from [15, 40] read as:

% :7k2[ca]ssR+k4(17R)’
d[Cal, V. Ipca + Ipca = 2Inac
dt - = Cajpyure <(Ileak - Iup) Vscr + Lgger — W >
d[Ca]
at L= Cagrputsr (Iup - (Irel + Ileak)) >
d[ca]ss ICaL Vsr VC
T = Cassbufss (_ W + Irel V_ss - Ixfer V_ss ) >
dINal; | Ty, +Ton, +3Dnak + 3o
dt V.F ’
d[K]z _ IKI + Ito + IKr + IKs - 21NaK + IpK + Istim
dt V.F ’

Note that we do not specify the constants, but they are available
in [15, 40] or in the code provided in [42]. Furthermore,
the main ion currents except the sodium current are listed in
the following.

e L-type calcium current with gating variables d, f, f2 and f

4(V—15) P2 0.25Ca exp (2(V-15) 2= ) - Ca, )
RT exp(2(V715)RiT)fl

Iear = Geard f o feass ’
e transient outward current with gating variables r and s:

I, = Giors(V-Eg),

e slow delayed rectifier current with gating variable x:

IKs = GKS'xs2 (V_ EKS)’

e rapid delayed rectifier current with gating variables x
and x,.:

IKr = GKr'xr1 xrz (V_ EK) >
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e inward rectifier current:

Iy = Gy Xk, (V-Eg),

where the gating variables satisfy the differential Equation 1. Finally,
note the difference between the epi-, mid-myo-, and endocardial
human ventricular TP06 model. There are two parts of the model
which differ for these three cell types.

1. The modeling of the gating variable s of the transient outward
current I is different:

1 . .
e forepicardialand M cells,
1+e s
Seo = 1
- forendocardial cells
l1+e s
and
(V+45)%
85¢ = + SHO +3 forepicardialand M cells,
T = 1+e s

_(vs67)?
1000e” 1w +8 forendocardial cells.

2. The values of G, and Gy differ:

0.294;—15 forepicardialand M cells,
Gy = nS
0.073— forendocardial cells
pF
and
0.392 ;—i forepi — and endocardial cells,
GKS =

0.098”—8 for M cells.
pF

For a full description of the variables involved, please see [15, 40].

This also implies that we only need one proper bifurcation
analysis with respect to Gy, for epicardial and M cells since the
models are different only in Gg,. Furthermore, we need a separate
analysis for endocardial cells. This also explains why the trajectories
in Figures 2, 3 are different. For the simulations in Figures 2, 3, we
used the same setting as in [15], except for the value Gg,, which we
set to 18% of the original value and the value Gg,;, which we have
chosen as five times bigger than that in [15]. Therefore, the M cell
enters a region where EADs occur.

2.2 Monodomain model

To model the heart, different types of reaction-diffusion type
systems are available, where the focus is on different research
questions, and their complexities vary (cf. e.g., [43-48]). This paper
focuses on the two-dimensional monodomain model since it is used
to model the original TP06 model (cf. [15, 40]). In addition to this,
monodomain models have been shown to be a good approximation
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for wave propagation in cardiac tissue (e.g., [49]) and are well studied
(e.g., [50, 51]). The monodomain model reads as follows:

A

oV
mV(MZ-VV)—X(Cm . +1i0n(V,g)—Imm) (2)

5
with equal anisotropy rates M, = AM;, where A is a scalar constant, V
is the spatial gradient, M, and M, denotes the intra- and extracellular
conductivity tensors, and y is the membrane surface area per unit
volume. Moreover, the system is equipped with Neumann boundary
conditions, (M;VV) -7 = 0, where 7 denotes the normal vector. In
the fashion of [39], we write the monodomain Equation 2 as a
reaction—diffusion system, which it is:

a_V = DAV - Iion (V’g) + Istim , (3)
ot C,
where D denotes the diffusion coeflicient D = ﬁ M1 Moreover,

m

nd stimulus,

o0

we use the same mesh, time, and space discretizatign
as in [39] (Table 1).

Notice that for normal AP simulations, a time step of At=
0.05 ms is used, while for the simulations of EAD settings, it is At =
0.02 ms.

2.3 Model reduction

The aim of model reduction is to simplify a complex
mathematical model while retaining its essential behaviors and
properties so that the reduced model can be calculated more
quickly and analyzed more easily. Therefore, we modify and
simplify the TP06 cell model and then compare the dynamics of
the resulting three modified TP06 models—one 18-dimensional,
one 16-dimensional, and one 14-dimensional system of ordinary
differential equations (ODEs). The 18-dimensional model is in the
fashion of [52, 53] and perfectly represents the original model,
while the 16-dimensional model gives a perfect approximation
of the original model in case we modify the initial stimulus. The
same applies to the 14-dimensional model. Notice that without the
modification of the initial stimulus, the models show very similar
dynamics compared to the original one; however, the trajectories do
not perfectly coincide with that from the TP06 model.

2.4 Bifurcation theory

Very powerful tools to systematically analyze the dynamics of
cardiac myocytes are bifurcation theory [54] and geometric singular
perturbation theory [55] (see for instance, recent studies in [21, 26,
56-65] and the references contained therein). These computational
studies can be used to develop new therapies and help in improving
clinical decisions [66-70].

In general, the state of a physical system can be observed when it
is stable, and one expects that a small change in a system parameter
should not change its dynamics. Rather, stable solutions can be
expected to continuously change in unique ways. No dramatic
change is observed when varying any parameter, as long as a
continuous solution branch retains its stability. However, when a
certain physical parameter exceeds a threshold, the physical system
may be forced to change its dynamics, and complex behavior
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FIGURE 2
Comparison of the modified models and original TPO6 human ventricular epi- and endocardial cell model.
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FIGURE 3
Comparison of the modified and original TPO6 human ventricular mid-myocardial cell model.

TABLE 1 Mesh, stimulation, and diffusion parameters.

Spatial grid Time step At Stimulation Stimulus Second Diffusion Integration

size Ax duration strength stimulus coefficient domain size

0.25mm 0.05/0.02ms 1.5ms 52‘;—2 ‘ 340ms 0.154'"7":2 100mm

may result. Therefore, bifurcation theory is used to explain certain ~ 71]). In [53], the authors modified the sodium current I, similar
phenomena and dynamics of the TP06 model of Ten Tusscher and  to the approach used in [52], while in [71] the sodium current I,
Panfilov from 2006 (cf. [15]). was modified based on [72]. Both approaches enable (numerical)

One requirement to be able to apply bifurcation theory is that  bifurcation analysis with slight differences. The advantage of the
the investigated system is sufficiently smooth. However, this is not  approach used in [53] is that the remodeled system almost always
the case for the original TP06 model (reported, for instance, in [53, perfectly fits the original TP06 model without changing the stimulus,
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FIGURE 4

Multiple bifurcation analysis. Stable (black surface) and unstable (gray surface) regions projected on the (Gy,, Gy, Gea)-space. (Upper) epicardial cell

(Lower) endocardial cell.

while the ansatz in [71] leads to an almost perfect remodeling of
the original TP06 model. On the other hand, the ansatz in [71]
results in a lower-dimensional model, and therefore the bifurcation
analysis is more efficient. These advantages and disadvantages must
be considered.

The important bifurcations in this study are 1) Andronov-Hopf
bifurcations; 2) torus bifurcations; 3) period-doubling bifurcations
[54]. An Andronov-Hopf bifurcation occurs when a fixed point of
a dynamic system changes its stability and a limit cycle (periodic
orbit) occurs. In a supercritical Andronov-Hopf bifurcation, a
stable limit cycle occurs. In the subcritical case, an unstable limit

Frontiers in Physics

cycle appears. The Lyapunov coefficient determines the nature
of the Andronov-Hopf bifurcation. Its sign indicates whether the
bifurcation is supercritical (negative coeflicient, stable limit cycle)
or subcritical (positive coeflicient, unstable limit cycle). It quantifies
the nonlinear effects near the bifurcation point. A torus bifurcation
(or Neimark-Sacker bifurcation) occurs when a limit cycle loses
stability and a quasiperiodic orbit emerges on a torus. The system’s
dynamics then evolve with two incommensurate frequencies,
leading to motion on a 2D torus instead of a simple periodic loop.
At period-doubling bifurcations, the periodic behavior of the system
changes, giving rise to a new orbit with twice the period. Moreover, a
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period-doubling cascade is clearly linked to the occurrence of EADs
and, in the case of a supercritical period-doubling cascade, is clearly
linked to chaos (e.g., [30]).

2.5 Numerical methods

For our simulations, we utilized MATLAB R2023b and Python
3.9 with FEniCS [73, 74]. To solve the ODE system, we mainly use
the MATLAB ode solver odel5s with a relative tolerance of 10713
and an absolute tolerance of 1078, For the monodomain model,
the two-dimensional simulations are done in FEniCS, where the
coupled ODE-PDE system is solved using cbcbeat [75] or fenics-
beat [76], which are Python/FEniCS-based libraries for running
cardiac electrophysiology simulations. Note that cbcbeat and fenics-
beat use a second-order splitting scheme with the Crank-Nicolson
method for time stepping. Moreover, the Rush and Larsen scheme
[77] is used to integrate the gating variables in time. For the
bifurcation analysis, we used CL_MATCONT, a continuation toolbox
for MATLAB [78, 79]. Codes are available via [42].

3 Results

The modifications we present here reduce the complexity of
the 19-dimensional TP06 model in several steps to an 18-, 16-,
and 14-dimensional system with astonishing consistency with the
original model (Figures 2, 3). Here, we changed the conductance of
the slow delayed rectifier current Iy, rapid delayed rectifier current
Ix,»and the L-type calcium current I,; such that (Gg,, Ggp» Gear) —
(Ggor0.18 Gy 5+ Gyr)-

As well as the modifications and model reduction which we will
present in the next section, we have to adjust the initial stimulus
for the 16-dimensional model in Figure 2, using I ;; = 891;—/; instead
of Istim
clearly observed in Figure 3. In the first row of Figure 3, an initial

stim
= 52‘%. Moreover, the effect of the different stimuli can be

stimulus of I, = 52% is applied to the 16-dimensional model.

stim
Although the trajectories do not match perfectly, the dynamics are
similar. In the second row of Figure 3, perfectly matching trajectories
of the TP06 model and its different versions are shown, highlighting
whether a different stimulus is applied. Notice that the MATLAB
code to produce Figures 2, 3 is provided in [42]. Using this code,
the readers can also convince themselves that the modified systems
effectively approximate the original system.

As well as the model reduction, the focus is on the complex
dynamics these models can develop. Numerical bifurcation analysis
is applied, highlighting that a reduction in the slow and rapid delayed
rectifier current, Iy, and Iy,, in combination with an enhanced
L-type calcium current I,;, force the system to develop EADs.
This can be linked to the existence of a subcritical period-doubling
cascade. Moreover, it is shown that no chaos may appear.

Finally, we investigate the 2D synchronization effects. In the 2D
case, we highlight that the monodomain equation’s dependence on
the system parameters develops stable spiral waves, but wave break-
up may also appear (cf. Figure 10) due to the EAD developed by the
cellular model.
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3.1 Model modification and reduction

First, we remove the ODE representing the intracellular ion
concentration [K]; and set [K]; constant equal to the initial
concentration [K]; of the TP06 model, [K]; = 138.3mM. In [80], it
was postulated that models for cardiac cells that account for changes
in intracellular ion concentrations violate a conservation principle.
Moreover, it turned out that the variation in the concentration [K];
is rather small (cf. [71]). Consequently, these systems never reach
a steady state—a resting potential—which is required to be able
to apply bifurcation theory. All modifications we present below
are tabularly collected and compared in the first section of the
supplementary material.

3.1.1 18 dimensional model
As indicated in [71], the first issue is in the modeling of the
sodium current in (40, 15)

INa = GNam3hj(V_ ENa)’

where Gy, denotes the ionic conductance and Ey, the Nernst
potential, while the different gating variables m, h, and j satisfy
differential Equation 1. To be more precise, the issue appears in the
modeling of the gating variables / and j since the voltage-dependent
functions a,, , 3, o and, /3]. are not continuous:

0 iV > —40mY,
] ~(V+80
%= 0057 exp( (V+80) ) ifV < —40mV,

6.8
0.77

(wmm ifV> -40mV,

1 013(1+exp .
(2.7€979V +.3.1-10°e%3155Y) if V < ~40mV,
0 ifV > —40mV,

Vi 1(_ L104,0-2444V _ . 106 ,-0.04391V" V+37.78 : _
(-2.5428- 10" 6.948-10 % ) e TV <—40mV,
80.057\’

1+e
0.6 ———— ifV>-40mV,
) 14 01(V4+32)
'j 0.02424870'01052‘/
—0.1378(V+40.14)

ifV<-40mV,
1+e

(cf. [40]). In the fashion of [52, 53], we introduce a new function

1

u= 1+e—5(V+40)’

(cf. Supplementary Figure S8) and remodel the rate constants
o, By and B; as follows:

—(V+80)
a, =(1-u)0.057¢ s,
0.77

By = —F— e~
0.13 (1 te )
“j = (1 - u) (—2‘5428 . 10450'2444‘/ ~6.948 - 10*6670.04391V)

eOA057V 0.024246_0'01052V

=06 ——maput (1 —u) — o -
/51 1+ ¢ 01(V+32) ( ) 1 + ¢ O-378(V+40.14)

u+(1-u) (277 +3.1.10%e348Y)

V+37.78

1 +EO'311(V+79'23) ’

Now, the modified model is sufficiently smooth without any
discontinuity. Therefore, bifurcation analysis is applicable, and
no further modifications are needed to fit the original model.
Note that the function u is modeled in such a way that u=1
for V= -40mV to represent the switching modeled in [40] of
@, Py-a; and B at V= —40mV, while the factor “~5” might be
improvable (cf. Supplementary Figure S8-10).
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TABLE 2 Comparison: First supercritical Andronov—Hopf bifurcation.

‘ Gy value Lyapunov exponent

18-dimensional 0.027907858929580 ;—; —2.683800872009436
16-dimensional 0.027907858929578;% —2.683800872002161
14-dimensional 0.027907284533354;—fT —2.667544014101886

TABLE 3 Comparison: second supercritical Andronov—Hopf bifurcation.

‘ Gy, value Lyapunov exponent ‘
18-dimensional 0‘071030406847997;‘—;‘ ~1.961299057894090 - 10*
16-dimensional | 0.071030406847997 p—; ~1.961299057894896 - 10™*
14-dimensional 0.071026913636226;% ~1.964507593593568 - 10™*

TABLE 4 Comparison: torus bifurcation and period-doubling (PD)
bifurcation of the first limit cycle branch.

Gy value of the

Gy, value of the

torus bifurcation PD bifurcation

18-dimensional 0.074450869484859 P—i 0.096093300233720;‘{ ‘
16-dimensional 0.074450869481487 ;—; 0.096093300267257:—; ‘
14-dimensional 0.074412915016840 P—; 0.096081 176095085;—; ‘

3.1.2 16 dimensional model

A further way to avoid the issue with the discontinuity of the rate
constants &, 3., &; and f; is to notice that the equilibrium of / and j
is equal. In [71], the gating variables & and j are reformulated to one
new gating variable v, the sodium current is modified to

INa = GNam3V2 (V_ ENa) >

and a new time scale is introduced such that v
satisfies (Equation 2) with
. 1
Vo =hey =], =

00 = Joo V47155 \ 2
(1 +e 743 )
The time relaxation constant is given by

2.24-v,

=025+ s
Ty (1— tanh (6.468 + 0.07V))

which could probably be improved. However, we realized that
instead of considering a 17-dimensional model, it is more practical
to set v=v,, =hy =j, and to adjust the initial stimulus. This
removes the discontinuity, and in addition, we reduce the model by
a further dimension.

3.1.3 14 dimensional model

Finally, in this fashion and motivated by [81], we also fixed two
further gating variables equal to their steady-state solutions—that
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is, we fixed the gating variable r of the transient outward current
I, and the gating variable x, of the rapid delayed rectifier current
Iy, such that

1 1

=T = o and X, =X, =

l+e s l+e

This again requires modification of the initial stimulus, which
must be higher than the 16-dimensional model. However, this
simplified model shows a remarkably accurate approximation of
the original model, and additionally, it is much less challenging to
analyze, which we will highlight later in more detail.

3.2 Bifurcation analysis of the cardiac
single-cell model

The aim of the study is to make statements about the behavior
of the trajectories and the dynamics of the TP06 system. To
this end, it investigates the stability and bifurcations of the
modified systems (cf. [30, 53, 54, 82]). Moreover, we provide the
corresponding codes in [42].

A bifurcation of a dynamic system is a qualitative change in
its dynamics caused by the change of parameters. Therefore, we
study the modified TP06 model by means of (numerical) bifurcation
analysis using CL_MATCONT, a continuation toolbox for MATLAB
[78,79]. We consider an autonomous system of ordinary differential
equations, where the right-hand side of this system depends on
several state variables and parameters. Therefore, we consider the
modified TP06 models, containing 18, 16, or 14 state variables,
without initial stimulus for the bifurcation analysis, and we will focus
our study on the effect of a deficit in the fast and slow potassium
currents I, and I, respectively, and an enhancement in the L-type
calcium current I ;.

The starting point of the bifurcation analysis is to determine an
equilibrium of the modified autonomous system. To this end, the
algebraic equations are solved thus:

0 = Igy + I + Ixr + Ik + Icar + Inak + Ina * Tona + INaca + Tbca + Tpk + Ipcas
0 = —k,[Ca] R+ky(1-R),

2V.F

c

0= Casrbufsr (Iup - (Irel + Ileak)) >

V. (IbCa +1 Ca — 2INaCa)
0 = Cayyge <(Ileak - Iup) % + Ixfer s

! V. V,
0= Cassbufss (_ %‘ + Irel V_z: - Ixfer V_:S ) >
0= — INa + IbNa + 3INaK + 3INaCa

c

with g=g_ (V), where g represents the gating variables. The next
step is to derive the stability of the equilibrium to determine the
eigenvalues of the Jacobian or using the Routh-Hurwitz criterion
[30, 82]. If we do so, we are able to determine the stability of
the modified systems dependent on the ionic conductances G,
Gy, and Ge,p (Figure 4). Here, we have stable (black surfaces) and
unstable regions (gray surfaces).

The unstable region allows the system to oscillate; after an
initial stimulus the trajectory—the time-dependent voltage variation
of the ODE model—can either develop normal APs or other
oscillatory behavior such as EADs or some sort of ventricular
tachycardia, which cannot be specified at this stage. However, in
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TABLE 5 Bifurcation for the 14-dimensional epicardial cell model with
(Gs» Gir Geal) = (Ggs> 0.1+ Gy, 5- Gear)-

Bifurcation points Gy, value | Description | Period
=0.027310;—; Supercritical

Andronov-Hopf
=0.069724 ;—i Supercritical

Torus ~0.072733 ;—; ~ 259.53
~0.093842 P—i Subcritical ~ 42267

Period-doubling ~0.095239 ;_; Subcritical ~ 861.35
~0.095572 ;—i Subcritical ~1733.31

case the trajectory enters the stable region, it will reach a stable
equilibrium—in this case not the resting potential, the potential
becomes V= 0mV. This corresponds to sudden death, because if
multiple cardiac cells lose their membrane potential, the heart
can no longer generate electrical impulses, leading to asystole
(cardiac arrest). Figure 4 also indicates that for increasing Gg,,
and decreasing Gy, and Gg,, the stable area becomes larger and
the risk of sudden death increases, where the possibility that the
voltage becomes continuously 0 is increased. This result is also
compatible with the current state of knowledge. Moreover, Figure 4
also shows two red lines—the Andronov-Hopf bifurcation curves.
At an Andronov-Hopf bifurcation, the system changes stability via a
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FIGURE 7
Bifurcation diagram of the 14-dimensional epicardial cell model with
(Gs> G Gear) = (Gis, 0.1+ Gy, 5- Gy ), Where Gy, is used as a
bifurcation parameter. The bifurcation diagram contains the second
Andronov—Hopf bifurcation, the first two limit-cycle branches, the
torus bifurcation, and the first period-doubling bifurcation.

pair of purely imaginary eigenvalues—A, , = * iwy and w, > 0—and
a limit cycle appears.

Note that the standard value Gy, is 0.153"—2. Therefore, in case
Gggr, does not increase too much and Gy, remains its standard
value, the risk that the cardiac myocyte TP06 model develops sudden
death is small to almost 0. However, if G,; increases, such as by
a factor 5, and Gy, is small, the risk of a sudden death increases
and the M cells already develop EADs for the standard value of
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TABLE 6 Bifurcation for the 14-dimensional epicardial cell model with
(Gks» Gk Gear) = (G018 Gy, 5- Gy )-

bifurcation points ‘ Gy, value  Description = Period ‘

~0.026278 P—i Supercritical
Andronov-Hopf
~0.066995 ;—; Supercritical
Torus ~0.067818 p—; ~ 24553
~0.088309 ;—; Subcritical ~ 424.84
Period-doubling
~0.089585 P—; Subcritical ~ 865.89

Gy, (Figure 3). Again, this is reasonable and compatible with the
current state of knowledge since it is known that EADs can be related
to the limit cycle bifurcating from an Andronov-Hopf bifurcation
(e.g., [30, 71, 82]), and from a medical point of view, EADs can be
precursors to sudden cardiac death.

Our goal is to examine the parameter set (G, Gy Gear)
and to better understand the behavior of the (endocardial)
cell model and compare the stationary dynamics of the 18-,
16-, and 14-dimensional model. A more practical way of analyzing
a dynamic system by means of bifurcation theory is to use the
continuation algorithm from [78, 79]. Choosing the parameter set
(Gge» G Gear) = (Gge» 0.1+ G, 5+ Gyp) and Gy as a bifurcation
parameter, we obtain two supercritical Andronov-Hopfbifurcations
(Tables 2, 3) which both generate a stable limit cycle, and
thus the bifurcating limit cycles are both stable. Between these
Andronov-Hopf bifurcations, the system exhibits the stable
equilibrium branch. Tables 2, 3 show that the three different models
have almost identical Andronov-Hopf bifurcations.

We give all eigenvalues corresponding to the Andronov-Hopf
bifurcations from Tables 2, 3 in Supplementary Tables S1, 2.

Starting a limit cycle continuation from the second supercritical
Andronov-Hopf bifurcation, we derive a limit cycle branch
containing a torus bifurcation and a (first) period-doubling
bifurcation (cf. Table 4). Note that this limit cycle branch is the
reason for the occurrence of both AP and EADs, which we will
highlight later in more detail.

Again, we give all characteristic multipliers corresponding

the period-doubling bifurcations from Table 4
Supplementary Table S3. It is remarkable that, for 18, 16, and 14
dimensions, not only are the equilibrium curves identical, which

to in

is obvious, but the stability and the bifurcation points are also
identical to a certain degree, which is visible in Tables 2-4. This
is also reflected in Figure 5, where no are apparent differences.
The first limit cycle branch (red surface) of the three simplified
models bifurcates from a supercritical Andronov-Hopf bifurcation
(red dot). At this bifurcation, the equilibrium curve (black line: the
dashed part represents the unstable branch, the solid part the stable
branch) also changes stability.

Note that fixing more gating variables equal to its steady-state
solution will not change the equilibrium curve, but it will change
its stability and potential bifurcations points and, therefore, the
dynamics of the whole system. Furthermore, Figure 6 shows the
limitation of the 18-dimensional model since for the M cells, the
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trajectory does not fit perfectly. Moreover, the stimuli for the 16- and
14-dimensional models differ from those in Figure 3. In any case,
normal AP is well represented by the simplified models. In the case
of more complex patterns such as EADs, the general dynamics of
all models are identical, but finding the correct basin of attraction
modifying the stimulus is more difficult.

Our next aim is to study the 14-dimensional epicardial TP06
model in more detail by means of bifurcation analysis. Our focus
is on a situation like in Figure 6, where we use G as the bifurcation
parameter and consider value shifts Gy, — 0.1 -Gy, and G, — 5+
Gar.- We thus have a reduced rapid delayed rectifier current and an
enhanced L-type calcium current. Utilizing the bifurcation analysis,
we can extract the behavior and dynamics of the system. Starting
a numerical continuation from a steady state solution, we find two
supercritical Andronov-Hopf bifurcations (cf. Table 5).

From these bifurcation points, a stable limit cycle branch
bifurcates each. Following the limit cycle branch from the
second Andronov-Hopf bifurcation (Gg,= 0069724”—; ), we
find a torus bifurcation and a first period-doubling bifflrcation.
Furthermore, the limit cycle branch changes stability; finally, it
will collide with the equilibrium curve and terminate there (cf.
Figure 7 and Supplementary Figure S7).

This behavior is similar for all investigated combinations of
(Gks> G Gear)- However, the position of the points varies (cf.
Tables 5, 6). Starting a continuation from the first period-doubling
bifurcation, we find a second limit cycle branch containing a
second period-doubling bifurcation (cf. again Figure 7). Taking
this approach further results in an unstable period-doubling
cascade; in Figure 8, we zoom in on the region with the first four
limit cycle branches.

To highlight the
bifurcation, Figure 9 shows four trajectories at the torus bifurcation

transition at each limit cycle
and the first three period-doubling bifurcations (from left to right).

We start a simulation with an initial value on the
limit cycle and with the corresponding G, value. Further
details are in Supplementary Figures S1-S6.

Based on the bifurcation diagram, we can identify a Gy, region
where EADs may appear. This region is clearly linked to the period-
doubling cascade; however, whether EADs occur or not is also
dependent on the initial values and the initial stimulus. Thus, if
the initial values and stimulus are chosen in such a way that the
trajectory is not able to enter the basin of attraction of the period-
doubling cascade, then no EAD will appear, even though the system
is in the dangerous region. This may happen, for instance, if the
initial stimulus is high, which one may link to the usage of a
pacemaker.
the first five
important bifurcations in the situation of the parameter shift

(Gio Grrr Gear) — (G 0.18 - Gy 5+ Gy ) (cf. Table 6).

Finally, we provide for comparison

3.3 Simulation of the monodomain model

The final focus of this study is to outline the synchronization and
pattern formation of cardiac cells. Studying a monodomain model
after analyzing its cellular model helps us understand how individual
cellular electrophysiological behaviors scale and interact across
tissue-level structures to simulate realistic electrical propagation in
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Zoom of Figure 7 containing the first four limit cycle branches.

the heart. The simulations of the monodomain Equation 3 are done
with FEniCS [73, 74], and the coupled ODE-PDE system is solved
using cbcbeat (described in [75]) or fenics-beat [76]. Again, codes
are provided in [42].

As in [39], we apply the S1-S2 protocol to generate spiral waves,
meaning that we first apply to a thin strip x < 10mm on the left side
of the square region. This induces a plane wave that propagates to
the right edge of the square. Then, after 340ms, we apply a second
stimulus to the lower half plane (0<x<Land 0<y< %, where L
denotes domain size).

We restrict ourselves to the epicardial human ventricular
tissue model of [15] and to two different parameter settings:
the normal AP setting and the parameter set (Gg,, Gk, Ge,r) —
(0.098”—2,0.18 - Ggp» 5+ Geyr)- The last setting either means that we
simulate the mid-myocardial model with reduced I, and enhanced
Ic,p or the epicardial model with reduced Iy, and Iy, and enhanced
ICaL'

In Figure 10, we represent ten different time points, where each
column corresponds to one time point, with spiral-wave pattern
formations for a normal AP setting. The first row presents the normal
AP for time points 2000s,3000ms,4000ms,5000ms and 5400ms,
and the second for time points 6000#1s,7000ms,8000ms,9000ms
and 10000ms. A stable spiral wave is thus initiated. However, in
the case of EADs, we see a wave break-up, where the spiral wave
disappears, the AP reaches its resting potential, and no further
activity is recognized (cf. Figure 11).

4 Discussion

This paper aims to investigate the complex dynamics of
the TP06 model [15, 40], such as the occurrence of action
potentials and certain cardiac arrhythmia. While the focus is on
early afterdepolarizations (EADs), the approach presented is also
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applicable to other diseases. A very efficient and beneficial method
of studying the behavior of dynamical systems is delivered by
bifurcation theory. Thus, one main goal of the paper is the numerical
bifurcation analysis of the cellular TP06 model. To this end, we
reported the difficulties in modeling the original model, which
is also highlighted in [53, 71]. In addition, we discussed several
possible modifications and model reductions of the TP06 model
which allow numerical bifurcation analysis and apply the numerical
continuation algorithm provided in [78, 79]. The aim of model
reduction is to simplify a complex mathematical model while
retaining its essential behaviors and properties so that the reduced
model can be calculated more quickly and analyzed more easily.
From an analytical point of view, it is desirable to derive a very
simple model; indeed, certain details can be lost, such as on specific
ion currents or concentrations, due to the focus on the voltage
potential. One specific example is fixing the intracellular potassium
concentration [K];. A time-dependent variation of [K]; has only a
small effect on the voltage V in this model and causes problems
for the bifurcation analysis; however, it might be of importance in
certain applications. Thus, we present several steps/levels of model
reduction and are able to reduce the 19-dimensional TP06 model
to a 14-dimensional version, which has (almost) identical dynamics
and trajectories as the original model (cf. Figure 5 and Tables 2-4).
This model reduction allows not only performance of numerical
bifurcation but also decreases the numerical effort and time. Apart
from the steady-state dynamics, which are (almost) identical, it is
necessary to adjust the initial stimulus such that the trajectory is able
to enter the same basin of attraction. Moreover, Figure 6 illustrates
that finding the correct basin of attraction is more difficult for
complex dynamics and patterns. On the other hand, we can predict
the dynamics of the original TP06 model extract very accurately
by analyzing the reduced model. Thus, using the results from a
mathematical model which is more feasible and low dimensional for
the original model avoids the problem of possible loss of information
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Comparison of trajectories of the 14-dimensional epicardial cell model (“action potentials” at the torus bifurcation and the first three period-doubling

bifurcations (from left to right).

FIGURE 10
Spiral wave of a normal AP. (First row) normal AP after 2000ms,3000ms,4000ms,5000ms and 5400ms. (Second row) normal AP after

6000ms,7000ms,8000ms,9000ms and 10000ms.

known to induce EADs for certain combinations of values (e.g.,
[7, 8]). This is one aspect for focusing on EADs; another is they
are complex voltage oscillations, and therefore this focus provides
a better test for the accuracy of our model reduction. Thus, the

as long as the approximation reflects the dynamics of the model
sufficiently well—which is the case in our study.

After the remodeling, a systematical bifurcation analysis is
provided using the set of parameters (G, Gg,>Gc, ), which are
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FIGURE 11
Spiral wave of the EAD, respective wave break-up induced by the EAD at time points 2000ms,3000ms,4000ms,5000ms and 5400ms.

bifurcation analysis can be seen not only as a tool for analyzing the
dynamics of the system but can also be used to test the accuracy
of our model reduction. The (numerical) bifurcation analysis shows
that the oscillatory behavior of modified TP06 models is induced
by an Andronov-Hopf bifurcation, and the occurrence of EADs is
related to the existence of an unstable period-doubling bifurcation
cascade. In addition, we can conclude oscillatory behavior for the
TP06 model from the behavior of the modified models. Moreover,
deterministic chaos is not observed, which is in line with [30, 71]. We
show that even though the system is in a dangerous region and EADs
potentially occur, the initial values and stimulus decide whether
the trajectory enters the basin of transient attraction of the period-
doubling bifurcation cascade. Therefore, we have three driving forces
that induce EADs: the steady-state dynamics of the system related
to a combination of a reduced slow and a reduced fast potassium
current—Iy and Iy —with an enhanced calcium current I, the
initial values, and the initial stimulus. This knowledge can now be
used to prevent the occurrence of EADs.

Furthermore, to outline the synchronization effects of cardiac
cells, we performed numerical experiments highlight how networks
of cells 2D-synchronize. Here, we can extract from our investigation
how stable patterns appear (Figure 10). In addition, we showed that
EADs may induce a wave break-up (Figure 11). While these results
show a correlation between EADs and spiral wave breakup, the
underlying mechanisms remain complex. A possible explanation is
that the prolongation of AP, which often occurs in EADs, increases
the heterogeneity of tissue cohesion and refractoriness. This may
increase the spatial dispersion of repolarization and thus create
the conditions for wavefront fragmentation. In addition, prolonged
APs may shorten the effective wavelength of reentrant waves,
increasing the chance of wavefront curvature and instability. It is
also possible that EADs themselves act as transient depolarization
triggers that disrupt the spiral core or interact with the refractory
tail of the wavefront to promote breakup. Future research using
targeted perturbations and parameter sensitivity analysis will be
required to reveal the contributions of these different mechanisms.
Moreover, it is highly important to analyze how and when EADs
induce wave break-ups resulting in cardiac death. The heart (model)
itself contains properties that allow it to stabilize and recover
phenomena such as EADs. Here, it is not only the cellular behavior
that plays a key role in the geometry of the heart (model) but also
its discretization, its diffusivity, and the amount of affect cells that
develop EADs.

The main focus of this study has been the model reduction of
the cardiac cell model and providing an approach and codes to
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efficiently investigate cardiac dynamics numerically. These codes can
be utilized to investigate different types of arrhythmia and cardiac
dynamics on single-cell level. Moreover, it can be used for drug
design or to make virtual experiments on the response of cardiac
cells or the heart on external influences, such as a pacemaker. We
showed on a tissue level that the local steady-state dynamics of
the system include certain pattern formations. Furthermore, we
discovered that the diffusivity of the system, the initial configuration,
and the initial stimulus is highly important for pattern formation and
network dynamics. This should be studied in more detail and is part
of a future study.
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