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for solving the coupled KdV
equations with two arbitrary
constants and its application to
MEMS system

Jiao Zhang* and Fucai You

College of Science, Shenyang Institute of Engineering, Shenyang, China

The coupled Korteweg-de Vries (cKdV) equations with two arbitrary constants
hold significant importance in the field of micro-electro-mechanical systems
(MEMS). These equations describe the behavior of nonlinear waves in MEMS
devices. In MEMS applications, the cKdV equations can be used to analyze the
dynamics of microstructures such as cantilevers, membranes, and resonators. By
solving these equations, researchers can predict the behavior of MEMS devices
under different operating conditions. In this paper, the (%)—expansion method
is extended to seek more general travelling solutions of the cKdV equations with
two arbitrary constants. The two arbitrary constants offer flexibility in modeling
different physical phenomena and boundary conditions. As a result, many new
and more general exact travelling wave solutions are obtained including soliton
solutions, hyperbolic function solutions, trigonometric function solutions and
rational solutions. They help in understanding the complex interactions between
mechanical and electrical properties. Additionally, the study of these equations
provides insights into the nonlinear behavior of MEMS systems, which is crucial
for improving their performance and reliability. Overall, the cKdV equations
with two arbitrary constants play a vital role in advancing the design and
understanding of MEMS applications.

extended (G'/G)-expansion method, nonlinear evolution equations, coupled KdV
equations, micro-electro-mechanical systems, computerized mechanization

1 Introduction

In the fields of physics and other disciplines, numerous phenomena are often described
by nonlinear evolution equations (NLEEs). To gain a deep understanding of the physical
mechanisms behind natural phenomena represented by the NLEEs, it is crucial to study their
exact solutions. Many methods have been developed to obtain exact solutions for NLEES,
such as the inverse scattering transform [1], the Darboux transformation [2], Backlund
transformation [3], the Hirota method [4], the Wronskian technique [5], homogeneous
balance method [6, 7], truncated Painlevé expansion method [8, 9], symmetry method [10],
F-expansion method [11, 12], the generalized auxiliary equation method [13]. Among the
numerous types of NLEEs, the cKdV equations hold a special place. The cKdV equations are
widely used to model the interaction of multiple waves in different physical scenarios. For
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the  field of
systems (MEMS) [14], they can describe the behavior of nonlinear
waves in MEMS devices. The dynamics of MEMS frequently exhibit
nonlinear characteristics arising from large deformations, material

instance, in micro-electro-mechanical

nonlinearity, or electrostatic coupling effects. Such nonlinear
behaviors are typically modeled using NLEEs. Soliton is stable,
localized waves with inherent waveform preservation. This property
proves advantageous for enhancing signal transmission efficiency
in MEMS resonators and communication components. However,
solving cKdV equations is a challenging task due to their inherent
nonlinearity and complexity.

In recent years, the generalized (%)—expansion method [15-17]
have emerged as a promising and powerful technique for obtaining
exact solutions of NLEEs. This method offers several advantages
over traditional methods. It is more flexible and can be applied to a
broader class of equations. By using the generalized (%)—expansion
method, we can obtain a variety of solutions, including solitary
wave solutions, periodic wave solutions, rational function solutions,
and more. These solutions can provide a more comprehensive
understanding of the behavior of the physical systems described by
the equations.

In this paper, we aim to extend the generalized (%)—expansion
method. Subsequently, we apply the extended (%)—expansion
method to solve the cKdV equations with two arbitrary constants.
Our objective is to obtain numerous novel and more general
travelling wave solutions, which can provide valuable insights
into the wave-wave interactions described by the cKdV equations.
Additionally, we will explore the application of these solutions to the
MEMS field.

2 Introduction of the extended
(%)—expansion method

For a given NLEEs with variable x = (t,x,,x,,...,x,,) and u(x)

P(u, Ups Uy s U s oeos Uy S Uy Uy s Uy s ) =0, (2.1)
through the application of the travelling wave transformation
u(x) = u(é),& = k(x; + Lix, + Lxs + -+ +1,,_x,, + Vt)(where k, V and
I;(i=1,2,...,m—1) are all constants.), Equation 2.1 can be reduced
to an ordinary differential equation (ODE):

Qu,u',u",--) =0, (2.2)

we work towards getting its solutions in a more general form:

n GI i
u_,_Z a,-(E) , (2.3)
1=—n
in which G = G(§) complies with the ODE
G" +AG' +uG=0. (2.4)

Since Equation 2.3 contains 27 arbitrary constants, the solutions
derived from the extended (%)-expansion method are more
general in scope compared to those obtained through traditional
approaches. To optimize the utilization of the extended (%’)—
expansion method, we list its main steps as follows:
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Step 1. Determine the integer value of n. Substitute Equation 2.3
along with Equation 2.4 into Equation 2.2. By balancing the highest-
order derivative term with the nonlinear terms in Equation 2.2, we are
able to derive the algebraic equation related to .

Step 2. Derive an algebraic equation system. Substituting
with
the n value from step 1. Collecting the coefficients of
(%)p(p =0,+1,%2,---), then setting each coefficient to zero,
we can get a set of over-determined algebraic equations for
a(i=0,£1,%2,...,+n),k(i=1,2,...,m—1),V,uand A.

Step 3. Solve the algebraic equation system. Employ Maple to solve

Equation 2.3 and Equation2.4 into Equation 2.2

the algebraic equation system and obtain the explicit expressions for
a(i=0,£1,%2,...,tn),k(i=1,2,...,m—1),V,uand A.

Step 4. Get the exact solutions. By substituting the outcomes
from the previous steps, we are able to obtain a series of travelling
solutions of Equation 2.2 which rely on the fundamental solution
G of Equation 2.4.

3 Solutions of the cKdV equations

In this part, we intend to utilize our method to acquire new and
more general exact travelling solutions for the cKdV equations [18].

Uy = a Uy, + 6un,) +2bvy,, (3.1)
Vp ==V — 3UV,. (3.2)
Suppose that
u=u(xt)=u(),
v=v(x%t)=v(),
E=x-Vt, (3.3)

then, upon inserting Equation 3.3 into Equations 3.1, 3.2
separately, we get.

—Vu' —6auu’ —au™ -2bvv' =0, (3.4)

-V +3u +v" =0, (3.5)
by integrating Equation 3.4 with respect to & for one time, we get
~Vu-3au*—au" - +C=0, (3.6)

Based on step 1, we find that n = 2 for u and v. We postulate that
Equations 3.5, 3.6 possess the following formal solutions

GI i
u= i:ZzCi<E> N (3.7)
2 GI i
=3 a(L), (38)

where ¢; and d;(i = 0,+1,+2) are all constants to be determined.
Upon substituting Equation 3.7 and Equation 3.8 along

with Equation 2.4 into Equations 3.5, 3.6, the following results

are achieved.

Case 1:

a=c¢=d =dy=d,=0,c,=-2p*c_, =2\, d, = j,

A,
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16ay® +2au*A* — bd® | +2u”A* + 4u°
- 6% (1+2a)

—8ap® +2au’\* + bd?|
- 2u* (1+2a)

Co =

>

C=(8a*N°bd’* | - 32a*p’bd* | + 8ay*A*bd* | + b*d* | - 32ap°bd* |
+64a° - 327N + bd® (WA — 4bd |y + 64a’pC + 4a’ytL?
+abd* | + 4 u*)t - 3207 °A%) [124* (1 + 2a)%,

where A, pand d_, are arbitrary constants.

Case 2:

=6 =d =d,=0,c;=—4y,c_, = 4%,

d, = 121,4\/‘76“,01_2 - iz,ﬁ\/‘%“,

Trdob\l"Tf’“ +(1+a)(A*+8y)
- 1+2a

a)® + 8ay + dob\/%“
V= ,

1+2a

o

>

C= <¢ (2a°A% + 16au + \? + 8+ 16a%u) dob %ﬁa —2aA%dyb

+a’At = 24ap® - 32a° N2y - 32a° 47 + 3bd5 + a*A* - 32277
—32a%\2p - 12au)* + 6abdy + 6a%bd2 ) /3(1 + 2a)%,

where A, p and d, are arbitrary constants.
Case 3:

c,=c,=d,=d,=d,=0,c;, =2\ ¢, =2, V=A% +2u+ 3¢,

g +\}2aA2 +12acy + 16au + 6¢, + 21> + 4u
1— = >
b

g_ih \jZa)LZ +12acy + 16ap + 6¢y +2A% + 4u
h=%= >
2 b

5c,A2

4 4
C= % +3acgh? + 2ap)? + 3ac; — dap® + % +A %+ +2cop + 3¢5,

where A, p and ¢ are arbitrary constants.
Case 4:

d_,=dy,=0,c,=-2,c,=-2A,

d_y=dipcy =20, =242,

2a\* + 16ay + bd;

2(1+2a)
2a\* + 16ap +2A% + 16y — bd-
“©=" 6(1+2a) ’
g A(24ay - bd?)
o 2bd,
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C = (1728a’A*p? + 8b°dp + b>d{A* + 448bd;a* A’ + 96bd: al >y
+6912a*A?? + 64b*d}ap + 8d}a)*b* + 6912a° Ay + b d°
+4bdia*A* +1024bd2 a’y® + 192bdray® + 4a°bdiA* + ab>dS
+1024a’bd2y? + 8a*b*diN* + 64a’ b d

+448a’bd2A ) [12bd2 (1 + 2a)%, (3.11)

where A, ¢ and d, are arbitrary constants.
Case 5:

cy=c,=d_=d,=0,c,=-4Ac,=—4,

,—6(1 /—611
dl =421 T,dz =+2 T,

V=A% +8u+ 3¢,

A2+ a)? + 8ay + 6acy + 8y + 3¢,
V-6ab
C=—(128ap* +9c5 + A* + 96acyp + 6c)A* + a*)*

+18a’cy + 112a%u” + 2al* + 12ac\?
+40a’pA? + 12aco\* + 96a° cop + 64u>
+48cop + 1607 + 18ac) + 32aA%y) [6a,

dy=+

>

(3.12)

where A, p and ¢ are arbitrary constants.

Substituting Equations 3.9-3.12 into Equations 3.7, 3.8
respectively, we have five kinds of formal solutions of
Equations 3.1, 3.2:

LG\ G\ 164’ +2ap*A - bd® | + 27\ + 448
rat(2) (5 - |
G G 6 (1+2a)
(3.13)
d_A
v = ,1£,+—1, (3.14)
G 2u
_ —8ap’ +2ai*\>+bd? |
where £ = x - —
2 -6 2
NIA G\ oA Fdob\ = A%+ 8+ 8ay
uy=—4p| = | -4l =) + ,
G G 1+2a

(3.15)

_ AN _ r\-1
vzziZyZ\%<%> iZA/A\%(%) +dy, (316

a\*+8aytd,b _76“

where é = x— t.

1+2a

1\ 2 !
u3:—2<£> —Z)Lg +¢p»
G G

2 2 /
v3=i\j2a/1 +12ac0+16cbly+6c0+2/1 +4;4<%+%>. (3.18)

(3.17)

where &= x— (A% +2u + 2¢,)t.

1\ 2 1\ -1 ! 1\ 2
u4:—2‘uz<6> —2AM(%> —2)L%—2<%>
2a\* + 16ap +2A% + 16y — bd>

- 6+12a

> (3.19)
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G\ G A(24au-bd?)
vy =dp| —= td——-—7F—"—, 3.20
‘ 1“( G> G 2bd, (3.20)
2 2
where & = x— 2a\*+16ap+bd;
2(1+2a)
/ !
=—4<G ) 0., (321)
G G
2 2, )2
vz 12 —_6a(G_’) 1o —6a G' AZ+al® +8au + 6acy + 8u + 3¢, . (3.22)
e TG Voab

where &= x— (A% + 8+ 3¢,)L.

Then, by substituting the solutions of Equation 2.4 into
Equations 3.13, 3.14, we derive three types travelling solutions of the
cKdV equations as follows:

When A% — 44 >0,

_2!"2

2_ 2
\A*~4u C,cosh : 24#5 +C25inh%‘ws
2 VA2- 22—
Clsinh%y{-#Czcash%[‘f

)2
2Au

2 2_
1 \A*=4u Cycosh ‘ 24#5 +C25inh%‘w£

+
2 2 Va2- 12—
C, sinh%’d -%—Czcashf%f

u, =

1
2

16ay® +2ap*A* — bd? | +2u°A* + 44
6p* (1 +2a)
d_

= +
! 1 (A4 Clcoshé \ /12—4/4£+Czsinh% N2—4uk
+

Clsinh% \ /12—4[45+Czcosh% N2-4ué

, (3.23)

d A

2‘u'

(3.24)

2 2

When \? — 4y < 0, we obtain

(e

2(42

\/W Clcosf \/4/47/12{ Czszn— Au-A2E

Cysin= W§+Czcos— 4;4—/125>

2Au
) N 4u—A? Clcos% mf—czsiné 4u—-A%E
2 2 Clsin% \/ﬁ&rczcax% 4u-12¢
16a” + 2ap*A* — bd* | + 2p7A* + 4u°

64> (1+2a)

d, A
A + 4u-\? C]cos% W{—Czsiné 4u-12¢
2 2 Clsin% W&Czcas% 4u—-A%E

U, =

, (3.25)

v, (3.26)

When \? -4u=0,

—2u? 2\
U, = -
3 2 C, 2 _&
<_E+ C1+sz) 2 *
16ay® +2ap*A* — bd? | +2u*A* + 44
- 6;42 (1+2a)

CZ
C+C¢

> (3.27)

Vl3 =

—_— 2
—+5 (328)
C+Cy¢

By the
Equations 3.15, 3.16, We possess three types of travelling solutions
of the cKdV equations in the following:

substituting solutions of Equation2.4 into
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When A? — 44 >0,

_ —4’

1 2 2
< 1 YA-4u g coshﬂﬂf sin hﬂ
-2+
2 2

C,sinh E+C cosh~—— 2 AME

U

]

4)L‘u
2 2
1 YA-4u G coshMJrC sin hw
2 2 AX
C,sinh E+C cosh~—— 2 AME

aA? Fdyb 6“ +/\2+8;4+8ay
+ , (3.29)
1 +2a
2 | —6a
+2u \l—
V2, = I 2+
2 + \A?~4u C,cosh E+C sinh—— I 4“5
2 2 VA2
Clsinh%w-ﬁ—czcosh%‘w
e
+ - —. (3.30)
1 YA-4u ClcoxhﬂJrC sin hw
2t 2 2
Cysinh—— X AM +C,cosh—— i 4}‘5
When A% — 4u <0,
_4‘”2
u =
2 PPy 1 B L1 70\ 2
2 =A% Cycos \4pu—A*E-Cysin S \4u-A*¢
A sin \[4pu=12E+Cycos T \[4p-12E
1SS\ 20055\
4\
! . \4u-A2 Clcos% \ 4[4—)»25—Czsin% 4u-A%E
2 2 Clxinlwﬂy—/lz&rczcosl 4u-A*E
al® % dob| 7% + A + 8 + Bau
+ , (3.31)
1 +2a
2 —6a
+2u \ =
vy, = >+ d,
\4/4 -\2 C1c057\4,u A2E- Czsm— Au-A2E
Clsmf \ 4/4—/\ZE+C2cosf 4u-12¢
2y
+ . (3.32)
) + 4u-1? Clcas%\ 4#—/12§—Czsin% 4u-12¢
2 2 Clsin% A\ 4y—/\zE+Czcas% 4u-12¢
When A% — 4u=0,
_ 6
o 4 4 +a/12+d0b T”+A2+8(4+8u[4 (3.33)
& (-2+5 )2 1, G 1+2a C
2 GGy 2 GG
+20% _%“ 20 _%“
vy, = ; RV N (3.34)
(_E + C1+CZE) 2 CHGE

Upon substituting the general solutions of Equation 2.4 into
Equations 3.17, 3.18, here are three types of travelling solutions of
the cKdV equations.

When A2 — 4y > 0,

2 C,cosh
s (s

\W*M
\ 4ué

AP =4 :
2

IS 4145

+ C,sinh

+7+C0,

+Cyco
(3.35)
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v, =%

\jZ (A2 = 4u) (aA? + 6acy + 8ap + 3¢, + A> +24)
b
2— N2—
C,cosh ;ﬂf + C,sinh 24[45
x . (3.36)
\2— \2—
C,sinh 24/45 + C,cosh 24”5

A2+ 8aut A2+ 2u . . .
AT n Equation 3.36, i.e., v; =0, then
3+6a 3

Equations 3.1, 3.2 become the KdV equation

Taking ¢, = —
Uy = a (U, +6uLL,), (3.37)

from Equation 3.35, the solutions of Equation 3.37 can be
rewritten as

L] VW2-aué
<2 2 ) 20 T +2Ce T+ Cye W 0 N 4 o,
uy, = (2u-%
E 2 2y 2t - -
2Ce T —2Ce T +CeW T C e Wi o,
+(4aA? — 4y —16au + \?) / (6 + 12a), (3.38)
if we set C, = 0, Equation 3.38 becomes
4p—a)* - A* +4day 2C, (4u—1?)
Uy = - . (3.39)

! 3+6a _ e
CreW ey ce W o,
Comparing our results in Equation 3.39 with other results by Exp-
function method in [19], then it can be seen that the forms
are similar.

When A% — 4u <0,

[ 2
u _</1—2_2) Clcos; ’\2_4“45_C2Si”§ G +)L—2+c (3.40)
s\ C,sint 12 — 4k + Cycos M2 — 4ut 27
1sins YA = 4pé+ Cycos 2 \A* — dp

_|2(4u—2%) (ar* + 6acy + 8au + 3¢y + A* +2p)
vy = F 5
\au-22 au-22
C,cos ”2 ‘o C,sin HZ :
X

\Au-A2-¢ 4u—-A%E
S+ Cycos 3

(3.41)

C,sin

When A% —4u = 0,

C3(2c)+1) & +2C,C, (2¢) +A2) E+2¢,CT - 4C5 + CA?

us

: 2(C, + C)? ’
(3.42)
2a0* +12acy + 16ap + 6¢cy + 24 +4u C
vy, = J_r\l 0 #¥ o b_ ™2 a3
: b Ci+Gé¢
Puting the general solutions of Equation2.4 into

Equations 3.19, 3.20, three types of travelling solutions of the cKdV
equations are given in the following:
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When A? — 4p >0,

_2#2

Uy =
2
! 1 A4 G coxh% A\ A2—4;4§+Czsinh% A2—4ué
-+
2 Clsinh% \ 12—4[4£+C2wsh% A2—4ué
20y A2 -4y

o, V2—4u Cycosht\\—apEeC,sinh t \\2—ayé 2
2 2 Clsinh% \ /12—4;4{+C2c0sh% N2-4ut
Clcosh% A2 —4pué+ Czsinhé A2 —4uk
1 1
Cysinh>\[A? = 4pé + Cycosh \A? — 4u§
16ay —4aA* = \* + 16y — bd>
6+12a

, (3.44)

- dyp
Y =
! = W24y Cycosht \ V-t Cosint : \ V24

2 2 Clsinh% \ /\2—4}4§+Czcosh% N2-4ut

. 22 — 4y Clcosh%\//\z —4ué+ Czsinh% A2 —4ué _ 12day
. .

Clsinh% VA? —4ué + Czcoshé A2 —4uk bd,

(3.45)

When A% — 4u <0,

_2[42
Uy =

2
: 2 + \4u-12 Clnus% \ 4;4—/\25—Czsin% 4u-A2E
2 2 C\s[n% \ A1—4‘u£+szs% \4u-12%¢
2
A . 4u-1% Clcos% \ 4;4—/\25—(?251'%% A4
Clsin% \ 4[4—AZE+C2505% \4u-12E

2 2
N 22— 4u Clcosi\M,u—/\ZE—Czsin% u—-N2E

2 Clsin%\ du-2E+ Czcos% au-12E

16au — 4aA* — \* + 16y — bd*
_ e o4 (3.46)
6+ 12a

_ du
L=
iy \ap-12 Clms%\/ﬁf—czsm% 22-4ué

2 2 Cpsind 4228+ Cocos § \4p-2%E
dy\4p -2 Clcos% \/4/,4—)LZE—C25in% 4wu-N¢  120au
¥ - .
Clsiniw du-12E+ Czcas% A2 —4ué bd,

When A% — 4p =0,

Yy

(3.47)

—2;42 2Au 2C§

(C, + C,8)?

u43 - 2 -
-1 C —A
(7 * C1+zczf) 2 *
- 16ay —4al* — A* + 16y — bd>
6+12a

G
C+Cy¢

> (3.48)

diy . dy\4u - 12 C, 12Aap

T2, G 2 C+GCéE  bd,
2 C+Cy¢

(3.49)

Substituting the general solutions of Equation2.4 into
Equations 3.21, 3.22, we have three types travelling solutions of
the cKdV equations in the following:
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When \? — 44 >0,

2
Cycosh \[A\2 = 4ué + C,sinh 2 \\? — 4ué
-(12-4,4)< R e +224¢,  (3.50)

Clsinh% VA2 —4ué+ Czcoshi N2 —4uk

2
+(/\2 —4u) \[_Tim < Clcoshi VA2 —4ué+ Czsinh% A —4;45)
- 2

Clsinh% A2 —4uE+ Czcoshé A% —4ué

us, =

‘VS‘ =

i)Lz+4a/\z+8uy+6ac0+8y+6c0. (3.51)

V—6ab

If C, > 0,C? < C2, then from Equations 3.23, 3.24, we can obtain
bell soliton solutions

1
us, = (N = 4p) sech’ (5 VA — du+ Eo) tdutc,  (352)
—6a (V- 4p) N =4l
R Rl G T
. A%+ a)\? + 20au + 6acy + 8y + 3¢, ’ (3.53)
V—6ab
where &, = tanh™ %
When A% -4y < 0,
e Clcos% \l4;4—)LZE—C25in% du—2A%¢ )
Us, = (A" —4u) +A% + ¢
Clsin% \du—A2E+ Czcos% du—2A%¢
(3.54)

_+(4pt—)t2)\[%§” Clcos%\My—Azf—Czsin% du— A%

Vs
’ 2 Clsin%\[4y—)l2€+ Czcos% Au— A%

A2 +4aA? + 8ay + 6ac, + 8u + 3¢,
+ ¢ oYY % (3.55)

V—6ab

When A2 — 4u =0,

-4C} )
g, = ———— + X+, (3.56)
LG+ GY)
_a[6a 2C . A2 +4a® + 8ap + 6ac, + 8y + 3¢, (3.57)
Ve, =\, S+ . .
(C+GY V—6ab

4 Conclusion

In summary, the extended (%’)-expansion method has
been proposed and applied to construct exact solutions of the
cKdV equations. With the aid of Maple, we have obtained
many new and more general exact travelling wave solutions,
presented as Equations 3.32-3.36 and 3.40-3.57. These solutions
span a wide spectrum, including soliton solutions, hyperbolic
function solutions, trigonometric function solutions, as well as
rational solutions. By applying the solutions obtained from the
cKdV equations to MEMS systems, the presence of the two
arbitrary constants allows for customization of the model to fit
specific experimental data or design requirements. This enables
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more accurate predictions and optimization of MEMS devices.
Additionally, the study of these equations provides insights into
the nonlinear behavior of MEMS systems, which is crucial for
improving their performance and reliability. Overall, the cKdV
equations with two arbitrary constants play a vital role in advancing
the design and understanding of MEMS applications. We hope
to contribute to the development of more efficient and reliable
MEMS devices.
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