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Temperature-dependent pure
state for the thermodynamic
system and its heat reservoir

Y. Q. Guo, J. X. Zhang, D. Mi* and D. F. Wang

School of Science, Dalian Maritime University, Dalian, China

Based on the quantum Liouville and Lindblad equations, a temperature-
dependent pure state was constructed for the composite isolated system
consisting of a thermodynamic system and its heat reservoir. The results
demonstrate that the expectation value of this pure state coincides with the
statistical average of the thermodynamic system’s mixed state. Furthermore,
the existence of this pure state is consistent with the eigenstate thermalization
hypothesis. Additionally, the “fictitious system” introduced in thermo field
dynamics can be naturally interpreted as the heat reservoir of the system, and
this interpretation allows us to re-examine the relationship between the physical
system and the so-called “fictitious system.”
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1 Introduction

Finite-temperature field theory (FTFT), also known as thermal field theory, serves
as the relativistic generalization of finite-temperature non-relativistic quantum statistical
mechanics. It extends the methods of zero-temperature quantum field theory to finite-
temperature conditions, providing a powerful framework for studying thermal phenomena
in extreme regimes of temperature and density [1]. FTFT is typically categorized into two
formalisms: the imaginary-time formalism, which exhibits a characteristic imaginary-time
periodicity, and the real-time formalism, distinguished by its doubled degrees of freedom
[2]. The idea of doubled degrees of freedom has been applied in many areas, including
quantum field theory for non-conservative systems [3], quantum entanglement phenomena
[4], holographic systems [5], and the dynamics of driven many-body quantum systems at
finite temperature [6], among others. However, the physical interpretation of the doubled
degrees of freedom has long been debated without reaching a broad consensus.

As a real-time formulation of finite-temperature quantum field theory, thermo field
dynamics (TFD) enable the application of Feynman diagram techniques to real-time
causal Green’s functions at finite temperatures [7], thereby determining the thermodynamic
properties of the system. Although numerous interpretations have been proposed regarding
the physical meaning of the doubled degrees of freedom in TFD [7–11], we argue that many
of these explanations remain largely speculative, lacking grounding in fundamental physical
principles.

In this work, we first briefly review the dynamics of isolated and open quantum
systems.We emphasize that an isolated system governed by the quantum Liouville equation
does not undergo global thermalization, whereas an open system obeying the Lindblad
equation eventually thermalizes through interaction with a heat reservoir. Subsequently, we
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construct a temperature-dependent pure state for a composite
isolated system comprising a thermodynamic system and its heat
reservoir. The expectation value of this pure state aligns with
the statistical average of the thermodynamic system’s mixed state.
Furthermore, we analyze the compatibility of this temperature-
dependent pure state with the eigenstate thermalization hypothesis
(ETH), propose a physical interpretation of the “fictitious system”
in TFD, and clarify the historical ambiguity in its interpretation.
Finally, we examine the structural features of the temperature-
dependent pure state and explain why such characteristics are
suitable for calculating thermodynamic quantities using methods in
quantum field theory.

2 Construction of the
temperature-dependent pure state

2.1 Dynamics of an isolated quantum
system

The state vector |ψ(t)〉 of an isolated system evolves according
to the Schrödinger equation, or the corresponding density operator
̂ρ(t) = |ψ(t)〉〈ψ(t)| obeys the quantum Liouville equation [12].

iℏ
d ̂ρ (t)
dt
= [Ĥ, ̂ρ (t)] , (1)

where Ĥ is the Hamiltonian of the system. Equation 1 holds a
fundamental position in quantum mechanics and serves as the
starting point for studying quantum master equations of open
systems. The solution of the abovementioned equation is

̂ρ (t) = e−
i
ℏ
Ĥt ̂ρ (0)e

i
ℏ
Ĥt, (2)

where ̂ρ(0) = |ψ(0)〉〈ψ(0)| is the initial density matrix. In the
eigenstate basis of the Hamiltonian {|ϕn〉}, Equation 2 can be
expressed as follows:

̂ρ (t) = ∑
n,m

cnc
∗
me
− i
ℏ
(En−Em)t|ϕn〉〈ϕm|,

where the coefficient cn = ⟨ϕn|ψ(0)⟩, the asterisk denotes complex
conjugation, and En is the eigenvalue corresponding to eigenstate
|ϕn〉. The average value of any observable Ô evolves as follows:

⟨Ô⟩ = Tr[ ̂ρ (t) Ô] = ∑
n,m

cnc
∗
me
− i
ℏ
(En−Em)tOmn,

where Omn = ⟨ϕm|Ô|ϕn⟩ is a matrix element of the observable O in
the energy basis.

It is evident that a generic pure state cannot exhibit the thermal
equilibrium behavior.The time-independent diagonal terms depend
on the initial state’s coefficients, while the off-diagonal terms exhibit
harmonic time dependence that generally does not decay to 0.
On the other hand, the thermodynamic entropy of a system
(commonly referred to as Boltzmann or Gibbs entropy in statistical
physics) vanishes for a pure state but is positive for a mixed state.
From the perspective of quantum mechanics, all thermodynamic
systems—including so-called isolated systems—are effectively open
and must be described by mixed states, thus possessing positive
thermodynamic entropy [13]. However, an isolated quantum

system undergoing unitary evolution remains in a time-dependent
pure state, implying that its global thermodynamic entropy is
rigorously 0. This observation reinforces the conclusion that a
genuinely isolated system cannot thermalize globally. Nevertheless,
as discussed in Section 3.1, a subsystem of such an isolated system
can undergo thermalization by treating the remainder as an effective
heat reservoir at fixed energy [14].

2.2 Dynamics of an open quantum system

When an isolated system interacts with an external
environment, it becomes an open system. Due to the entanglement
between the system and its environment, the system’s evolution
becomes non-unitary, and its dynamics are governed by the
quantummaster equation.The combined system–environment pair
S+E forms a composite isolated system, with S itself acting as a
subsystem of S+E.

The total Hamiltonian Ĥ of S+E can be expressed as follows:

Ĥ = ĤS ⊗ IE + IS ⊗ ĤE + ĤI, (3)

where “⊗” represents the direct product; ĤS and ĤE are the
Hamiltonians of S and E, respectively; ĤI represents the interaction
between S and E; and IS and IE are the identity operators in the
Hilbert spaces of S and E, respectively.

Let ÔS be an observable referring to S; it should be expressed as
Ô = ÔS ⊗ IE when considering S as a subsystem of S+E. Let ̂ρ(t) and
̂ρS(t) be the density matrices of S+E and S at time t, respectively.

Then, physical consistency requires that measurement averages be
the same whether computed via ̂ρ(t) or ̂ρS(t),

⟨Ô⟩ = Tr[ ̂ρ (t)(ÔS ⊗ IE)] = TrS [ ̂ρS (t) ÔS] , (4)

where

̂ρS (t) = TrE [ ̂ρ (t)]

is also known as the reduced density matrix of S, TrS denotes the
trace over the Hilbert space of S, and TrE denotes the partial trace
over the degrees of freedom of E. The time evolution of the reduced
density matrix ̂ρ(t) is derived by taking the partial trace over the
degrees of freedom of E on both sides of the quantum Liouville
equation as follows:

iℏ
d ̂ρS (t)
dt
= TrE [Ĥ, ̂ρ (t)] ,

where Ĥ is given by Equation 3. Starting from the abovementioned
equation, the quantum master equation in Lindblad form—a
first-order linear differential equation for the reduced density
matrix—can be derived under the weak-coupling limit, Born
approximation, Markov approximation, and rotating wave
approximation [15].

d ̂ρS (t)
dt
= − i

ℏ
[ĤS, ̂ρS (t)] +D( ̂ρS (t)) , (5)

where D( ̂ρS(t)) is the dissipator, which describes the possible
transitions, dissipations, and decoherence of the system due to the
interaction between the system and the environment.
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2.3 Thermalization of an open system
coupled to a heat reservoir

Assume that the environment is in a stationary state; then,
̂ρE is invariant under the reservoir dynamics. Furthermore, if the

environment is in thermal equilibrium with inverse temperature β,
the Lindblad equation predicts that the density of the matrix of the
canonical ensemble,

̂ρth =
e−βĤS

Tre−βĤS
, (6)

is a stationary solution of the quantum master (Equation 5) [15].
This means that regardless of the initial state, S will asymptotically
approach thermodynamic equilibrium after interacting with
R. Equation 6 can also be directly derived from traditional statistical
physics: any smaller system coupled to a large thermal reservoir will
eventually thermalize, and its density matrix adopts the canonical
ensemble form. In this study, we present the density matrix in this
way to demonstrate how the temperature-dependent pure state for
a composite isolated system consisting of a thermodynamic system
and its heat reservoir can be constructed from first principles.

The abovementioned discussion indicates that the thermal
equilibrium density matrix of S commutes with the Hamiltonian,
indicating that they share common eigenstates. Consequently, the
equilibrium density matrix of S is diagonal in the energy eigenbasis,

̂ρS =∑
n
ρn|ϕn〉〈ϕn|, (7)

where

ρn =
e−βEn
Z

(8)

is the probability that the system is in the energy eigenstate |ϕn〉 of
S, where Z = ∑

m
e−βEm is referred to as the partition function [16].

2.4 Constructing a temperature-
dependent pure state for the composite
isolated system

According to the quantum Liouville equation, the composite
isolated system S+R is always in a pure state. Let {|φn〉} and {|Φμ〉}
be any fixed orthonormal bases for S andR, respectively; then, a pure
state of S+R at any time can be expanded as follows [17]:

|ψ〉 =∑
n,μ

an,μ|φn〉 ⊗ |Φμ〉, (9)

where the coefficient an,μ = 〈φn| ⊗ ⟨Φμ|ψ⟩.
As established earlier, in the long-time limit, S as a subsystem

will thermalize such that its density matrix and Hamiltonian
commute with each other and, hence, share common eigenstates.
Consequently, the eigenstates of the density matrix appearing in the
Schmidt decomposition are also the eigenstates of the Hamiltonian.
As we shall demonstrate, this property extends to R. Let |φn〉
correspond to the Hamiltonian eigenstate |ϕn〉 of S; this allows us
to express |ψ〉 in Equation 9 in the form of Schmidt decomposition
[15]:

|ψ〉 =∑
n
ρ1/2n |ϕn〉 ⊗ |Φ̃n〉, (10)

where ρn is calculated using Equation 8, and |Φ̃n〉 is
defined as follows:

|Φ̃n〉 =∑
μ
ρ−1/2n an,μ|Φμ〉. (11)

It can be proven that the set |Φ̃n〉 of vectors with index n is
orthonormal,

⟨Φ̃m|Φ̃n⟩ = δmn,

and it is the set of eigenstates of the following reduced densitymatrix
for R,

̂ρR (β) = TrS ( ̂ρSR) = TrS (|ψ〉〈ψ|) = ∑
n
ρn|Φ̃n〉〈Φ̃n|.

It should be emphasized that if {|ϕn〉} is not the eigenstate basis
of the Hamiltonian and density matrix of S, the basis introduced
in Equation 11 may not be necessarily orthonormal or even not
orthogonal in general [18].

Since the temperature parameter β appears on the right side of
Equation 10, |ψ〉 is now a pure state with temperature. Denoting
|ϕn〉 by |n〉 and |Φ̃n〉 by | ̃n〉, respectively, Equation 10 can be
rewritten as follows:

|ψ (β)〉 =∑
n
ρ1/2n |n〉 ⊗ | ̃n〉. (12)

The corresponding density matrix of the temperature-
dependent pure state (|ψ(β)〉) is

̂ρSR (β) = |ψ (β)〉⟨ψ (β) | = ∑
n,m

ρ1/2n ρ1/2m |n⟩ ⊗ | ̃n〉〈 m| ⊗ 〈m̃|.

It is easy to check that the reduced density of S is

̂ρS (β) = TrR [( ̂ρSR (β) ] =∑
n
ρn|n〉〈n|.

As shown in Section 2.2, for an observable ÔS of S, it should
be expressed as ÔS ⊗ IR when considering S as a subsystem of S+R.
According to Equation 4, the expectation value of the pure state of
S+R coincides with the statistical average of a mixed state of S,

Tr[ ̂ρSR (β)(ÔS ⊗ IR)] = TrS [ ̂ρS (β) ÔS] .

In the energy representation, ̂ρS(β) is obtained using Equation 7.
Omitting the identity operator IR and the subscript “S,” we
finally obtain

〈ψ (β) |Ô|ψ (β)〉 =∑
n
ρn〈n|Ô|n〉. (13)

In this way, a question in quantum field theory realized through
a temperature-dependent pure state and a question in statistical
mechanics concerning a subsystem in thermal equilibrium can be
converted into each other.

3 Discussion

3.1 Heat reservoir as a subsystem in a
composite isolated system

As demonstrated in Section 2.3, a system interacting with a
heat reservoir will undergo thermalization in the long-time limit.
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However, this framework requires the heat reservoir to be predefined
as part of a composite isolated system. It seems that this prior
assumption introduces limitations in constructing |ψ(β)〉 from the
first principles.

Recent studies, however, demonstrate that for an isolated
system satisfying the ETH, its subsystem can indeed thermalize
[19–22]. The ETH serves as the primary conceptual framework for
understanding how quantum mechanics leads to thermalization.
According to the ETH, each eigenstate of the Hamiltonian of
the composite system S+E always implicitly contains a thermal
state; consequently, the reduced density matrix of such an
eigenstate becomes indistinguishable from a canonical ensemble
density matrix [23]. This yields the following relation:

TrE (|ϕk〉〈ϕk|) =
e−βkĤS

Tre−βkĤS
,

and the temperature parameter βk is determined using the following
constraint:

Tr[( e−βkĤS

Tre−βkĤS
)ĤS] = Ek,

where Ek is the eigenvalue corresponding to the eigenstate |ϕk〉 of
the S+E Hamiltonian. This implies that under unitary evolution of
the full system, a subsystem can exhibit thermal behavior when its
complement acts as an effective heat reservoir—a key assumption
in Section 2.3. Notably, the ETH has not only been theoretically
predicted but also experimentally verified [24].

Themicroscopic origin of temperature might still be considered
an open question. Although the ETH has been widely validated as a
sufficient condition for thermalization in many finite-sized systems
through numerical simulations [14], it has not been universally
proven to be a necessary condition. Due to the presence of local
conserved quantities that prevent thermalization, there exist systems
that do not thermalize at all, such as integrable systems or many-
body localized states [25].

3.2 Physical interpretation of the “fictitious
system” in TFD

As shown in Equation 12, the eigenstates |n〉 and | ̃n〉 appear as
a pair in |ψ(β)〉. Consequently, when calculating thermodynamic
quantities using the expectation value method, the degrees of
freedom must be doubled compared to those in the statistical
ensemble approach. Takahashi et al. termed |ψ(β)〉 the “thermal
vacuum state” and designated the tilde system as the “fictitious
system” [7].They further interpreted particles in the fictitious system
as “holes.” Other scholars have proposed alternative interpretations,
such as the “mirror of the real world” [8], “complement to the
dissipating system” [10], and “thermal ghost” [11].

Equation 13 serves as the foundational starting point of TFD.
Notably, in TFD, the density matrix ∑

n
ρn|n〉〈n| is assumed a priori,

whereas the pure state |ψ(β)〉 must be explicitly constructed. This
construction corresponds to the purification of the thermodynamic
system’s mixed state. However, purification is often viewed as a
mathematical procedure with the auxiliary reference system (the
fictitious system) lacking direct physical significance [17]. It can

be shown that there exist different pure states satisfying the given
condition, all are related to one another by unitary transformations.
Thus, for the sole purpose of computing thermodynamic quantities,
the “fictitious system” in TFD requires no physical interpretation.
However, diverse interpretations remain possible precisely because
none affect computational outcomes, leading to the current plurality
of explanations.

If |ψ(β)〉 is determined as discussed in Section 2.4, the reduced
density matrix ∑

n
ρn|n〉〈n| becomes uniquely defined. The tilde

system representing the heat reservoir in this framework directly
corresponds to the “fictitious system” in TFD. Therefore, assigning
a physical interpretation to the “fictitious system” is most logically
consistent when identifying it as the system’s heat reservoir. This
perspective elevates the purification of the mixed state beyond a
mere mathematical tool, endowing it with physical meaning.

This reinterpretation of the “fictitious system” may prompt a
re-examination of previously controversial or even meaningless
questions. For instance, Takahashi et al. argued that a “one particle
state” is built up from the thermal equilibrium state either by adding
a particle to the physical system or eliminating a particle from the
“fictitious system,” thereby interpreting a particle in the “fictitious
system” as a “hole” of a physical particle. In our framework, however,
this corresponds to the physical equivalence between annihilating a
particle in the heat reservoir and creating a particle in the system.

As a further example, we can now analyze the quantum
entanglement between the physical system and the so-called
“fictitious system”—a question previously devoid of physical
significance.The Schmidt number for the state |ψ(β)〉 is greater than
one, which indicates that |ψ(β)〉 is necessarily an entangled state.
The quantity that measures the quantum entanglement between
two subsystems in a composite isolated system is the entanglement
entropy. Usually, the entanglement entropy is defined as the von
Neumann entropy corresponding to any reduced density matrix of
the composite isolated system [26]. For instance, for a free particle
of mass m in a cube with a side length of L at temperature T, the
entanglement entropy between the particle and its heat reservoir
is given by

S = −Tr( ̂ρSln ̂ρS) =
3
2
(ln 2πmkTL2

h2
+ 1),

where ̂ρS is given by Equation 7 with the partition function Z =
L3( 2πmkT

h2
)3/2.

It is essential to clarify that for a composite isolated system
consisting of two subsystems in thermal equilibrium, the vanishing
thermodynamic entropy of the global pure state does not contradict
the non-zero thermodynamic entropy of its subsystems. This arises
because while the quantum information is preserved, it becomes
hidden locally throughout the system and is only accessible through
measurements of global observables that do not thermalize [16].

3.3 Characteristics of the component state
in the temperature-dependent pure state

As an entangled state, |ψ(β)〉 is represented as a linear
superposition of the direct product states |n〉 ⊗ | ̃n〉(n = 0,1,2,⋯).
The common eigenstate |n〉 of the density matrix and Hamiltonian
of S appear as one component state in every product state, while the
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common eigenstate | ̃n〉 of the density matrix and Hamiltonian of R
appear as the other component state. Crucially, the component state
is also the eigenstate of anymechanical operator that commutes with
both the density operator and the Hamiltonian. Specifically, if the
particle number operator satisfies this commutation property, the
component state within the direct product state is also the eigenstate
of the particle number operator. This structure allows |ψ(β)〉 to be
dealt with directly using the methods and techniques of quantum
field theory since the particle number operator and its eigenstates
play a fundamental role in the usual quantum field theory.

To illustrate the construction of such a state, consider a system
of free bosons. Since the Hamiltonian commutes with the particle
number operator, the density operator, Hamiltonian, and particle
number operator share common eigenstates. Let a†k and ak denote
the creation and annihilation operators for a free boson with energy
ϵk, respectively; the orthonormal basis vectors of the Fock space are
then expressed as follows:

|n〉 = 1
√n!
(a†k)

n|0〉, n = 0,1,2,…,

and the corresponding eigenvalues of the particle number operator,
density operator, and Hamiltonian are n, ρn, and nϵk(n = 0,1,2,⋯),
respectively.

On introducing the eigenstates of the particle number operator
of R, characterized by a tilde, |ψ(β)〉 can be constructed as follows:

|ψ (β)〉 =
+∞

∑
n=0

ρ1/2n |n〉 ⊗ | ̃n〉 =
+∞

∑
n=0
[(1− e−βϵk)e−βnϵk]1/2|n〉 ⊗ | ̃n〉.

Note that the identity operator in the Hilbert spaces of R is IR =
∑+∞n=0| ̃n〉〈 ̃n|, and the average particle number is obtained as follows:

fk−B = Tr[ ̂ρ(a
†
kak ⊗ IR)] ,

=
+∞

∑
l,n,m=0
〈l| ⊗ 〈 ̃l| [ρ1/2n ρ1/2m |n〉 ⊗ | ̃n〉〈m| ⊗ 〈m̃| (a

†
kak ⊗ IR)] |l〉 ⊗ | ̃l〉,

=
+∞

∑
l=0
(1− e−βϵk) l ⋅ e−βlϵk = 1

eβϵk − 1
,

which is the well-known Bose distribution.
It is important to note that for analytically solvable problems,

the pure-state expectation value method does not inherently
simplify thermodynamic calculations. However, for systems
requiring approximate treatments, this formulation provides
novel perspectives and techniques for studying finite-temperature
phenomena through quantum field theory [1].

4 Conclusion

In this work, we construct a temperature-dependent pure state
for the composite isolated system, comprising a thermodynamic
system and its heat reservoir, grounded in the foundational
principles of quantum mechanics. Our analysis demonstrates that
this pure state aligns with the ETH. Specifically, the common

eigenstates of a complete set of observables for the thermodynamic
system—including the density matrix and Hamiltonian—appear
in every product state of this pure state, and the same is true for
analogous eigenstates of the heat reservoir. Notably, when the
particle number operator commutes with the Hamiltonian, the
component states within each product state of this temperature-
dependent pure state correspond to Fock space basis vectors.
This structure can significantly facilitate the calculation of
thermodynamic quantities through the perturbative techniques
in quantum field theory.

Based on the construction of the temperature-dependent
pure state, we propose a physical interpretation of the “fictitious
system” in TFD, identifying it as the heat reservoir coupled
to the physical system. In an alternative real-time formalism
of FTFT, the time-path method, the thermal Green’s function
adopts a 2× 2 matrix structure. This doubling of the degrees of
freedom originates from the forward and backward branches of
the closed time path [27]. Since the doubled degrees of freedom
introduced by the backward time path encode the statistical
influence of the environment on the system and given the physical
equivalence between the time-path method and TFD in stationary
situations [28], we argue that these degrees of freedom should
also be intrinsically linked to the heat reservoir. Should rigorous
analysis confirm that these mathematically introduced doubled
degrees of freedom can also correspond to the system’s heat
reservoir, the physical significance of the doubled degrees of
freedom in both real-time formalisms (TFD and time-path) would
achieve unified interpretation. Such unification would enable us to
systematically explore the relationship between the physical system
and the so-called “fictitious system,” which may not exist or be
meaningless in earlier formulations of real-time finite-temperature
field theory.
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