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This paper focuses on obtaining the exact solutions to the variable-coefficient
forced Korteweg-de Vries (KdV) equation for modeling spatial inhomogeneity
in fluids. By combining the direct similarity reduction-based CK method with
the (G'/G) expansion method, three new similarity solutions are obtained for this
variable-coefficient forced KdV equation.
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1 Introduction

The forced KdV equation with variable coefficients plays a crucial role in researching
the waves motion and nonlinear phenonmeno [1], and it attracts more and more research
attentions [2]. In this paper, we examine the forced KdV equation with variable coefficients:

ut + a (t)uux + b (t)uxxx + c (t)u+ d (t)ux = f (x, t) , (1.1)

where u = u(x, t) is thewave function and x and t are scaled spatial and temporal coordinates,
respectively. a(t) is a nonlinearity coefficient, b(t) is a dispersive coefficient, c(t) is a line-
damping coefficient, d(t) is a dissipative coefficient, and f(x, t) represents the external force
effect function. Under suitable selections of the coefficient functions, Equation 1.1 reduces
to a sequence of integrable systems or describe the nonlinear waves in a fluid-filled tube
[3], weakly nonlinear waves in the water of variable depth [4], and it models the spatial
inhomogeneity in fluids [5].The classical KdV equationwas first derived from shallowwater
wave theory to describe the propagation of water waves in the long wave limit (surface
gravity waves) [6]. The coefficients of variation in Equation 1.1 are due to geometric and
physical inhomogeneities [3, 7].

In this context, we suppose that the external force effect function has the following form
according to [5]:

f (x, t) = f1 (t)x+ f2 (t) . (1.2)

In particular, when a(t) = μ1, b(t) = μ2, c(t) = 0, d(t) = μ3(t) − μ1μ(t), and f(x, t) = 0, H.L.
Demiray [8] obtained the solitary wave solution via coordinate transformation.When a(t) =
3c3

2
, b(t) = 1

6c
, c(t) = − 1

2c
, d(t) = 0, and f(x, t) = 0, H.L. Demiray [9] obtained a progressive

wave-type solution through the reductive perturbation method. When f1(t) = 0, Zhang
et al. [10] utilized the Wronskian technique and Hirota method to obtain a bilinear form
and an analytic N-soliton-like solution. On the basis of symbolic computation, Tian et al.
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[11] obtained solutions for the Airy, Hermit and Jacobian elliptic
functions [12]. Utilizing the Hirota bilinear method, Yu et al. [13]
obtained an N-soliton solution and a type of analytic solution.

Various methods have been applied to search for exact solutions
to nonlinear evolution equations (see [14–23]), including the (G/G)
expansion method [22, 24], the Hirota bilinear method [18], the
inverse scattering transform method [16], the CK direct method
[15], and the nonclassic Lie group method [14], among others.

In general, solving ordinary differential equations is easier than
directly constructing partial differential equations. However, owing
to variable coefficients, it remains difficult to solve an ordinary
differential equation with variable coefficients. In the present work,
first, by applying the direct similarity reduction-based CK method,
we transform the partial differential equation shown in (1.1) into
an ordinary differential equation. Then, solutions are obtained for
the above ordinary differential equation via the (G/G) expansion
method. Finally, we can obtain three new similarity solutions to the
variable-coefficient forced KdV equation in (1.1) and express the
graphics of these similarity solutions. This equation may represent
the main profile of these solutions for Equation 1.1.

2 Direct similarity reduction-based CK
method

We hypothesize that the solution to Equation 1.1 takes the
following form:

u (x, t) = U (x, t,w (z (x, t))) . (2.1)

Indeed, Equation 2.1 may represent the general form of the
similarity solutions for Equation 1.1 (see [25]), and it is sufficient to
consider the solutions for Equation 1.1 in the form of Equation 2.1.
By substituting Equations 1.2, 2.1 into (1.1), we obtain

[Ut +Uwwzt] + a (t)U[Ux +Uwwzx] + c (t)U+ d (t) [Ux +Uwwzx]

+ b (t) {Uxxx + 3Uxxwwzx +Uwww(w)3z3x +Uxw [3wz2x + 3wzxx]

+Uww [3wwz3x + 3w2zxxzx] + 3Uxwww
2(zx)

2

+ Uw [wz3x + 3wzxxzx +wzxxx]} = f1 (t)x+ f2 (t) ,
(2.2)

where w = dw/dz, w = d2w/dz2, and w = d3w/dz3. To reduce
Equation 2.2 to an ordinary differential equation with respect to
w(z), the derivatives of w(z) should be only functions of z and w.
Moreover, when conducting normalization with a coefficient of w,
namely, Uwz

3
xb(t), the coefficients of wwmust satisfy

Uwz
3
xb (t)Γ1 (w,z) = b (t)Uwwz

3
x, (2.3)

where Γ1(w,z) is a function and can be determined as
follows. From Equation 2.3, we have

Γ1 (w,z) =
Uww

Uw
.

After an integration step, we obtain

∫Γ1 (w,z)dw = lnUw − lnβ0 (x, t) ,

where lnβ0(x, t) is the integral function. Letting lnΓ2(w,z) =
∫Γ1(w,z)dw, we have

Γ2 (w,z) =
Uw

β0 (x, t)
.

After an integration process, we obtain

∫Γ2 (w,z) =
1

β0 (x, t)
[U− α0 (x, t)] , (2.4)

where α0(x, t) is the function generated via integration. Let Γ3(w,z) =
∫Γ2(w,z)dw; from Equation 2.4, we have that

U = β0 (x, t)Γ3 (w,z) + α0 (x, t) .

Letting Γ3(w,z) = w(z), α0(x, t) = α(x, t), and β0(x, t) =
β(x, t), we have

u (x, t) = α (x, t) + β (x, t)w [z (x, t)] . (2.5)

Next, we compute α(x, t), β(x, t), and z(x, t). By substituting
Equation 2.5 into Equation 2.2, we deduce that

b (t)βz3xw+wb (t) [3βxz
2
x + 3βzxzxx] +w[βzt + a (t)αβzx + d (t)βzx

+ b (t) (3βxxzx + 3βxzxx +βzxxx)] +wwa (t)β
2zx +w2a (t)ββx

+w[βt + a (t) (αβx + αxβ) + c (t)β+ d (t)βx + b (t)βxxx]

+ αt + a (t)ααx + αc (t) + d (t)αx + b (t)αxxx − [ f1 (t)x+ f2 (t)] = 0.
(2.6)

For the above equation to reduce to a solvable equation with
respect to w(z), the ratios of the coefficients w(z) and the derivatives
of the equation must be dependent on z alone. This condition
provides the relationships for α(x, t), β(x, t), and z(x, t), ensuring that
any solution is a similarity reduction solution. Then, we introduce
the following three footnotes (see [15]).

Remark 1: We adopt the coefficient of w (i.e., b(t)βz3x) as the
normalizing factor and thus impose the condition that the other
coefficients must take the form b(t)βz3xΓ(z), where Γ(z) is a function
of z that needs to be determined.

Remark 2: Uppercase Greek letters are reserved for undetermined
functions of z, ensuring that after performing operations (such
as differentiation, integration, exponentiation, and rescaling), the
result can still be denoted by the same letter. For example, the
derivative of Γ(z) is denoted as Γ(z).

Remark 3: Three degrees of freedoms exist in the determination of
α, β, z andw and can be exploited (without loss of generality) to keep
the proposed method manageable:

(i) if α(x, t) is expressed as α = α0(x, t) + β(x, t)Ω(z), we can
simplify it by setting Ω(z) = 0, which is equivalent to
performing the substitution w(z) → w(z) −Ω(z);

(ii) if β(x, t) is expressed as β = β0(x, t)Ω(z), we can simplify it
by setting Ω(z) = 1, which is equivalent to performing the
substitution w(z) → w(z)/Ω(z)];

(iii) if z(x, t) is determined by an equation with the form Ω(z) =
z0(x, t), where Ω(z) is any invertible function, then we can take
Ω(z) = z [by substituting z→Ω−1(z)].
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The general similarity reduction of Equation 1.1 can be
determined via this method.

For Equation 2.2 to be reduced to an ordinary differential
equation in terms of w(z), the ratios of the various derivatives of
w(z)must depend on the functions of w and z. When implementing
normalization with the coefficient of w, namely, b(t)βz3x, the
coefficients of wwmust satisfy certain conditions.

b (t)βz3xΓ4 (z) = a (t)β2zx,

where Γ4(z) is a function to be determined. From Remark 3
(ii), we have

β =
b (t)
a (t)

z2x. (2.7)

The coefficient of w2 requires that

b (t)βz3xΓ5 (z) = a (t)ββx, (2.8)

where Γ5(z) is a function to be determined. By substituting
Equation 2.8 into Equation 2.7, we obtain

z2xΓ5 (z) = 2zxx.

From Remark 2, after applying a scale transformation, we have

zxΓ5 (z) +
zxx
zx
= 0.

An integration step yields the following:

Γ5 (z) + lnzx = Θ (t) ,

where Θ(t) is the integration function. From Remark 2, this can
be exponentiated:

zxΓ5 = Θ (t) .

Integrating again gives

Γ5 = xΘ (t) +Σ (t) ,

where Σ(t) is another integration function. We obtain the
following equation through Remark 3 (iii).

z = xθ (t) + σ (t) , (2.9)

where θ(t) and σ(t) are functions to be determined.
By substituting Equation 2.9 into Equation 2.7, we have that

β =
b (t)
a (t)

θ(t)2. (2.10)

With the coefficient of w, we have

b (t)βz3xΓ6 (z) = βzt + a (t)αβzx + d (t)βzx + b (t) (3βxxzx + 3βxzxx + βzxxx) .

where Γ6(z) is a function to be determined. From
Equations 2.9, 2.10, we have

b (t)θ3Γ6 (z) = x
dθ
dt
+ dσ
dt
+ a (t)αθ+ d (t)θ,

From Remark 3(i), we obtain

α = − 1
a (t)θ
(xdθ

dt
+ dσ
dt
)−

d (t)
a (t)
. (2.11)

Substituting Equations 2.9–2.11 into (Equation 2.2), we have

θ5
b2 (t)
a (t)
(w+ww) +w

{
{
{

a (t)[b (t)θ2 + 2b (t)θ dθ
dt
] − a (t)b (t)θ2

a(t)2

−
b (t)θ
a (t)

dθ
dt
+
b (t)c (t)θ2

a (t)
}

+ [1
θ
(xdθ

dt
+ dσ
dt
)+ d (t)] 1

a (t)θ
dθ
dt

− c (t)[ 1
a (t)θ
(xdθ

dt
+ dσ
dt
)+

d (t)
a (t)
] −

x d2θ
dt2
+ d2σ

dt2

a (t)θ

+
(x dθ

dt
+ dσ

dt
)[ dθ

dt
a (t) + a (t)θ]

θ2a2 (t)
−
d (t)a (t) − d (t)a (t)

a2 (t)
− [ f1 (t)x+ f2 (t)] = 0.

(2.12)

We proceed to transform Equation 2.12 into an ordinary differential
equation forw(z). By using the coefficients ofw andww (i.e., θ5 b

2(t)
a(t)

),
we deduce that the coefficients of w and w0 must satisfy

θ5
b2 (t)
a (t)

γ1 (z) =
a (t)[b (t)θ2 + 2b (t)θ dθ

dt
] − a (t)b (t)θ2

a2 (t)

−
b (t)θ
a (t)

dθ
dt
+
b (t)c (t)θ2

a (t)
, (2.13)

θ5
b2 (t)
a (t)

γ2 (z) =[
1
θ
(xdθ

dt
+ dσ
dt
)+ d (t)] 1

a (t)θ
dθ
dt

− c (t)[ 1
a (t)θ
(xdθ

dt
+ dσ
dt
)+

d (t)
a (t)
] −

x d2θ
dt2
+ d2σ

dt2

a (t)θ

+
(x dθ

dt
+ dσ

dt
)[ dθ

dt
a (t) + a (t)θ]

θ2a2 (t)

−
d (t)a (t) − d (t)a (t)

a2 (t)
− [ f1 (t)x+ f2 (t)] ,

(2.14)

where γ1(z) and γ2(z) are functions to be determined. Since z =
xθ(t) + σ(t) and the right-hand side of Equation 2.14 is linear in
terms of x, we can assume that γ2(z) = Az+B, where A and B are
constants. From Equation 2.14, we have that

θ5
b2 (t)
a (t)
[A (xθ+ σ) +B] =[1

θ
(xdθ

dt
+ dσ
dt
)+ d (t)] 1

a (t)θ
dθ
dt

− c (t)[ 1
a (t)θ
(xdθ

dt
+ dσ
dt
)+

d (t)
a (t)
]

−
x d2θ
dt2
+ d2σ

dt2

a (t)θ
+
(x dθ

dt
+ dσ

dt
)[ dθ

dt
a (t) + a (t)θ]

θ2a2 (t)

−
d (t)a (t) − d (t)a (t)

a2 (t)
− [ f1 (t)x+ f2 (t)] .

(2.15)
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By comparing the coefficients of x, we obtain

Aθ6
b2 (t)
a (t)
= − 1

a (t)θ
d2θ
dt2
+ 1
a2 (t)θ2

dθ
dt
[dθ
dt

a (t) + a (t)θ]

+ 1
a (t)θ2
[dθ
dt
]
2
−

c (t)
a (t)θ

dθ
dt
− f1 (t) , (2.16)

θ5
b2 (t)
a (t)
(Aσ+B) = − 1

a (t)θ
d2σ
dt2
+ 1
a2 (t)θ2

dσ
dt
[dθ
dt

a (t) + a (t)θ]

− 1
a2 (t)θ2

[d (t)a (t) − d (t)a (t)]

+ [1
θ
dθ
dt
+ d (t)] 1

a (t)θ
dθ
dt

+ c (t)[− 1
a (t)θ

dσ
dt
−
d (t)
a (t)
] − f2 (t) .

(2.17)

Let

f1 (t) =
1

a (t)θ2
A2 +

Aa (t)θ+ 2A2a (t)
a2 (t)θ2

−A
c (t)
a (t)θ
−Aθ6

b2 (t)
a (t)
,

(2.18)

and

f2 (t) = − θ
5 b

2 (t)
a (t)
(Aσ+B) + 1

a2 (t)θ2
B [Aa (t) + a (t)θ]

− 1
a2 (t)θ2

[d (t)a (t) − d (t)a (t)]

+ [1
θ
A+ d (t)] 1

a (t)θ
A+ c (t)[− 1

a (t)θ
B−

d (t)
a (t)
] .

(2.19)

It follows from Equations 2.18, 2.19, 2.16, 2.17 that

{
θ =At+A0,

σ =Bt+B0,
(2.20)

where A0 and B0 are integral constants. For the convenience of the
calculation process, we assume that

a (t)
a (t)
−
b (t)
b (t)

θ = A+ c (t)θ−Aθ4b (t) . (2.21)

By substituting Equations 2.20–2.21 into Equation 2.13, we obtain
γ1(z) = A. Then, substituting γ1(z) = A and γ2(z) = Az+B into
Equation 2.12 yields

w+ww+Aw+Az+B = 0, (2.22)

where A and B are arbitrary constants. Upon substituting
Equations 2.9–2.11 and (Equation 2.20) into Equation 2.5, we can
deduce that

u =
b (t)
a (t)
(At+A0)

2w (z) − 1
a (t) (At+A0)

(xA+B) −
d (t)
a (t)
,

z =x(At+A0) +Bt+B0,
(2.23)

where w(z) satisfies Equation 2.22.
Next, we try to compute the exact solutions for

Equation 2.22 based on the (G/G) expansion method. More

precisely, we suppose that Equation 2.22 has solutions in the
following form:

w (z) =
m

∑
i=1

ai (z) (G/G) ,

where m ∈ N. To balance w and ww, we can take m = 2, and
then we have

w (z) = a0 (Z) + a1 (z) (G/G) + a2 (z) (G/G)2, (2.24)

where G satisfies the following ordinary differential equation:

G+ λG+ μG = 0, (2.25)

where λ and μ are constants. By substituting Equation 2.24
and Equation 2.25 into Equation 2.22 and comparing
their coefficients, we deduce that

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{

− 24a2 − 2a22 = 0,

− 3 (−4a2 + a1 + 10a2λ) + 6a2 − 24a2λ

+ [a2 (a1 − a1λ− 2μa2) − 2a1a2] = 0,

−2(a2−2a1−4λa2 + 3λa1 + 8a2μ+ 4a2λ2) − 4a2 + 2a1 + 10a2λ

− 3λ (−4a2 + 2a1 + 10a2λ)

− 24a2μ− 2a0a2 + a1 (a1 − a1λ− 2a2μ) + a2 (a1 − λa1 − 2a2μ) = 0,

− (a1 − 2a1λ− 4a2μ+ a1λ2 + 6a2λμ+ 2a1μ) + a2 − 2a1 − 4a2λ

+ 3a1λ+ 8a2μ+ 4a2λ
2

− 2λ(a2 − 2a1 − 4a2λ+ 8a2μ+ 4a2λ
2) − 3μ (−4a2 + 2a1 + 10a2)a0

(a1 − a1λ− 2a2μ)

+ a1 (a1 − a1λ− 2a2μ) + a2 (a0 − a1μ) +Aa2 = 0,

a1 − 2a1λ− 4a2μ+ a1λ2 + 6a2λμ+ 2a1μ− λ

(a1 − 2a1λ− 4a2μ+ a1λ+ 6a2λμ

+2a1μ) − 2μ(a2 − 2a1 − 4a2λ+ 3a1λ+ 8a2μ+ 4a2λ2)

+ a1 (a0 − a1μ)

a0 (a1 − a1λ− 2a2μ) +Aa1 = 0,

a0−a1μ−μ(a1−a1λ−2a2μ)−μ(a1−2a1λ− 4a2μ+ a1λ2 + 6a2λμ+ 2a1μ)

+Aa0+Az+B = 0.

Then, we obtain

{{{{{{{{{{{
{{{{{{{{{{{
{

a0 (z) = 11λ
2 − 8μ+[3λ− 12μ−

2μ(6λ− 24μ)
2λ+ 3

]e(2λ+3)z

+ 1+ 2λ
2 + 3λ

24 (2λ+ 3)
(12λ− 48μ)2e2(2λ+3)z,

a1 (z) = (6λ− 24μ)
2

2λ+ 3
e(2λ+3)z,

a2 (z) = −12.

(2.26)

The following exact solution forms exist for Equation 2.22,
and they can be acquired by substituting Equation 2.26 into
Equation 2.24.
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Case 1. If λ2 − 4μ > 0, then

w1 (z) =11λ2 − 8μ+[3λ− 12μ−
2μ(6λ− 24μ)

2λ+ 3
]e(2λ+3)z

+ 1+ 2λ
2 + 3λ

24 (2λ+ 3)
(12λ− 48μ)2e2(2λ+3)z

+ (6λ− 24μ) 2
2λ+ 3

e(2λ+3)z

[[[[

[

√λ2 − 4μ

2

A1cosh(
√λ2−4μ

2
z)+A2sinh(

√λ2−4μ

2
z)

A1sinh(
√λ2−4μ

2
z)+A2cosh(

√λ2−4μ

2
z)
− λ
2

]]]]

]

− 12
[[[[

[

√λ2 − 4μ

2

A1cosh(
√λ2−4μ

2
z)+A2sinh(

√λ2−4μ

2
z)

A1sinh(
√λ2−4μ

2
z)+A2cosh(

√λ2−4μ

2
z)
− λ
2

]]]]

]

2

.

(2.27)

Case 2. If λ2 − 4μ < 0, then

w2 (z) =11λ
2 − 8μ+[3λ− 12μ−

2μ (6λ− 24μ)
2λ+ 3

]e(2λ+3)z

+ 1+ 2λ
2 + 3λ

24 (2λ+ 3)
(12λ− 48μ)2e2(2λ+3)z

+ (6λ− 24μ) 2
2λ+ 3

e(2λ+3)z

[[[[

[

√4μ− λ2

2

A1sin(
√4μ−λ2

2
z)+A2cos(

√4μ−λ2

2
z)

A1cos(
√4μ−λ2

2
z)+A2sin(

√4μ−λ2

2
z)
− λ
2

]]]]

]

− 12
[[[[

[

√4μ− λ2

2

A1sin(
√4μ−λ2

2
z)+A2cos(

√4μ−λ2

2
z)

A1cos(
√4μ−λ2

2
z)+A2sin(

√4μ−λ2

2
z)
− λ
2

]]]]

]

2

.

(2.28)

Case 3. If λ2 − 4μ = 0, then

w3 (z) =11λ
2 − 8μ+[3λ− 12μ−

2μ(6λ− 24μ)
2λ+ 3

]e(2λ+3)z

+ 1+ 2λ
2 + 3λ

24 (2λ+ 3)
(12λ− 48μ)2e2(2λ+3)z

+ (6λ− 24μ) 2
2λ+ 3

e(2λ+3)z[
A2

A1 +A2z
− λ
2
]

− 12[
A2

A1 +A2z
− λ
2
]
2
.

(2.29)

3 Conclusion

Substitute Equation 2.27–2.29 into Equation 2.23 and the
following forms of similarity solutions exist for Equation 1.1.

Case 1. If λ2 − 4μ > 0, then

u1 (x, t) ={11λ2 − 8μ+[3λ− 12μ−
2μ(6λ− 24μ)

2λ+ 3
]e(2λ+3)z

+ 1+ 2λ
2 + 3λ

24 (2λ+ 3)
(12λ− 48μ)2e2(2λ+3)z

+ (6λ− 24μ) 2
2λ+ 3

e(2λ+3)z

[[[[

[

√λ2 − 4μ

2

A1cosh(
√λ2−4μ

2
z)+A2sinh(

√λ2−4μ

2
z)

A1sinh(
√λ2−4μ

2
z)+A2cosh(

√λ2−4μ

2
z)
− λ
2

]]]]

]

− 12
[[[[

[

√λ2 − 4μ

2

A1cosh(
√λ2−4μ

2
z)+A2sinh(

√λ2−4μ

2
z)

A1sinh(
√λ2−4μ

2
z)+A2cosh(

√λ2−4μ

2
z)
− λ
2

]]]]

]

2
}}}}}
}}}}}
}

b (t)
a (t)
(At+A0)

2 − 1
a (t) (At+A0)

(xA+B) −
d (t)
a (t)
.

(3.1)

The similar solution corresponding to Case 1 is
expressed in Figure 1.

The values determined for u1(x, t) when λ = 1, μ = − 1, A1 =
100, A2 = A = B = A0 = B0 = a(t) = b(t) = d(t) = 1.

Case 2. If λ2 − 4μ < 0, then

u2 (x, t) ={11λ2 − 8μ+[3λ− 12μ−
2μ(6λ− 24μ)

2λ+ 3
]e(2λ+3)z

+ 1+ 2λ
2 + 3λ

24 (2λ+ 3)
(12λ− 48μ)2e2(2λ+3)z

+ (6λ− 24μ) 2
2λ+ 3

e(2λ+3)z

[[[[[

[

√4μ− λ2

2

A1sin(
√4μ−λ2

2 z)+A2cos(
√4μ−λ2

2 z)

A1cos(
√4μ−λ2

2 z)+A2sin(
√4μ−λ2

2 z)

− λ
2

]]]]]

]

−12
[[[[[

[

√4μ− λ2

2

A1sin(
√4μ−λ2

2 z)+A2cos(
√4μ−λ2

2 z)

A1cos(
√4μ−λ2

2 z)+A2sin(
√4μ−λ2

2 z)

− λ
2

]]]]]

]

2
}}}}}
}}}}}
}

b (t)
a (t)
(At+A0)

2 − 1
a (t) (At+A0)

(xA+B) −
d (t)
a (t)
.

(3.2)
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FIGURE 1
The values determined for u1(x, t) when λ = 1, μ = −1, A1 = 100, A2 = A
= B = A0 = B0 = a(t) = b(t) = d(t) = 1.

The similar solution corresponding to Case 2 is
expressed in Figure 2.

The values determined for u2(x, t) when λ = 1, μ = 1, A1 =
100, A2 = A = B = A0 = B0 = a(t) = b(t) = d(t) = 1.

Case 3. If λ2 − 4μ = 0, then

u3 (x, t) ={11λ2 − 8μ+[3λ− 12μ−
2μ(6λ− 24μ)

2λ+ 3
]e(2λ+3)z

+ 1+ 2λ
2 + 3λ

24 (2λ+ 3)
(12λ− 48μ)2e2(2λ+3)z

+ (6λ− 24μ) 2
2λ+ 3

e(2λ+3)z[
A2

A1 +A2z
− λ
2
]

−12[
A2

A1 +A2z
− λ
2
]
2
}
b (t)
a (t)
(At+A0)

2

− 1
a (t) (At+A0)

(xA+B) −
d (t)
a (t)
.

(3.3)

FIGURE 2
The values determined for u2(x, t) when λ = 1, μ = 1, A1 = 100, A2 = A =
B = A0 = B0 = a(t) = b(t) = d(t) = 1.

FIGURE 3
The values determined for u3(x, t) when λ = 2, A1 = 100, μ = A2 = A = B
= A0 = B0 = a(t) = b(t) = d(t) = 1.

The similar solution corresponding to Case 3 is
expressed in Figure 3.

The values determined for u3(x, t) when λ = 2, A1 = 100, μ =
A2 = A = B = A0 = B0 = a(t) = b(t) = d(t) = 1.

According to the above discussion, the shape of the graphic is
sensitive to the values of x and t. Indeed,we can clearly see the change
trends exhibited by these three graphs, which are in exponential
form. The constraints on the solution of the variable coefficient
equation obtained by Method 1 are simple and less categorical than
those of the previous article [26].

In the present work, we investigate the variable-coefficient
forced KdV equation. As a result, this paper not only reduces
the equation to an ordinary differential equation via the direct
similarity reduction-based CK method but also obtains similarity
solutions from the solutions of the above ordinary differential
equation. This provides a simpler method for studying the variable-
coefficient forced KdV equation. It simplifies the mathematical
solution process and facilitates fluctuation control and application
design in engineering practice. Many other variable-coefficient
nonlinear partial differential equations can also be investigated via
this method.
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