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Calculation of radiative thickness
using spherical harmonic
methods for the radiative
transfer equation
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The radiative transfer equation (RTE) plays a fundamental role in modeling
photon transport in various media such as biological tissues and atmospheric
systems, where scattering phenomena are critical. In this study, the RTE
is solved using two spherical harmonic-based numerical techniques: the
Chebyshev and Legendre polynomial methods. Both the Henyey–Greenstein
(HG) and Anlı–Güngör (AG) scattering phase functions are employed to analyze
their effectiveness in radiative thickness computations. The Marshak boundary
condition is applied, and the eigenvalue problems are solved using Mathematica
software across various single scattering albedo values (ω) and anisotropy
coefficients (g). The results indicate that the AG phase function produces
outcomes highly consistent with the HG function, demonstrating numerical
robustness and stability for both methods. These findings suggest that the
AG phase function, commonly used in neutron transport, can be effectively
applied in radiative transfermodeling as a computationally efficient and accurate
alternative in biomedical and atmospheric applications.

KEYWORDS

radiative transfer equation, Legendre polynomials, Chebyshev polynomials,
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1 Introduction

The radiative transfer theory has been employed to describe the random transfer of
energy through a medium occupied by active radiation in many disciplines, including
nuclear reactor physics, astrophysics, atmospheric physics, remote sensing, and biological
tissue optics [1–7]. The general problem addressed by the radiative transfer theory is the
availability of some particular physical quantity: the radiant intensity, the radiant energy
density vector, or the radiant energy density vector flux that depends on the location,
the direction, and the frequency of the active radiation [8]. It is also applicable to many
engineering areas [9–13].

The radiative transfer equation (RTE) is an integro-differential equation that governs
the behavior of the radiant heat flux in turbulent media, which includes gases,
aerosols, and biological tissues as particular examples [14]. The RTE plays a crucial
role in the thermal design of systems; it represents the main mechanism for the
dissipation of thermal energy [15]. The solution of the RTE is essential for the sizing
of primary and secondary loads. Parameter estimation of biological tissues in the
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diagnostic or therapeutic assessments also requires the solution
of the RTE and is extremely important in oncology for tumor
localization and thermal therapy [16].

TheRTEissolvedusinganalyticalandnumericalmethods[17–20].
The radiative transfer equation solution can be done for reflectivity,
transmissivity, albedo, or optical thickness [21–24]. Although theRTE
has been solved by a variety of methods, those based on spherical
harmonics are employed most frequently [24–27]. In the radiative
system, the transportation of a photon through media becomes
anisotropic. It is therefore necessary to take into consideration the
anisotropic scattering case in the context of one-dimensional slab
geometries. The Henyey–Greenstein (HG) phase function is widely
used inradiative transfermodeling todescribe theangulardistribution
of scattered light in amedium[28, 29].While theHGphase function is
widely used in radiative transfer calculations, its formulation includes
a (2n+1)multiplier, which significantly increases computational effort
for higher-order iterations.

Motivated by the structural similarities between the
Anlı–Güngör (AG) and theHGphase functions, this study examines
the applicability of the AG function within the framework of
the RTE. The AG scattering function is a phase function that
is frequently employed in the solution of neutron transport
equations [30]. The observation that both functions possess
analogous structures has given rise to a question regarding the
applicability of the AG phase function to the RTE in a manner
analogous to that of the HG function. To assess its applicability,
radiative thickness solutions were conducted through two distinct
methodologies: the Legendre and Chebyshev polynomial methods.
By employing the Chebyshevmethod to determine optical thickness
and validating the results against the Legendre polynomial method,
we assess the accuracy and computational efficiency of these
phase functions in radiative transfer. Mathematica software was
implemented on a high-speed digital computer to structure the
obtained algorithm. The Marshak boundary condition was applied
to calculate the thickness. The calculations were performed with
single scattering albedo numbers greater than one, in steps of
0.2. The anisotropy coefficient g corresponding to each single
scattering albedo number was calculated in steps of 0.1 from 0.1
to 0.9. The solution set of the equation was analyzed in detail. The
ensuing results are presented in tabular and graphical formats. The
compatibility of the results from the two scattering functions was
established. This comparison provides new insights into whether
alternative phase functions can be effectively used in radiative
transport modeling, offering a computational advantage without
compromising accuracy. The findings of this study contribute to
the ongoing efforts to refine radiative transfer models for various
scientific and engineering applications.

2 Solution methods of the radiative
transfer equation

2.1 Chebyshev solution method

The radiative transfer equation is a fundamental equation
in the field of radiation physics, which provides a theoretical
framework for the calculation of the photon distribution in a

scattering, emitting, and absorbing medium. Consequently, the
model incorporates multiple unknown parameters, which are
associated with the characteristics of the medium and the intricacy
of the geometric configuration. To render the equation more
solvable, certain assumptions must be made.The time-independent,
monoenergetic RTE in plane geometry for the unpolarized case can
be expressed as [31]:

μ d
dx

I(x,μ) + I(x,μ) = ω
2

1

∫
−1

f(μ,μ′)I(x,μ)dμ′, (1)

where I(x,μ) is known as the angular intensity, f(μ,μ′) defines the
phase function, x is the optical variable, μ is the cosine angle between
the propagation direction and the positive x-axis, and ω is the single
scattering albedo ratio of the scattering coefficient to the extinction
coefficient.

The scattering phase function is defined for the HG [32].

f(μ,μ′) =
N

∑
n=0
(2n+ 1)gnPn(μ)Pn(μ′). (2)

For the Anlı-Güngör scattering function,

f(μ,μ′) =
N

∑
n=0

gnPn(μ)Pn(μ′). (3)

In Equations 2, 3, gn is the scattering coefficient, −1 < g < 1. In the
visible spectrum, the anisotropy parameter of g in biological tissues
ranges from 0.65 to 0.95 [33]. So, in this study, the g parameter is
taken into consideration from 0 to 1 to consider a wide range of
possibilities. Pn(μ) is the Legendre polynomial.

The angular intensity function of the RTE is expanded in terms
of Chebyshev polynomials:

I(x,μ) =
ϕ0(x)T0(μ)

π√1− μ2
+ 2
π

N

∑
n=1

ϕn(x)Tn(μ)

√1− μ2
. (4)

The HG and AG scatterings are substituted into the radiative
transfer equation in Equation 1, respectively:

μ d
dx

I(x,μ) + I(x,μ) = ω
2

N

∑
n=0
(2n+ 1)gnPn(μ)

1

∫
−1

Tn(μ′)I(x,μ)dμ′, (5)

μ d
dx

I(x,μ) + I(x,μ) = ω
2

N

∑
n=0

gnPn(μ)
1

∫
−1

Tn(μ′)I(x,μ)dμ′ . (6)

Equation 4 is substituted into the general form of the
RTE as in Equation 1 with the scattering function in
Equation 5 and Equation 6, respectively. The resultant equation
occurs after substituting the HG scattering function and Chebyshev
expansion for the angular flux, which has been solved by using the
recurrence and the orthogonality relations. Then, the mth order
Chebyshev polynomial Tm(μ) is applied and integrated over [−1, 1]
to both sides of the equation to determine the infinite set of ordinary
differential equations as follows:

dϕ1(x)
dx
+ϕ0(x) = ωϕ0(x) (7a)

dϕ2(x)
dx
+
dϕ0(x)
dx
+ 2ϕ1(x) = 2ωgϕ1(x) (7b)
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dϕ3(x)
dx
+
dϕ1(x)
dx
+ 2ϕ2(x) = −2ω(

1
3
(1− g2)ϕ0(x) − g

2ϕ2(x)). (7c)

The differential sets for Hg result are shown in Equations 7a–7c.
The same procedure is applied for the AG function. The recurrence
and the orthogonality relations are used, and then, Tm(μ) is
multiplied and integrated over [−1, 1] to obtain the differential
sets as

dϕ1(x)
dx
+ϕ0(x) = ωϕ0(x) (8a)

dϕ2(x)
dx
+
dϕ0(x)
dx
+ 2ϕ1(x) = 2ω(

g
3
)ϕ1(x) (8b)

dϕ3(x)
dx
+
dϕ1(x)
dx
+ 2ϕ2(x) = −2ω(

1
15
(5− g2)ϕ0(x) −

g2

5
ϕ2(x)).

(8c)

The differential sets in Equations 8a–8c are solved by using the
proposal as

ϕn(x) = An(ν)ex/v (9)

The eigen-spectrumof the radiative transfer equation for theHG
phase function is obtained in Equations 10a–10c as,

A1(ν) + vA0(ν) = wA0(ν) (10a)

A2(ν) +A0(ν) + 2vA1(ν) = 2vwgA1(ν) (10b)

A3(ν) +A1(ν) + 2vA2(ν) = −2vw(
1
3
(1− g2)A0(v) − g2A2(v)). (10c)

The eigen-spectrum of the radiative transfer equation for the AG
phase function is obtained in Equations 11a–11c as

A1(ν) + vA0(ν) = wA0(ν) (11a)

A2(ν) +A0(ν) + 2vA1(ν) = 2vw(
g
3
)A

1
(ν) (11b)

A3(ν) +A1(ν) + 2vA2(ν) = −2vw(
1
15
(5− g2)A0(v) −

g2

5
A2(v)).

(11c)

The eigenvalues ν can be calculated with dependency on g and
w values. The eigenvalues for the solution of the HG and AG phase
functions of the RTE have a crucial role. For each situation, the
eigenvalues are calculated one by one. The discrete eigenvalues of
the RTE for Chebyshev polynomial solutions are determined by
solving these ordinary differential equations (ODEs) numerically
using Mathematica.

2.2 Legendre polynomial method solution

The RTE solution is done by using the Legendre polynomial
method for inverse solution [34], the spherical medium with the
PN method [35], and Green’s method [36, 37]. The powerful ability
of the Legendre to solve the RTE based on an integro-differential
equation is used for the present study. That is also assumed to be
the exact result of the method. The Chebyshev and the Legendre
polynomial methods come from the spherical harmonics family,
and the solution steps are similar to each other. First, introduce the

angular intensity in terms of the Legendre polynomial as

I(x,μ) = 1
2

N

∑
n=0
(2n+ 1)Pn(μ)ϕn(x). (12)

Equation 12 and the phase function for HG in Equation 2 are
substituted into Equation 1:

μ d
dx

I(x,μ) + I(x,μ) = ω
2

N

∑
n=0
(2n+ 1)gnPn(μ)

1

∫
−1

Pn(μ′)I(x,μ)dμ′ .

(13)

The recursion and the orthogonality relations are applied, and
the resulting equation is multiplied by Pm(μ) and integrated over
μ ∈ [−1,1] and the obtained result is shown in Equation 13. It
can be found the differential sets after the algebra as shown in
Equations 14a–14c,

dϕ1(x)
dx
+ϕ0(x) = ωϕ0(x) (14a)

2
dϕ2(x)
dx
+
dϕ0(x)
dx
+ 3ϕ1(x) = 3ωgϕ1(x) (14b)

3
dϕ3(x)
dx
+ 2

dϕ1(x)
dx
+ 5ϕ2(x) = ω(5g

2ϕ2(x)). (14c)

The general form is written as

(n+ 1)
dϕn+1(x)

dx
+ n

dϕn−1(x)
dx
+ (2n+ 1)ϕn(x) = ω(2n+ 1)g

nϕn(x)

(15)

The same proposed eigenfunction used in Equation 9 is used
to find the eigenvalues. The analytical solution found by applying
Equation 9 to Equation 15:
(n+ 1)An+1(v) + nAn−1(v) + (2n+ 1)vAn(v) = vω(2n+ 1)g

nAn(v)
(16)

So, the general expression is shown in Equation 16. The second
phase function AG is used to find the solution of the RTE.The phase
function in Equation 3 and the angular intensity in Equation 12 are
substituted into the general form in Equation 1:

μ d
dx

I(x,μ) + I(x,μ) = ω
2

N

∑
n=0

gnPn(μ)
1

∫
−1

Pn(μ′)I(x,μ)dμ′ (17)

The resulting equation is displayed in Equation 17. After
multiplying with Pm(μ) and integrating over μ ∈ [−1,1] using
recursion and orthogonality, it is found as

(n+ 1)
dϕn+1(x)

dx
+ n

dϕn−1(x)
dx
+ (2n+ 1)ϕn(x) = ωg

nϕn(x) (18)

The Equation 18 is the general form of the angular moments.
After applying the same proposal and making the algebraic
calculations, one can find that
(n+ 1)An+1(v) + nAn−1(v) + (2n+ 1)vAn(v) = vωgnAn(v). (19)

The solution of the resulting equation is shown in Equation
19 gives us the discrete eigenvalues of the problem. In the present
study, it is used for the thickness after applying the boundary
conditions.

The angular moment ϕn(x) can be written by using the discrete
eigenvalues for an odd number of N. The angular moment is
substituted into angular intensity for each method and the resultant
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TABLE 1 Discrete eigenvalues of the PN and TN methods for HG and AG phase functions.

PN TN

Ω g HG AG HG AG

1.2 0.1 1.2748 I
0.235051
0.646079
0.914165

1.22231 I
0.234361
0.644323
0.913063

1.27478 I
0.254519
0.687453
0.950934

1.22229 I
0.253719
0.68546
0.950162

0.2 1.36633 I
0.237746
0.653043
0.919442

1.2475 I
0.234882
0.645639
0.913944

1.36631 I
0.257658
0.695456
0.954787

1.24748 I
0.254325
0.686956
0.950791

0.3 1.47923 I
0.242791
0.666744
0.93304

1.27395 I
0.235794
0.648003
0.91580

1.47921 I
0.263558
0.711555
0.965264

1.27393 I
0.255386
0.689674
0.952165

0.4 1.62417 I
0.251286
0.690094
0.964139

1.30181 I
0.23718
0.651698
0.919238

1.62416 I
0.273535
0.739351
0.990809

1.30179 I
0.257002
0.693965
0.954818

0.5 1.82098 I
0.265562
0.728159
1.031910

1.33121 I
0.239182
0.657127
0.925168

1.82098 I
0.290347
0.783998
1.0506

1.3312 I
0.259336
0.700298
0.959609

0.6 2.11271 I
0.290931
0.793031
1.17931

1.36233 I
0.242038
0.664916
0.934927

2.1127 I
0.320224
0.856057
1.18957

1.36232 I
0.262658
0.709346
0.967878

0.7 2.62216 I
0.341536
0.92112
1.53053

1.39534 I
0.246146
0.676092
0.950425

2.62216 I
0.379733
0.990255
1.53463

1.39532 I
0.267405
0.722164
0.98164

0.8 4.10708 I
0.46934
1.25315
2.86875

1.43041 I
0.252172
0.69241
0.974368

4.10708 I
0.53038
1.32873
2.86942

1.43039 I
0.274293
0.740516
1.00386

0.9 4.249 I
1.13572
2.82891
3.40226

1.46775 I
0.261266
0.716933
1.01066

4.25042 I
1.33861
2.82955
3.45748

1.46773 I
0.284533
0.767506
1.03894

1.4 0.1 0.850805 I
0.245625
0.659756
0.919165

0.811593 I
0.244637
0.65676
0.917268

0.850759 I
0.266749
0.701303
0.954332

0.811541 I
0.265586
0.69789
0.953009

0.2 0.919999 I
0.249244
0.66998
0.927167

0.830188 I
0.245355
0.658796
0.918633

0.919963 I
0.271006
0.713138
0.96016

0.83014 I
0.266429
0.700211
0.953977

0.3 1.00751 I
0.255919
0.689013
0.947439

0.849683 I
0.246571
0.662166
0.921287

1.00749 I
0.278886
0.735749
0.975823

0.849638 I
0.267858
0.704096
0.955929

0.4 1.12456 I
0.267183
0.720248
0.995385

0.870185 I
0.248394
0.667204
0.926005

1.12455 I
0.292248
0.773311
1.01582

0.870142 I
0.270001
0.709967
0.959548

(Continued on the following page)
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TABLE 1 (Continued) Discrete eigenvalues of the PN and TN methods for HG and AG phase functions.

PN TN

Ω g HG AG HG AG

0.5 1.29533 I
0.286404
0.769487
1.10845

0.891802 I
0.251009
0.674388
0.933956

1.29532 I
0.315154
0.830261
1.11891

0.891763 I
0.273073
0.718379
0.965933

0.6 1.59026 I
0.321766
0.853767
1.40162

0.91465 I
0.25473
0.684472
0.946843

1.59028 I
0.35746
0.91906
1.40465

0.914614 I
0.277435
0.730135
0.976793

0.7 2.58503 I
0.39772
1.03582
3.12898

0.938844 I
0.260091
0.698728
0.967097

2.58509 I
0.448881
1.09987
3.12908

0.938811 I
0.283678
0.746519
0.99469

0.8 1.99678 I
0.629936
1.33205
1.68202

0.964502 I
0.268004
0.719399
0.998147

1.99748 I
0.733956
1.33225
1.72918

0.96447 I
0.292797
0.769762
1.02337

0.9 1.72662 I
3.72481 I
2.3516
0.962148

0.991734 I
0.280085
0.750539
1.04493

3.8545 I
1.62332 I
2.62527
0.994441

0.991706 I
0.30652
0.803976
1.06831

1.6 0.1 0.659699 I
0.256494
0.671073
0.923085

0.626661 I
0.255051
0.666464
0.920238

0.659703 I
0.27924
0.712605
0.956959

0.626665 I
0.277512
0.707389
0.954981

0.2 0.71875 I
0.261339
0.685373
0.934491

0.642176 I
0.256045
0.669384
0.922148

0.71876 I
0.285003
0.729192
0.965259

0.642181 I
0.278695
0.710701
0.95633

0.3 0.795421 I
0.270089
0.710926
0.964084

0.658434 I
0.257657
0.673943
0.925701

0.795443 I
0.295434
0.759812
0.98833

0.658441 I
0.280608
0.715946
0.95893

0.4 0.902798 I
0.284854
0.751149
1.03976

0.675529 I
0.260026
0.680526
0.931876

0.90284 I
0.313133
0.808259
1.05346

0.675539 I
0.283414
0.723618
0.963646

0.5 1.07523 I
0.310469
0.811882
1.24964

0.693556 I
0.263388
0.689683
0.942153

1.0753 I
0.344051
0.875279
1.25352

0.693571 I
0.287392
0.734359
0.971872

0.6 1.49348 I
0.359548
0.919109
2.33796

0.712608 I
0.268151
0.702293
0.958704

1.49365 I
0.403811
0.980628
2.33811

0.712631 I
0.293013
0.749088
0.985791

0.7 1.40738 I
0.475277
0.878706
1.19454

0.73278 I
0.275014
0.719881
0.984624

1.4079 I
0.547023
0.878777
1.24316

0.732813 I
0.30106
0.769304
1.00867

0.8 3.31852 I
0.949577
1.28351
1.3414 I

0.754158 I
0.285201
0.745235
1.02428

3.32132 I
1.14098
1.27772
1.34256 I

0.754209 I
0.312882
0.797734
1.04527

(Continued on the following page)
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TABLE 1 (Continued) Discrete eigenvalues of the PN and TN methods for HG and AG phase functions.

PN TN

Ω g HG AG HG AG

0.9 3.97933 I
1.33004
2.44143
2.54482 I

0.776824 I
0.30094
0.783573
1.08398

4.52181 I
1.21139
3.01996
2.29819 I

0.776904 I
0.330892
0.839674
1.10249

1.8 0.1 0.545443 I
0.267453
0.680608
0.926388

0.516373 I
0.265357
0.674132
0.922476

0.545624 I
0.29171
0.722077
0.959163

0.516567 I
0.289171
0.714802
0.956453

0.2 0.598078 I
0.273904
0.699663
0.941968

0.529913 I
0.266725
0.67804
0.924975

0.598256 I
0.299457
0.744203
0.970519

0.530104 I
0.290813
0.719205
0.958211

0.3 0.668255 I
0.285285
0.73273
0.98487

0.544108 I
0.268842
0.683911
0.929516

0.668446 I
0.313148
0.784125
1.00457

0.544299 I
0.293342
0.725942
0.961523

0.4 0.771663 I
0.304489
0.78211
1.10978

0.559045 I
0.27188
0.692186
0.937326

0.771895 I
0.336399
0.842614
1.11712

0.559241 I
0.296964
0.735582
0.967474

0.5 0.961795 I
0.33844
0.853553
1.60452

0.574811 I
0.27614
0.703479
0.950282

0.962135 I
0.377911
0.915446
1.60516

0.575018 I
0.302032
0.748844
0.977838

0.6 0.406729
1.30353 I
0.598699
0.991596

0.59149 I
0.282138
0.718781
0.971157

0.462638
1.304 I
0.598816
1.0441

0.591718 I
0.309146
0.766739
0.995418

0.7 0.588331
1.08389 I
0.701871
1.50449

0.609166 I
0.290775
0.739875
1.00394

0.693257
1.08525 I
0.701666
1.52777

0.609428 I
0.319324
0.790946
1.02445

0.8 1.74093 I
1.00367 I
0.997573
1.7353

0.62792 I
0.303659
0.770155
1.05428

1.76568 I
1.05062 I
1.04273
1.87409

0.628242 I
0.334352
0.824704
1.0711

0.9 4.40205 I
0.672354
1.87394
2.6722

0.647839 I
0.323802
0.816209
1.13049

4.18396 I
0.649644
1.81619
4.05388

0.648271 I
0.357524
0.87469
1.14429

2.0 0.1 0.468057 I
0.278289
0.688839
0.929335

0.44192 I
0.275318
0.680318
0.92425

0.468544 I
0.303885
0.730261
0.96113

0.442425 I
0.300265
0.72074
0.957614

0.2 0.515987 I
0.286782
0.713232
0.950037

0.454012 I
0.277163
0.685278
0.927375

0.516473 I
0.314146
0.758644
0.976289

0.454514 I
0.302491
0.726302
0.959805

0.3 0.581594 I
0.301452
0.754467
1.01255

0.466704 I
0.2799
0.692553
0.932992

0.582117 I
0.331919
0.808683
1.02733

0.467211 I
0.305773
0.73463
0.963896

(Continued on the following page)
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TABLE 1 (Continued) Discrete eigenvalues of the PN and TN methods for HG and AG phase functions.

PN TN

Ω g HG AG HG AG

0.4 0.68382 I
0.326252
0.811784
1.23368

0.480079 I
0.28374
0.702633
0.942638

0.684452 I
0.362204
0.873573
1.23645

0.4806 I
0.310365
0.746375
0.971243

0.5 0.918317 I
0.371094
0.893463
0

0.494221 I
0.289053
0.716185
0.958696

0.919318 I
0.417668
0.950368
0

0.49477 I
0.316706
0.762316
0.984114

0.6 0.932142 I
0.932142 I
0.466641
1.08012

0.509213 I
0.296485
0.734294
0.984741

0.933331 I
0.933331 I
0.538152
1.12024

0.509811 I
0.325545
0.783506
1.00616

0.7 0.642524
0.888565 I
0.758794
3.43527

0.525142 I
0.307173
0.758996
1.02598

0.896561 I
0.896561 I
0.900215
3.43635

0.525823 I
0.338176
0.811741
1.04297

0.8 1.60233 I
3.1318 I
1.0346
0.833009 I

0.542105 I
0.323188
0.794365
1.08997

1.71318 I
3.13974 I
1.18305
0.75701 I

0.54293 I
0.356911
0.850781
1.10277

0.9 8.43908 I
0.44596
1.18749
2.78801

0.560245 I
0.348518
0.848593
1.18818

10.9146 I
0.441182
1.18545
2.61602

0.561332 I
0.386131
0.908923
1.19768

angular intensity is obtained in Equation 20:

ϕn(x) =
N

∑
n=0

N+1
2

∑
m=1

BkAn(vm)[ex/vm + (−1)ne−x/vm],n,m = 1,2,3, ...,N

(20)

Here, the parity rule is applied to the eigenfunction as An(−v) =
(−1)nAn(v). The coefficient Bk is found from the applied boundary
condition. The root of the eigenfunctions gives the eigenvalues
for a certain iteration. The spectrum of the roots is modified
with the value of the single scattering albedo numbers. The
eigenvalues are real for ɷ <1, and real and complex roots are
found for ɷ >1 values. The discrete eigenvalues play a crucial
role in the solution of the radiative thickness. The angular flux
obtained depends on the angular moments, and it also includes the
discrete eigenvalues. The eigenvalues are obtained for each iteration
separately. The all-solution methods have eigenvalues that depend
on the iteration number. In this study, all results are obtained
for the N = 7 iteration number. It means that there are (N+1)/2
eigenvalues. That is, four eigenvalues are obtained from the solution
method of the eigenfunctions. The eigenfunction is defined for
the Chebyshev polynomial method in Equation 11a and for the
Legendre polynomial in Equation 19. For example, if one wants to
find the P7 result of the radiative thickness, first, the AN+1(v) = 0 (P8
= 0) must be used, and four different eigenvalues are obtained from
the solution of the eigenfunction.Then the angular flux is expanded
to eight, and the eigenvalues are substituted into the equation. As a

result, (N+1)/2 x (N+1)/2 square matrices are found. The radiative
thickness is the solution of the resultant equation after taking the
determinant of the matrices and finding the root for the fixed w and
g values.The same process is applied for each different w and g value,
and the radiative thicknesses are obtained from the solution of the
matrices. For this reason, the angular flux I(x,μ) has discrete values
for the radiative thickness. The structure of the equation obtained
after applying the Chebyshev and Legendre polynomial methods
does not permit drawing a graph of angular flux versus thickness.

2.3 Application of the boundary condition

In the study, the solution of the RTE is done for a plane
geometrical system. Photons in a homogeneous medium travel up
to a certain distance. The distance can be found by using some
boundary conditions. Here, the Marshak boundary condition
is applied to find the maximum distance that can be reached
by photons [38]. The Marshak boundary condition implies
zero incoming angular flux on the boundaries. This condition
incorporates the reflection of photons accurately using Fresnel’s
equations [39–41]. Marshak-type boundary conditions provide
a robust way to handle complex radiative transfer problems by
accurately modeling the interaction between radiation and the
boundaries of a medium.The radiation field is also initialized, often
to zero or a steady-state value consistent with no prior radiation flux.
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FIGURE 1
Discrete eigenvalues vs. g graphs for the HG and AG phase functions with the PN and TN methods.

TheMarshak boundary condition is defined as
1

∫
0

Pk(−μ)I(τ,−μ)dμ = 0,k = 1,3,5, ...,N (21)

Equation 21 is defined for the PN method. Here, τ is the radiative
thickness.

1

∫
0

Tk(−μ)I(τ,−μ)dμ = 0,k = 1,3,5, ...,N (22)

Equation 22 is defined for the TN method. The radiative
thicknesses are found by applying the Marshak boundary condition
for each method separately.

3 Results and discussion

This work used the P7 and T7 techniques for the HG and AG
scattering phase functions to compute essential slab thicknesses
for radiative transfer systems. The outcomes reveal that the two
approaches are reliable in solving the RTE, with a high degree of
consistency between them. Additionally, by comparing the HG and
AG phase functions, the AG phase function is shown to be a good

substitute for RTE solutions, expanding on its well-established use
in neutron transport equations (NTE).

According to the study’s findings, the AG scattering phase
function, which has traditionally been used for NTE, may
now be applied to radiative transfer applications. This crossover
demonstrates the AG phase function’s versatility and suggests that
it may find broader applications in atmospheric radiative transfer,
remote sensing, and biomedical optics.

The seventh iteration of the approaches' solutions is completed.
The values of the single scattering albedo are considered for ω
= 1.2, 1.4, 1.6, 1.8, and 2.0. The solutions produced benchmark
outcomes throughout a broad spectrum. The anisotropy parameter
is significant in biological tissue or air transport. The anisotropy
parameter g is commonly used to describe forward scattering,
which is particularly relevant in atmospheric and biomedical optics.
For highly forward-scattering media, g approaches one (e.g., in
biological tissues or clouds). The computational processes are done
by using the Mathematica code.

The radiative thickness results are obtained by employing the
discrete eigenvalues that are computed from the two distinct
applied methods. The all-thickness values are obtained successively,
contingent on the varying anisotropy parameter g and single
scattering parameter ω. For the seventh iteration of the methods,
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TABLE 2 Comparison of the radiative thickness τ for HG scattering with
PN and TN methods.

ω g P7 T7

1.20

0.1 1.33782193508762 1.33783584017936

0.2 1.38880809728849 1.38885808701040

0.3 1.44474682227544 1.44484338558431

0.4 1.50631762763800 1.50647879307446

0.5 1.57361004524456 1.57387000702384

0.6 1.64461771627376 1.64504928843229

0.7 1.70983503058948 1.71062878926795

0.8 1.72975305957995 1.73172103303597

0.9 1.53351759415895 ∗∗∗∗∗∗∗

1.40

0.1 0.76087111925127 0.76109593727695

0.2 0.78320706005756 0.78348460258337

0.3 0.80555308677083 0.80591037162324

0.4 0.82703892780272 0.82752231198047

0.5 0.84555300360211 0.84625489597835

0.6 0.85616375752392 0.85730353717066

0.7 0.84717252643393 0.84940712664697

0.8 0.79173032104522 ∗

0.9 0.65228952177389 ∗

1.60

0.1 0.52846256888245 0.52902202428621

0.2 0.54078959889476 0.54142941941548

0.3 0.55183364740783 0.55260098851332

0.4 0.56051884155603 0.56149482296942

0.5 0.56469967364037 0.56604288198054

0.6 0.56018444347682 0.56224551928852

0.7 0.53909147531438 ∗

0.8 0.48933839540206 ∗

0.9 0.40590333456372 ∗

1.80

0.1 0.40228516493475 0.40312189

0.2 0.40990275963110 0.410843916

0.3 0.41587974127676 0.416984937

0.4 0.41922109514265 0.420590147

0.5 0.41812206087583 0.41994002

(Continued on the following page)

TABLE 2 (Continued) Comparison of the radiative thickness τ for HG
scattering with PN and TN methods.

ω g P7 T7

0.6 0.40945049795923 ∗

0.7 0.38828573653176 ∗

0.8 0.34922870081574 ∗

0.9 0.29353039398292 ∗

2.00

0.1 0.32337499779078 0.324396508

0.2 0.32843758765538 0.329577409

0.3 0.33181467863921 0.33313691

0.4 0.33264620395163 0.334254871

0.5 ∗ ∗

0.6 0.31998858348800 ∗

0.7 0.30105588640293 ∗

0.8 0.27015075575492 ∗

0.9 0.2296227778710342 0.239509134

the derived four eigenvalues are substituted into the applied
boundary condition in Equation 21 for the Legendre method
and in Equation 22 for the Chebyshev method. The all-computed
eigenvalues are tabulated in Table 1. To calculate radiative thickness,
refer to the values in Table 1. According to Table 1, in the context of
the HG phase function, the eigenvalues obtained through the TN
method are, in general, higher than those computed with the PN
method, particularly for higher anisotropy values (i.e., larger g).This
discrepancy becomes particularly evident for high single scattering
albedo values (ω ≥ 1.6), where the influence of directional scattering
ismore pronounced. Conversely, theAGphase function consistently
yields smoother and more regular eigenvalue progressions for both
the PN and TN methods. The discrepancy between the PN and TN
methods is significantly reduced under the AG function, indicating
its numerical robustness and stability.

The selected third root from four discrete eigenvalues is
demonstrated with graphs in Figure 1. The behavior of the
eigenvalues can be shown from the graph. The third eigenvalues
obtained using the PN method for the Henyey–Greenstein (HG)
phase function exhibit a generally increasing trend concerning the
anisotropy parameter g. For ω = 1.4 and ω = 2.0, the eigenvalue
curves show abrupt increases at higher g values. At lower g values,
the eigenvalues are closely clustered, reflecting stability in weakly
anisotropic scattering conditions. The AG phase function under
the PN method shows a smooth and monotonic increase for all
values of ω. No abrupt changes or spikes are observed in any
curve. This behavior confirms the numerical robustness of the AG
phase function and its ability to represent scattering effects in a
stable and controlled manner. When the HG phase function is
applied within the TN method, the resulting third eigenvalues tend
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TABLE 3 Comparison of the radiative thickness τ for AG scattering with
PN and TN methods.

ω g P7 T7

1.20

0.1 1.3060899483224 1.30608384724622

0.2 1.3214331945595 1.32143705777598

0.3 1.3370242592421 1.33703894093162

0.4 1.3528830302567 1.35290951366756

0.5 1.3690218392740 1.36906130631456

0.6 1.3854447352784 1.38549861908630

0.7 1.4021463734782 1.40221635889920

0.8 1.4191106198618 1.41919853905962

0.9 1.4363092646516 1.43641680335716

1.40

0.1 0.7460463197700 0.74624708773023

0.2 0.7531284337910 0.75334223743176

0.3 0.7600634285709 0.76029345633361

0.4 0.7668391098290 0.76708916098896

0.5 0.7734317462120 0.77370665183173

0.6 0.7798050000797 0.78011123159398

0.7 0.7859084258503 0.78625501561848

0.8 0.7916758399270 0.79207588600770

0.9 0.7970247709264 0.79749811473658

1.60

0.1 0.5197075460137 0.52023261837462

0.2 0.5238323096630 0.52437663096205

0.3 0.5277109465301 0.52828029116893

0.4 0.5313239684983 0.53192535544812

0.5 0.5346406243396 0.53528313268163

0.6 0.5376183422708 0.53831429259484

0.7 0.5402021934133 0.54096889950364

0.8 0.5423252161759 0.54318768353175

0.9 0.5439122008889 0.54490740177111

1.80

0.1 0.3964839362360 0.39727553408908

0.2 0.3991771691097 0.39999393607304

0.3 0.4016029577108 0.40245229634136

0.4 0.4037409792617 0.40463191553315

0.5 0.4055609312129 0.40650513594042

(Continued on the following page)

TABLE 3 (Continued) Comparison of the radiative thickness τ for AG
scattering with PN and TN methods.

ω g P7 T7

0.6 0.4070225949975 0.40803581632645

0.7 0.4080763658889 0.40918044689732

0.8 0.4086654304824 0.40989118805629

0.9 0.4087328660886 0.41012414759981

2.00

0.1 0.3192369844105 0.32020641520304

0.2 0.3211294829998 0.32212777259423

0.3 0.3227593033710 0.32379458069610

0.4 0.3241072512909 0.32518941825570

0.5 0.3251455057954 0.32628732436544

0.6 0.3258381538009 0.32705672186442

0.7 0.3261424723928 0.32746120308538

0.8 0.3260122530560 0.32746350758561

0.9 0.3254065235250 0.32703494134920

to be higher and more oscillatory than those obtained with the
PN method. Particularly for ω = 1.4 and ω = 2.0, the eigenvalue
curves display sudden changes and irregular behavior at higher
g values. The combination of the AG phase function with the
TN method yields the most stable and consistent results among
all tested configurations. For every ω value, the third eigenvalues
increase gradually with increasing g, and no abrupt transitions or
numerical instabilities are detected. These results demonstrate that
the AG phase function ensures robust numerical performance and
consistent physical outcomes when applied with both the PN and
the TN schemes.

The results set out in Table 2 demonstrate the crucial slab
thicknesses derived via implementation of the PN and TN
methodologies, as well as theHG phase function, by the tenets of the
aforementioned methodologies. It is noteworthy that both methods
demonstrate a high degree of consistency when applied to the tested
parameters. This agreement reinforces the robustness and reliability
of both methods in solving the RTE under the HG phase function.
This consistency is particularly noteworthy given the differences
in the mathematical frameworks of the PN and TN methods. The
former employs a spherical harmonics expansion, while the latter
utilizes Chebyshev polynomials. The results demonstrate that both
approaches are capable of reliably capturing the scattering and
absorption behavior dictated by the HG phase function, even in
complex radiative systems.

A comparison of the results for the AG phase function is
presented in Table 3. The consistency observed between the PN
and TN methods is comparable to that of the HG phase function,
indicating that the AG phase function performs as robustly as the
HG phase function within the framework of the RTE.This finding is
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FIGURE 2
Comparison of the radiative thickness τ versus the g parameter for HG and AG scattering with the PN and TN methods.

of particular significance, given the historical use of the AG phase
function in neutron transport studies. Its extension to radiative
transfer systems thus represents a novel contribution to the field.

In order to facilitate a more profound comprehension of
the interrelationship between the values in the table, they have
been represented graphically in Figure 2. As demonstrated by the
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FIGURE 3
The graphs of the angular flux I(x,μ) function to the critical thickness τ.

graphs, the findings obtained from the methodologies employed
for both scattering categories exhibit a consistent relationship with
each other.

For the HG phase function, the radiative thickness values
obtained with the TN method are consistently higher than those
obtained via the PN method across all ω values. The difference
becomes more pronounced as both the anisotropy parameter g
and ω increase. Notably, for ω = 1.2 and ω = 1.4, the TN results
begin to deviate significantly at higher g, which may indicate
increased angular sensitivity and stronger directional scattering
captured by the TN method. Additionally, several missing values in
the TN results, especially at high g, may be attributed to numerical
instability or limitations in capturing sharp scattering features.
Under the AG phase function, both PN and TN methods produce
very similar and smooth results. The radiative thickness values
increase monotonically with g, and the difference between PN and
TN is minimal throughout the entire domain. This consistency
suggests that the AG phase function leads to a numerically stable
formulation and performs reliably across different discretization
schemes. The close agreement of PN and TN outputs under AG
further supports the suitability of the AG model for problems
requiring robust and consistent predictions.

Overall, while the HG phase function exhibits greater sensitivity
to the choice of angular discretization method, especially in
anisotropic regimes, the AG phase function delivers smoother and
more compatible solutions across both PN and TN schemes.

As demonstrated in Figure 3, the optical thickness values
obtained from the numerical solutions are presented as a function of
angular flux and thickness. Note that the values where the function
passes through zero on the graphs are identical to the thickness
values obtained for specific values of w and g.

As demonstrated inTables 2, 3, the outcomes of the twomethods
are closely aligned, indicating a high degree of concordance between
them. This finding suggests that the solution to the RTE employing
Chebyshev polynomials yields results that are consistent with those
obtained through the Legendre polynomial method. The second
result obtained from the study is the applicability of the AG phase
function to the RTE solution. As demonstrated in both the tables and
graphs, the results obtained from these two methods are consistent
with each other. It is also evident from the analysis that the radiative
thickness solution constitutes a distinct framework for the RTE
solution. The solutions obtained from both methods and the two
different phase functions demonstrate consistency with each other.
Consequently, researchers with a keen interest in this area can
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easily compare the solutions presented in this study and their
own methods.

4 Conclusion

This study presents a novel solution to the radiative transfer
equation (RTE), namely, the radiative thickness solution, which
offers a significant contribution to the existing body of knowledge.
While previous studies have extensively discussed reflectivity,
transmittance, and albedo, this work provides a novel focus on
radiative thickness, which has been largely overlooked in the context
of slab or multilayer slab geometries. It is anticipated that our
findings will serve as a benchmark for researchers engaged in similar
systems and methodologies, facilitating comparisons.The reliability
and consistency of the methods employed in this study reinforce the
applicability of our results to a range of fields, including atmospheric
radiative transfer and radiative transfer in biological tissues.

The solutions presented in this study are based on the
Henyey–Greenstein (HG) phase function, which is the most widely
applied and accepted scattering model in RTE analyses. The use of
the HG phase function ensures broad applicability, as it is highly
relevant for both theoretical studies and practical implementations.
Two distinct numerical methods were employed to solve the RTE,
and the excellent agreement between the results validates the
robustness of these methods. Furthermore, this work incorporates
solutions for the AG phase function, which has gained prominence
in neutron transfer studies due to its favorable performance. The
compatibility of results obtained using the AG phase function
provides additional support for the validity and versatility of
our approach.

It is believed that our study contributes a new scattering phase
function for RTE studies. Anlı-Güngör scattering is used for neutron
transport solutions. The use of Anlı-Güngör scattering in the RTE
is new in the area. The study showed the applicability of this phase
function for the radiative transfer equation solutions. The accuracy
of the result is controlled by comparing the two different methods.

Furthermore, the study underscores the significance of pivotal
parameters in the RTE, including the anisotropy parameter g and
the single scattering albedo w. The anisotropy parameter, which is
pivotal formodeling radiative transfer in atmospheric and biological
tissues, was evaluated across the entire range with a step size of 0.1.
This granular approach provides a comprehensive understanding of
the behavior of the radiative thickness in the presence of varying
anisotropic conditions. Similarly, the single scattering albedo, an
essential parameter in radiative transfer studies, was calculated in
0.2 intervals for values up to two, encompassing the range most
frequently utilized in the literature. The comprehensive tabulation
of these results serves as a valuable reference for future research
endeavors.

In conclusion, this work not only addresses a significant gap in
the study of RTE but also establishes a robust framework for future
research. It is anticipated that the comprehensive benchmark values
presented in this studywill serve as a source of inspiration for further
investigations and innovations in radiative transfer modeling.
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