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PET is a functional imaging method that can visualize metabolic processes
and relies on the coincidence detection of emitted annihilation quanta. From
the signals recorded by coincident detectors, TOF information can be derived,
usually represented as the difference in detection timestamps. Incorporating the
TOF information into the reconstruction can enhance the image’s SNR. Typically,
PET detectors are assessed based on the coincidence time resolution (CTR) they
can achieve. However, the detection process is affected by factors that degrade
the timing performance of PET detectors. Research on timing calibrations
develops and evaluates concepts aimed at mitigating these degradations to
restore the unaffected timing information. While many calibration methods rely
on analytical approaches, machine learning techniques have recently gained
interest due to their flexibility. We developed a residual physics-based calibration
approach, which combines prior domain knowledge with the flexibility and
power of machine learning models. This concept revolves around an initial
analytical calibration step addressing first-order skews. In the subsequent step,
any deviation from a defined expectation is regarded as a residual effect,
which we leverage to train machine learning models to eliminate higher-
order skews. The main advantage of this idea is that the experimenter can
guide the learning process through the definition of the timing residuals. In
earlier studies, we developed models that directly predicted the expected time
difference, which offered corrections only implicitly (implicit correctionmodels).
In this study, we introduce a new definition for timing residuals, enabling
us to train models that directly predict correction values (explicit correction
models). We demonstrate that the explicit correction approach allows for a
massive simplification of the data acquisition procedure, offers exceptionally
high linearity, and provides corrections able to improve the timing performance
from (371 ± 6) ps to (281 ± 5) ps for coincidences from 430 keV to 590 keV.
Furthermore, the novel definition makes it possible to exponentially reduce the
models in size, making it suitable for applications with high data throughput,
such as PET scanners. All experiments are performed with two detector stacks
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comprised of 4×4 LYSO:Ce,Ca crystals (each 3.8 mm × 3.8 mm x 20 mm),
which are coupled to 4 × 4 Broadcom NUV-MT SiPMs and digitized with the
TOFPET2 ASIC.
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1 Introduction

The introduction of precise time-of-flight (TOF) information
in positron emission tomography (PET) leads to a significant
improvement in the signal-to-noise ratio (SNR) of the reconstructed
images, which could aid physicians in diagnosis [1, 2]. For this
reason, in recent years, there has been increased research into
various approaches that have the potential to further improve
TOF-PET, with the ultimate goal of eventually achieving a timing
resolution in the order of 10 ps [3].

The PET data acquisition begins with the detection of the
emitted γ-photons using dedicated detectors consisting of a
scintillation volume and attached readout technology. Recent
research demonstrated the potential of co-doping approaches [4,
5], Cherenkov emitters [6, 7] like Bismuth germanate (BGO)
[8–12] or composite materials like metascintillators [13, 14].
Furthermore, the research community investigates double-sided
readout techniques [15–18] and waveform sampling approaches
[19–22], both providing rich signal information but posing
hardware-related challenges regarding the usage in full scanner
configurations.

Besides previously mentioned research lines, a considerable
number of studies are conducted on the development and
improvement of calibration techniques aiming to minimize
any deteriorating effects impacting the TOF measurement by
estimating unaffected timestamps or providing corrections to
them. Mathematically (see Equation 1), one can describe a
timestamp td reported by the detection system as a superposition
of unaffected, true timestamp Θ and a time offset Δts often
called skew,

td = Θ+Δts, (1)

with the offset value being a composition of different
deteriorating sub-offset si (see Equation 2), which can be
parameterized by a set of parameters ⃗pi,

Δts =∑
i
si ( ⃗pi) . (2)

Here, ⃗pi represents a set of parameters that governs the behavior
of the sub-skew si without loss of generality. In reality, the
sub-offset {si} might change from γ-interaction to γ-interaction
(e.g., due to different energy depositions affecting the signal
steepness, baseline shifts, depth of interaction (DOI)-related
effects, etc. [23, 24]) leading to different magnitudes and
constitutions of Δts.

While in former times, primarily analytical calibration
approaches were studied, artificial intelligence (AI) methods gained
interest in recent years, so that machine learning approaches are also
an active area of research. Classical PET timing calibration methods

in the literature rely on solving matrix equations [25–27] or use
timing alignment probes [28, 29]. Also, data-driven approaches
without requiring specialized data acquisition setups have been
investigated, e.g., using consistency conditions [30–33] or detector-
intrinsic characteristics [34, 35]. Other approaches use statistical
modeling under the premise of a maximum-likelihood approach
[36, 37].

Many machine learning-based timing calibrations utilize
supervised learning and, therefore, generate labeled data by
measuring radiation sources at multiple positions [38–42] or at a
single position [43]. Nearly all of the existing approaches work with
the signal waveforms. Although this data represents a rich source
of information, it often requires dedicated measurement hardware
capable of high sampling rates, e.g., oscilloscopes, that might be
challenging to implement in a full scanner setting.

In recent studies, we developed and demonstrated the
functionality of a machine learning-based timing calibration
for clinically relevant detectors (coupled to digital silicon
photomultipliers (SiPMs) [44, 45] and analog SiPMs [46]) without
the need of waveform information. Instead, we utilized detector
blocks coupled to matrices of SiPMs, as is done in pre-clinical and
clinical settings. Furthermore, we proposed to follow a residual
physics-based calibration concept, which separates the calibration
effort into two parts.

In the first part, an analytical calibration procedure is conducted,
which addresses so-called skews of first order that do not change
duringmeasurement and are similar for each event. After correction
for those skews, each deviation from an expectation can be
interpreted as a residual effect caused by higher-order skews that
might change on an event basis. To address these higher-order
skews in the second part, we endeavor to use machine learning
techniques since they offer high flexibility and are suitable for finding
characteristic patterns in the calibration data. The strength of the
residual physics concept is the underlying idea that the experimenter
can incorporate prior domain knowledge in the way the residual
effects are defined.

When applying machine learning techniques in physical
problems, one should ensure that the trained models produce
results that are in alignment with physical laws. Therefore, we
proposed in prior works, to use a three-fold evaluation scheme.
In the first instance, models are assessed regarding their mean
absolute error (MAE) performance. How well the models are
with physics is tested in the second instance. Finally, models
that passed the first two evaluation levels are tested in the
third instance regarding the improvement in coincidence time
resolution (CTR).

In our proof-of-concept study [44], we used a similar label
generation like Berg and Cherry [38], which demands the collection
of multiple source positions between two detectors in order to label
the data for supervised training of the model. Successfully trained
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regression models are able to predict the expected time difference
for a given input sample, e.g., consisting of information about the
measured time difference, the detected timestamps, the detected
energy signals, and the estimated γ-interaction position. In this
sense, the trained models provide implicit corrections by directly
predicting the corrected time difference.

Although this procedure demonstrated that significant
improvements in CTR are possible, the acquisition of the labeled
data was time-consuming considering future applications in a fully
equipped PET scanner. In a follow-up work [46], we demonstrated
that the acquisition time can be significantly reduced without
losing the calibration quality making the approach more practical.
However, the study also revealed a strong dependence of the trained
regression models on the used training step width given as the
distance between subsequent source positions. As soon as this
stepping distance becomes too large, the regression model showed
on finer sampled test data a form of collapse towards a classification
model for positions present in the training data set. This resulted
in a worse prediction quality for radiation sources located at
positions being not present in the training data. Even though
the overall prediction quality of the collapsing models was in an
acceptable range regarding the MAE, it also led to a substantial loss
of linearity. The linearity property of a calibration model, namely,
that a source shift in the spatial domain translates linearly to shift
of the time difference distribution in the time domain, is especially
for TOF-PET one of the most important attributes, since it ensures
a correct interpretation of the TOF information. The precise value
of the maximum training step width at which the model remains
functional might depend on the spatial sampling of the training
dataset and on the timing resolution that can be achieved with
the detectors being calibrated. While the precise derivation of the
dependence on the measurement parameters is out of the scope of
this work, one can safely assume that a training step width being
large compared to either the testing step width or/and the timing
resolution will likely result in a model collapse. The implication
of this observation leads to the conclusion that the smaller the
CTR value and/or testing step width is, the smaller the training
step width used has to be, resulting potentially in an elaborate
data acquisition.

In this work, we provide a new definition of the timing residuals
(oriented on the work of Onishi et al. [43]), which allows us to
train TOF-correction models explicitly providing correction values
instead of expected time differences.

In the first part, we compare the novel residual formulation
(explicit corrections) with the already established one (implicit
corrections) regarding a three-fold evaluation scheme. The analyses
use real measurement data and demonstrate that by using the
explicit correction approach, the strong dependence on the step
width is removed, the biased prediction distributions are suppressed,
and the linearity property is preserved. Considering a typical PET
scanner geometry, we will refer to this study as the transaxial
performance study.

In the second part, we analyze how the in-plane distribution
of sources for a given location between the detectors affects the
calibration quality, minding a later in-system application with, e.g.,
dedicated phantoms or a point source located at a single position
between the detectors. In the following, this study is called the
in-plane distribution study.

2 Materials

2.1 PET detectors

Two clinically relevant PET detectors of identical design are
used for the experiments. The scintillator topology is given by 4 ×
4 LYSO:Ce,Ca crystals manufactured by Taiwan Applied Crystals
(TAC), which have shown promising performance in previous
studies [5]. ESR-OCA-ESR sheets with a thickness of 155 μm cover
the lateral sides of the outer crystals. Each of the 4 × 4 crystal
elements encloses a volume of 3.8 mm × 3.8 mm x 20 mm, features
polished top and bottom faces with depolished lateral faces [47, 48],
and allows for light-sharing. The crystals are coupled to a 4 × 4
array of BroadcomNUV-MTSiPMs (AFBR-S4N44P164M) having a
pitch of 3.8 mm and 40 μm SPAD size. Each SiPM is coupled to one
channel of the TOFPET2 ASIC (version 2c) [49, 50]. A timestamp
in picoseconds and an energy value in arbitrary units is reported
if an SiPM is triggered and defines a so-called hit. The trigger and
validation settings can be found in Table A4. The overvoltage is set
to 7 V to balance good timing performance [5] with a reasonable
noise floor [5, 21].

2.2 Experimental setup and settings

The measurement setup is located in a light-protected climate
chamber, which is controlled at a temperature of 16°C. The
sensor tiles are mounted at a distance of 565 mm. In between
the detectors, a 22Na point source with an active diameter of
0.5 mm is used. The source holder is connected to a custom-
manufactured translation stage system, allowing movement along
all three spatial axes with a precision of <1 μm. The activity of
the source was given to 1.4 MBq. The ASIC board temperatures
are kept constant while operation and are measured to be
(33.9 ± 0.1) °C and (36.3 ± 0.1) °C, respectively. For all data
acquisitions, the same measurement settings (listed in Table A4)
are used.

3 Methods

3.1 Defining timing residuals: implicit and
explicit corrections

Labeling the acquired measurement data is essential to make it
applicable for supervised learning algorithms. The labels represent
a type of ground truth since they guide the training procedure of
machine learning models. However, for PET timing calibrations,
the underlying ground truth is not accessible since the time
skews can vary on an event basis, and the only information
available to the experimenter is the measured time difference
given as the difference between the timestamps reported by two
coincident detectors. Nevertheless, it is possible to obtain a certain
level of ground truth by connecting the spatial location of a
radiation source with the expected time difference, assuming that
no systematic skews are present. By shifting the radiator to a
different spatial location z, one can anticipate that also the expected
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time difference Δt𝔼 will shift. Both quantities are related to each
other via,

Δt𝔼 (z) = −
2
c
⋅ z, (3)

with c denoting the speed of light. In our proof-of-concept work
[44], we used Equation 3 to generate labels li (see Equation 4) by
shifting a radiation source between the detectors,

li ≔ Δt𝔼,i (zi) . (4)

Models trained with this definition of the timing residuals
correct the measured timestamps ta/b of detectors a and b
intrinsically by directly predicting the corrected time difference
value Δtcorrm . In this regard, these models provide only implicit
corrections to the timestamps, which is why we refer to them as
implicit correction models. Following this approach, it becomes
apparent that a certain number of source positions is needed
to generate a sufficient label variability (or class cardinality for
classifier problems), otherwise it will lead to poor generalization,
as shown in [46].

To remove the need for measuring multiple source positions
along the z-axis in order to have sufficient label variability, we
propose to redefine the residuals in a way which significantly
enlarges the label space even when using only one source position at
the z-axis. This can be achieved by using the correction distribution
{ri}, where each correction ri is defined as

li ≔ ri (Δtm,i,zi) =
Δtm,i −Δt𝔼 (zi)

2
(5)

=
Δtm,i +

2
c
⋅ zi

2
, (6)

with Δtm,i denoting the i-th measured time difference and Δt𝔼 the
expected time difference defined in Equation 3. From Equations 5, 6
it becomes clear, that models trained on these labels are able to
provide explicit corrections, namely, that the corrected timestamps
are given as

tcorra,i = ta,i − ri,

tcorrb,i = tb,i + ri.
(7)

Furthermore, this explicit correction formulation (see
Equations 6, 7) introduces a translational symmetry into the labeling
process. Therefore, it does not pose any restriction on the number
of sources along the z-axis such that the experimenter can decide
if it is wanted to include a spatial sampling along z during the
acquisition process or if a few or even one source position is
sufficient regarding practicability. If one source position should be
used, the experimenter can choose an arbitrary location along the
z-axis. However, for simplicity, we recommend setting the source
to the center position since there, the expected time difference
Δt𝔼 equals zero, which simplifies Equation 6. Mathematical
considerations about the explicit correction formulation can be
found in the Appendix.

When comparing both label definitions (see Figure 1), one can
see that the label distribution is discrete for the implicit approach.
Precisely, the number of unique labels (unique expected time
differences) is equal to the number of used source positions, which

might result in a sparse coverage of the label domain. Contrary
to this, the explicit correction approach generates a continuous
spectrum of labels, which is independent from the number of
measured source positions due to translational symmetry of the
formulation resulting in a high coverage of the label domain. The
various label approaches also lead to differences in terms of label
balance or imbalance. In the implicit approach, it is very easy to
generate a high balance of labels by using the same measurement
time per source position. This promotes that all labels can be
trained equally well. In comparison, the explicit approach leads
to a label imbalance independent of the selected measurement
time. This is because the labels are based, among other things,
on the measured time difference spectrum, which is Gaussian-like
distributed. As a result, corrections with a large magnitude are less
often represented in the training data set than corrections with a
smaller magnitude.

3.2 Evaluation metrics

In recent works, we proposed to use a three-folded
evaluation scheme [45, 46, 51] for any kind of machine learning-
based TOF correction or calibration. The scheme consists
of a data scientific, physics-based and PET-based evaluation
approach. Only models that pass the first two evaluation
criteria are evaluated in a subsequent step regarding their
application in PET.

3.2.1 Data scientific evaluation
The data scientific evaluation approach assesses the models

based on typical metrics known from machine learning. In this
work, we calculate the MAE for all distinct N label classes {l1,…, lN}
separately,

MAEk =
1
nk

nk
∑
i=1
‖pk,i − lk,i‖1, (8)

with nk denoting the number of test samples for the label class
lk, and pk,i describing the prediction associated to the i-th sample
with ground truth lk, respectively. Although the MAE (see Equation
8) provides a numerical value, we use it rather as a qualitative
metric to check if a model’s performance is stable for large portions
of the test data. In the first part of this work, the progression
of the MAE is analyzed. Models demonstrating an MAE curve
progression that is noticeably higher than the progression curve
of the other corresponding models, or that exhibit oscillations in
the MAE progression that align with the source positions utilized
during training, are considered to have failed the data scientific
quality check. The second part relies on the mean MAE and
weighted mean MAE for visualization and comparability reasons.
The mean MAE (see Equation 9) is defined by the sample mean over
the N label classes,

mean MAE = 1
N

N

∑
k=1

MAEk. (9)

The weighted mean MAE (see Equation 10) takes
the label distribution into account by weighting the

Frontiers in Physics 04 frontiersin.org

https://doi.org/10.3389/fphy.2025.1570925
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


Naunheim et al. 10.3389/fphy.2025.1570925

FIGURE 1
Visualization of the label distributions of the implicit (green) and explicit (blue) correction approach. The radiation source positions are displayed
as red cubes.

MAE with the number of occurrences nk of the label
class lk,

weighted mean MAE = (
N

∑
k=1

nk)
−1

(
N

∑
k=1

MAEk ⋅ nk). (10)

We perform the data scientific evaluation without posing any
restrictions on the estimated energy of the input data.

3.2.2 Physics-based evaluation
The next evaluation part considers aspects from physics,

which are the linearity and a so-called ε-value indicating the
agreement with fundamental quantities like the speed of light.
For this test, data stemming from different source positions
along the z-axis are fed into the model. The directly (implicit) or
indirectly (explicit) predicted time differences are histogrammed
for each source position, and the means of the corresponding
prediction distributions are estimated by fitting [52] over a 3σ-
range a Gaussian function assuming Poissonian uncertainties on the

time differences. The obtained means {μi} and the corresponding
source positions {zi} are finally used to perform a linear
regression using

Δt𝔼 ≈ μ (z;ε,b) = −
2
c
⋅ ε ⋅ z+ b, (11)

where we assume that the mean μ matches in good approximation
the expected time difference Δt𝔼. For the linear regression, the
uncertainty σz on the source position z is dominated by the active
source diameter and estimated by assuming a uniform distribution
of activity within this diameter (σz = 0.5 mm/√12). In a similar
fashion, the uncertainty σμ on the estimation ofmean time difference
μ is given by assuming an uniform distribution within the histogram
bin width (σμ = 10 ps/√12).

Equation 11 closely resembles the fundamental Equation 3, with
both describing a linear dependence between the expected time
difference and the source position. We evaluate qualitatively if this
assumption is fulfilled by the predictions of our models using
reduced χ2-values, which should be in the optimal case closely
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distributed around one. For the sake of easier comparability of
many models, in the second part of this work, we compress the χ2-
distribution information into a single value sχ2 (see Equation 12)
measuring the spread of the χ2-value from the optimal value of 1
in units of the standard deviation σχ2 ,

sχ2 =
|χ2 − 1|
σχ2
, (12)

with χ2 denoting the mean.
As a quantitativemeasure, we use the number of σ-environments

nε (see Equation 13) of the ε-value minding the theory value of
εtheo = 1,

nε =
|ε− εtheo|

σε
. (13)

In order to suppress any deteriorating effects coming from time
walk, events are selected to be in an energy window from 430 keV
to 590 keV for the physics-based evaluation. A model passes the
physics-based evaluation, if the χ2-values are closely distributed
around 1, or the spread sχ2 in units of the standard deviation is
smaller than 3. Furthermore, the models must demonstrate their
agreement with physics by having ε-values being compatible with
the theory in a 3σ-range.

3.2.3 PET-based evaluation
If the data scientific and physics-based evaluations are positive,

finally, the performance of the model is tested assessing the
achievable CTR. For this, data is fed into the models, and the
resulting predictions are filled into a histogram. The full width at
half maximum (FWHM) of this distribution is estimated by fitting
a Gaussian function assuming Poissonian uncertainties on the time
differences.We perform this analysis for test data from the iso-center
(describing the center of the setup (x = 0, y = 0,z = 0)mm) but also
for test data along the complete z-axis.

3.3 Model architecture

We use gradient-boosted decision trees (GBDTs) as model
architecture for the second part of the residual physics-based timing
calibration. GBDTs are a classical machine learning approach with
the advantage that they can handle missing values and allow the
implementation in a field programmable gate array (FPGA) [53].
This makes it especially suitable for the application in PET scanners
minding edge-AI approaches [54, 55]. The model is based on an
ensemble of binary decision trees, which uses boosting as a learning
procedure. Each tree that is added to the ensemble during the
training process attempts to minimize the errors of the predecessor
model. In this study, we worked with the implementation of
XGBoost [56], which has proven it’s predictive power [57] in our
prior studies [44, 46].

Like in many other machine learning algorithms, several
hyperparameters can be set before training a model. The maximum
tree depth d describes the maximum number of decisions inside
a single tree. The learning rate lr works as a smoothing parameter
and controls the contribution of each new tree to the overall model.
Another hyperparameter is the maximum number of trees within

the ensemble, which is often used in combination with an early
stopping criterion that stops the training procedure as soon as the
validation loss has not improved for a certain amount of boosting
rounds.Thememory requirement (MR) [58] of a single decision tree
is given to be

MR (d) = (2d − 1) ⋅ 11 B+ 2d ⋅ 6 B. (14)

3.4 Study design

Several datasets were recorded in order to realize the different
study designs for evaluating the implicit and explicit correction
approach. In the following text, we will often refer to the coordinate
system defined in Figure 1.

3.4.1 Transaxial performance study
This study aims to compare both calibration approaches

regarding their performance along the axis connecting both detector
stacks. To acquire data for training, validation and testing 35
positions along the z-axis were utilized, while at each z-position, a
grid of 4 × 4 in-plane positions are measured.The in-plane positions
were chosen so that each crystal segmented was centrally irradiated.
The step width (sw) between two subsequent planes was set to
sw = 10 mm, with the maximum z-positions given to be
zmin/max = ±170 mm, which equals the maximum travel distance
allowed by the translation stage system. The distribution of the
source positions is shown in Figure 2. For each source position a
measurement time of 45 min was used.

From the acquired dataset, 2.64× 107 and 8.80× 106 samples
are used in total to form the training and validation dataset (66/33
split), respectively. The numbers of samples per z-position show a
deviation <2%, such that bias effects due to different solid angles can
be ruled out. The remaining data of the measurement run, namely,
1.05× 108 samples, is used to build the test dataset.

In addition to the experiment, where each z-position is present
in the training data, we removed data along the z-axis to artificially
create new training and validation datasets with different stepwidths
(sw = 50 mm and sw = 100 mm) between the grid planes. Although
this results in a lower number of training samples, we follow this
approach to analyze how implicit and explicit correction models
perform at unknown z-position. Therefore, new models are trained
on these datasets but tested on the finely sampled and unseen test
dataset comprising 35 z-positions.

For both kinds of training approaches (implicit and explicit), the
same amount of training and validation samples are used, and a big
parameter space of the maximum tree depth d is sampled, ranging
from very narrow to very deep trees (d ∈ {4,8,12,16,20}). The
learning rate is always set to lr = 0.1, the maximum number of trees
in an ensemble is set to 1,000, and we use 10 early stopping rounds.

All models are evaluated regarding their MAE performance
and linearity behavior. In prior studies [44, 46], we demonstrated
that this results in edge effects leading to non-Gaussian
distribution (see Figure 3). For this reason, the linearity analysis of
the implicit correctionmodels is performed for a large central region
(−100 mm to 100 mm), while the explicit correction approach
allows an analysis over the complete z-range (−170 mm to 170 mm).
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FIGURE 2
Visualization of the source distribution for a part of the transaxial study.

FIGURE 3
Examples of the prediction distribution of implicit and explicit
correction models. While the explicit correction model preserves the
Gaussian time difference shape, the implicit correction model is
strongly affected by edge effects leading to non-Gaussian
distributions. In this example, the implicit model IM10,12 and the explicit
model EM10,4 is used.

Models that pass the data scientific and physics-based quality control
are finally evaluated regarding their CTR improvement on input
data from one z-position (z = 0 mm). We denote an implicit model
that has been trained with data utilizing a step width of sw and
a maximum tree depth of d as IM(sw,d), while the corresponding
explicit model is called EM(sw,d).

3.4.2 In-plane distribution study
This study aims to evaluate how the in-plane source distribution

affects the performance of explicit correction models. Data is
acquired at only one z-position (z = 0 mm), but with an extended
source distribution of 33 × 33 source positions in the x-y-plane.
At each source position a measurement time of 5 min is to obtain
the same number of training and validation samples as in the
transaxial performance study. Six distinct new datasets for the
training of explicit correction models are formed from the data,
by removing sources in a regular pattern until only one source
located at the iso-center remains. The in-plane distributions (IPD)
are quadratic

IPD ∈ {(1× 1) , (3× 3) , (5× 5) , (9× 9) , (17× 17) , (33× 33)} , (15)

which also can be seen Figure 4. Identical to the transaxial
performance study, five explicit correction models were trained
for each dataset with the maximum tree depth d being
d ∈ {4,8,12,16,20}. The models are tested on the transaxial test
dataset comprising 35 z-positions. The same evaluation scheme like
in the transaxial performance study is used, which incorporates data
scientific, physics-based and PET-based metrics.

3.5 Data pre-processing

Hits corresponding to a single γ-interaction must be grouped
into clusters by analyzing their initial timestamps. This clustering
approach enables the aggregation of all relevant information
linked to a specific γ-interaction. Following this step, clusters
are further grouped into coincidences by applying a coincidence
window, which considers the time differences between two
clusters using their main SiPM. Hits with energy values (in
arbitrary units) below 2.5 or above 100 were excluded from
the clustering process. A cluster window of 8 ns was empirically
chosen by analysis of the temporal distribution. Furthermore, a
coincidence window of 50 ns was applied to significantly reduce the
proportion of random events and minimize the risk of excluding
true coincidences.

To each cluster, a γ-interaction position and timestamp
value was assigned based on the coordinates and timestamp
of the SiPM with the highest energy value. The energy signals
were saturation corrected using the 511 keV and 1275 keV
energy peak of the 22Na source. An energy value derived
from the deposited energy on the main SiPM was assigned to
each cluster.

Following our proposed residual physics-based calibration
scheme, a conventional time skew calibration [59] is conducted in
order to remove the major skews of the first order.

3.6 Input features

The input features for both models are derived from
the detection information of coincident clusters and can be
separated into a set with information from detector a, and
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FIGURE 4
In-plane source distributions (see Equation 15). The red dots represent the position of a source, while the gray background displays the detector. (a) 1 ×
1 grid. (b) 3 × 3 grid. (c) 5 × 5 grid. (d) 9 × 9 grid. (e) 17 × 17 grid. (f) 33 × 33 grid.

FIGURE 5
MAE progression of the correction models trained on a dataset using a step width of 10 mm, and tested on unseen data with a step width of 10 mm.
The blue axis and histogram display the label distribution of the training dataset. The MAE progression IM10,20 cannot be seen in plot a), since it resulted
in a very high MAE of about 1000 ps, being far outside the displayed range. (a) Implicit correction models. (b) Explicit correction models.

a set with information about detector b. Since both sets
are similar content-wise, we describe in a general way the
information a sample is made up of.

The na/b first relative timestamp values, which have been
corrected using the first-order analytical calibration, alongwith their
SiPM ID, represent the temporal information. Furthermore, we use
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FIGURE 6
MAE progression of the correction models trained on a dataset using a step width of 50 mm, and tested on unseen data with a step width of 10 mm.
The blue axis and histogram displays the label distribution of the training dataset. (a) Implicit correction models. (b) Explicit correction models.

FIGURE 7
MAE progression of the correction models trained on a dataset using a step width of 100 mm, and tested on unseen data with a step width of 10 mm.
The blue axis and histogram display the label distribution of the training dataset. (a) Implicit correction models. (b) Explicit correction models.

the magnitude of the detected energy signal on these SiPMs, and
the ID, energy signal, and coordinates of the main SiPM (SiPM
detecting the highest number of photons) as additional information.
In addition to this, the row and column energy sums are used.
Furthermore, the number of triggered SiPMs, and the difference
between the first and last timestamp of a cluster are fed to the
model. Finally, the first (center of gravity (COG)) and second
moment of the light distribution are also included. Missing values
are handled as NaN.

While these quantities represent the input for the explicit
correctionmodels, the implicit correctionmodels use one additional
feature: the measured time difference. Based on a prior statistical
analysis on how many triggered SiPMs are contained in a cluster,
na/b is set to twelve and nine. No filter is applied to the energy or
light distribution of the input data to ensure that the trained models
function effectively with any potential input sample.

4 Results

4.1 Transaxial performance study

4.1.1 Data scientific evaluation
Prior to assessing the models with the three-fold evaluation

scheme, we checked that the models were trained successfully
by analyzing the training and validation curves. All models
showed a smooth training progression and were fully
trained out.

The MAE progression of the explicit and implicit correction
models for different training step width is displayed in Figures 5–7.
For the models trained on data with a step width of 10 mm, both
correction models show a smooth MAE progression without any
outliers. While most of the MAE values of the implicit correction
models are located in a region between 100 ps and 200 ps, the
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FIGURE 8
Linearity evaluation for the implicit and explicit models trained on training data with different step widths. The blue box plots correspond to the blue
axis on the left and represent the reduced χ2-distribution. χ2/ndf values near to one indicate a good agreement with the linearity hypothesis. The red
dots correspond to the axis on the right and represent the average ε-value derived from the linear regressions. The thick and light errorbars indicate 1σ
and 3σ uncertainty. (a) 10 mm stepping in training data. (b) 50 mm stepping in training data. (c) 100 mm stepping in training data.

TABLE 1 CTR values of different training step widths and an energy window of 430 keV to 590 keV.

CTR [ps]

d 10 mm 50 mm 100 mm no ML

implicit explicit implicit explicit implicit explicit

4 qcf 282± 4 qcf 291± 4 qcf 292± 5 371± 6

8 qcf 283± 7 ∗253± 5 292± 3 qcf 296± 5

12 271± 5 291± 4 qcf 297± 5 qcf 303± 5

16 280± 4 287± 4 qcf 297± 4 qcf 300± 4

20 qcf 288± 5 qcf 292± 5 qcf 293± 5

Models that have not passed the prior quality checks are marked with qcf (quality check failed). The maximal tree depth is denoted with d. ∗This model lies within a transition region and
should therefore be interpreted with caution.

MAE rises towards the edges of the testing data. The labels of
the training dataset for implicit correction models are, in good
approximation, uniformly distributed. The MAE progression of the
explicit correctionmodels resembles aU-form,with the lowestMAE
of sub-100ps being achieved at labels of small magnitude. When
moving to higher label magnitudes, and therefore, also to higher

correction magnitudes, the MAE strongly rises. The explicit label
distribution follows, in good approximation, a Gaussian shape with
non-Gaussian tails.

For both correction approaches trained on 10 mm step width
data, no significant performance differences for different maximum
depths of the trees can be observed, except for the implicit correction
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FIGURE 9
Obtained timing resolutions for different implicit and explicit
correction models. The values are based on coincidences being in an
energy window from 430 keV to 590 keV. The correction model ‘no
ML’ refers to performing only an analytical time skew calibration (first
part of the residual physics calibration scheme), without subsequent
use of machine learning.

model with maximum depth 20 providing by far the worst MAE
performance (MAEs > 400 ps).

The MAE performances of models trained on data with fewer
source positions on the z-axis compared to the test data are shown
in Figures 6, 7. While the spatial undersampling has no big impact
on the performance of the explicitmodels, it does have a strong effect
on implicit correctionmodels. It can be observed that for the explicit
approach the label distributions between spatially full-sampled and
undersampled training data does not differ. Thus, the overall MAE
progression of the models trained on 50 mm and 100 mm data is
strongly similar to the finely sampled training data with 10 mm
stepping. It can be stated that there is a tendency for models with
small maximum tree depth to provide slightly better results for
spatially undersampled data.

The implicit correction models are strongly affected by spatial
undersampling, which can also be seen in the corresponding
label distribution of the training data. Oscillation effects in the
MAE progression can be seen, and become more dominant the
bigger the spatial undersampling is, which was first observed
and studied in [46]. In addition, implicit correction models with
low maximum tree depth show a more robust behavior against
the spatial undersampling than models with higher complexity.
This can especially be seen in Figure 6a, where the zoom-in
window clearly reveals oscillation effects for the implicit models
starting from a maximum tree depth of 12. Furthermore, the
figure also suggests that the model with a maximum tree
depth of 8 shows very minor oscillation behavior, being in a
transition zone between non-oscillation (d = 4) and oscillation
behavior (d = 12).

The observations show that all explicit correction models meet
the data scientific quality check. All implicit correction models
pass the quality check for a training step width of 10 mm, except
for IM10,20. For a stepping of 50 mm, this reduces to the implicit
correction models with a maximum tree depth of 4 and 8, while
for a step width of 100 mm only the model with maximum tree
depth 4 passes the evaluation, althoughminor oscillation tendencies
are visible.

4.1.2 Physics-based evaluation
The estimated χ2-analysis and ε-values are depicted in Figure 8.

Models that show a high compatibility with our physical
expectations can be identified by χ2/ndf-values near to one, and
an ε-value that matches within 3σ the theoretical value of εtheo = 1.
The explicit correction models show good agreement with linearity
and high compatibility with the theoretical ε-value of εtheo = 1 across
all tested step widths and tree depths. Contrary to this, there is the
trend that implicit correction models lose their linearity property
with increasing step width. While for the smallest step width of
10 mm, IM10,12 and IM10,16 meet the physics-based quality criteria,
it remains only IM50,8 and IM50,12 for a training step width of
50 mm and for the highest step width no implicit model passes
the physics-based quality check.

4.1.3 PET-based evaluation
All correction models that passed the quality control are able to

improve the CTR. The achieved timing resolutions estimated from
a point source in the isocenter are listed in Table 1; Tables A1, A2.
Furthermore, the results of the two models IM10,12, EM10,4, and the
results before using machine learning are visualized in Figure 9. The
CTR progression along the z-axis is displayed in Figures 10, 11 and
Table 2. All mean CTR values are compatible within 1σ with the
estimated CTRs from the isocenter. While the explicit correction
approach remains functional across the full z-range, the implicit
correction approach is known to experience bias effects at the edges
of the training domain (see Figure 3). This leads to non-Gaussian
time distributions, recognizable by the high χ2/ndf-values that
return decreased CTRs values due to the distribution deformation.
In order to provide an unbiased evaluation, the source positions
from the gray area are excluded from the evaluation of the implicit
correction approach (see Table 2). It is remarkable that all estimated
timing resolutions demonstrate onlyminor degradation when going
to a large energy window, or no energy window at all. The estimated
timing resolutions are compatible with each other for a given energy
window and correction approach, except for model IM50,8. One can
observe that the implicit correction approach provides slightly better
CTR values compared to the explicit correction approach.

4.2 In-plane distribution study

4.2.1 Data scientific evaluation
The data scientific evaluations of the trained explicit correction

models are depicted in Figures 12, 13. It can be seen that the
MAE progression is smooth, and no outliers or oscillation effects
are visible. The shape of the MAE progression resembles the U-
form, which is already known from the previous study. There are
slight differences visible for different in-plane source distributions,
namely, that models trained on extended source distribution show
a flatter MAE progression than compressed distributions when
moving towards label values with a largemagnitude. Apparently, this
trend occurs for all the different source distributions, except for the
case of 3 × 3, which performs the worst. This trend is reversed for
small labelmagnitudes, wheremodels trained on compressed source
distributions show lower MAE values. For convenience, Figure 12
also displays the MAE progression of a dummy model predicting a
correction value of 0 ps for every input.
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FIGURE 10
CTR progression along the z-axis of models, trained on 10 mm stepping, which passed the data scientific and physics-based quality checks. The upper
plot visualizes the (directly/indirectly) predicted time differences. The middle plot shows the CTR value at the specific position. The lower plot visualizes
the χ2/ndf-value received from fitting a Gaussian function to the corresponding time difference distribution. The white area represents the source
positions, that had been considered during the linearity analysis. While the explicit correction approach remains functional across the full z-range, the
implicit correction approach is known to experience bias effects at the edges of the training domain. This leads to non-Gaussian time distributions,
recognizable by the high χ2/ndf-values that return decreased CTRs values due to the distribution deformation. In order to provide an unbiased
evaluation, the source positions from the gray area are excluded from the evaluation of the implicit correction approach. The data shown in this plot
was selected to be within an energy window from 430 keV to 590 keV. (a) Implicit correction models. (b) Explicit correction models.

For better visualization and interpretability, the mean MAE
values and weighted mean MAE values are displayed as heatmaps
in Figure 13. The mean MAE values are calculated as the mean
of the MAE progression curve of Figure 12, while the weighted
mean MAE values are given by considering the relative label
occurrence (see Figure 5b). Both plots reveal the trend of improved
MAE performance when models with small maximum tree depth
are trained on the extended source distribution. Again, the case of
3 × 3 sources serves as an exception.

4.2.2 Physics-based evaluation
All trained models were evaluated regarding their linearity

property and agreement with physics using the methods
explained in Section 3.2.2. For the sake of better visualization
and comparability, the results are displayed as heatmaps showing
the sχ2 and nε values. In general, the plots reveal that all explicit
correction models pass the physics-based evaluation. When looking
at the linearity property measure shown in Figure 14a, one can see
that models trained on small source distributions tend to have a
smaller χ2-spread than models trained on 17 × 17 sources or more.
Regarding different maximum tree depths, no clear trend can be
identified.

The heatmap displaying the σ-environments of the estimated
ε-value shows an opposing picture. The smallest differences
between estimated and theoretical ε-value are achieved by
models trained on extensive source distributions. Also for this

evaluation, no clear tendency regarding the maximum tree depth
is visible.

Overall, the plots demonstrate that all explicit correctionmodels
show a high agreement with our physics-based expectations with
only minor differences between differently trained models.

4.2.3 PET-based evaluation
The timing resolutions achieved when using the trained explicit

correction models are listed in Tables 3, 4; Table A3. Some of the
resulting time difference distributions are depicted in Figure 15.
Models that have been trained on extensive in-plane source
distributions show the best CTR values. Furthermore, the values
indicate the trend that training on more in-plane sources leads to
models with a higher ability to correct deteriorating effects, resulting
in better CTRs. An exception is given by models trained on 3 × 3 in-
plane sources, which return the worst CTR performance. Although
no general trend regarding the maximum tree depth is visible, in
the two extreme cases (1 × 1 and 33 × 33) explicit models with a
maximum depth of 4 perform the best.

When comparing the CTRs from coincidences of a small and
large energy window, one sees only a minor degradation (≈2%) for
a given explicit model compared to the ‘no ML’ correction (≈20%).

All trained explicit correction models are able to significantly
improve the achievable timing resolution compared to performing
only an analytical time skew correction without subsequent
use of machine learning. For the best case, the CTR can be
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FIGURE 11
CTR progression along the z-axis of explicit correction models,
trained on 100 mm stepping. The upper plot visualizes the indirectly
predicted time differences. The middle plot shows the CTR value at
the specific position. The lower plot visualizes the χ2/ndf-value
received from fitting a Gaussian function to the corresponding time
difference distribution. The data shown in this plot was selected to be
within an energy window from 430 keV to 590 keV.

improved by nearly 25% for data with an energy from 430 keV
to 590 keV, and 36% for data with an energy from 300 keV
to 700 keV.

5 Discussion

In this work a novel formulation of a residual physics-based
timing calibration was introduced, capable of providing explicit
timestamp corrections values. Two distinguished aspects of the
calibration were investigated. In the transaxial performance study
the effect of reduced source positions along the z-axis in comparison
to the established implicit correction approach was evaluated. The
in-plane distribution study analyzed the effect of different source
distributions located in a plane on the explicit correction models.

The data scientific evaluation of the transaxial performance
study revealed both approaches are capable of significantly
improving the achievable CTR when training and testing data
have the same spatial sampling. All explicit and implicit correction
models showed a smooth MAE progression, except for the implicit
correction model with a maximum tree depth of 20. Although
the learning curves of this model showed no abnormal course
and converged to a minimum, the validation error was clearly
higher than for the other implicit models. We assume that the

model might be too complex for the given problem, suppressing
effective learning. As soon as the spatial sampling of the training
data became more sparse than the spatial sampling of the test
data, implicit correction models showed the tendency to oscillation
effects. Those effects led to a very good performance at positions
that are known to the model, and worse performance at unknown
positions. It can be stated that implicit models with a highmaximum
tree depth tended to be more sensitive to undersampling than
models with less complexity. Although the MAE curves of the
explicit correction models seemed steeper, indicating a higher
MAE, one has to consider the underlying label distribution. While
there are many training samples with low label magnitudes, the
number of high magnitude label samples is low making it hard for
the models to learn characteristic patterns. The results suggested
that explicit correction models are more robust against a spatially
undersampled training dataset. This can be reasoned by the fact,
that the label distribution is independent from the location and
number of source positions along the z-axis. The physics-based
evaluation confirmed the previously mentioned findings, namely,
that implicit correction models show a dependence on the spatial
sampling of the training data. Furthermore, the results demonstrate
that the dependence on the source location is removed for explicit
correction models. This implies that explicit approach does not
demand a dedicatedmotorized calibration setup, which significantly
increases the practicability minding an in-system application. The
robustness of the explicit correction models is reasoned by the
way the residuals are defined. The corresponding mathematical
considerations can be found in the Appendix. Furthermore, we want
to underline that the linearity evaluation for the explicit correction
models was performed on the full test data range. Since the implicit
correction models show large bias effects at the edges of the test
range, a meaningful linearity analysis could only be performed on
roughly 60% of the test data range. Minding spatially undersampled
training data, no strong dependence on themaximum tree depthwas
found for explicit correction models contrary to implicit correction
models. The PET-specific evaluation revealed that models from
both correction approaches which passed the quality checks were
able to significantly improve the timing performance of the used
PET detectors. The estimated CTR values from the isocenter are
in good agreement with the mean CTR archived on the allowed
z-range. The best results were achieved by the implicit correction
models. The explicit correction models show a slightly worse
performance in CTR, which might be neglectable considering the
scale of the improvements. Both correction approaches demonstrate
only small CTR degradation when enlarging the energy window,
which suggests that both methods are able to correct timewalk
effects successfully. This suggestion is supported by an extensive
feature importance analysis conducted in a prior study [44] using
implicit correction models.

In the in-plane distribution study, we demonstrated that the
explicit correction formulation is capable of providing good results,
even if the training data does not have multiple source positions
along the z-axis. Furthermore, we investigated which effects occur
if the in-plane source distribution is compressed to one point source
or extended to a quasi-continuous distribution. Regarding those
two extreme cases, we had an application for a full PET scanner in
mind, where one could potentially use a point source in the isocenter
or a thin phantom filled with activity. During the data scientific
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TABLE 2 Mean CTR values along the z-axis of different training step widths and an energy window of 430 keV to 590 keV.

CTR [ps]

d 10 mm 50 mm 100 mm no ML

implicit explicit implicit explicit implicit explicit

4 qcf 282± 2 qcf 290± 2 qcf 293± 2 371± 2

8 qcf 283± 2 ∗278± 19 290± 2 qcf 295± 3

12 274± 7 290± 2 qcf 295± 2 qcf 303± 2

16 275± 6 287± 2 qcf 296± 2 qcf 299± 2

20 qcf 289± 2 qcf 291± 3 qcf 294± 2

Models that have not passed the prior quality checks are marked with qcf (quality check failed). The maximal tree depth is denoted with d. All mean CTR values are compatible within 1σ with
the estimated CTRs from the isocenter (see Table 1). ∗This model lies within a transition region and should therefore be interpreted with caution.

FIGURE 12
MAE progression of explicit correction models trained with different maximum tree depth and in-plane source distributions. The dashed black line
displays the MAE progression of a dummy model predicting for every input a correction value of 0 ps.

FIGURE 13
Visualizations of the mean MAE and weighted mean MAE dependent on the maximum tree depth and the source distribution. While the mean MAE is
given as mean of the points displayed as curve in Figure 12, the weighted mean is calculated by weighting the MAE value of a specific label with the
label’s occurrence frequency. (a) Mean MAE. (b) Weighted mean MAE.
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FIGURE 14
Visualization of the metrics used during the physics-based evaluation dependent on the maximum tree depth and the source distribution. (a)
Calculated sχ2 values. (b) Calculated nε values.

TABLE 3 Obtained timing resolutions after usage of explicit correction models trained on data with different in-plane source distributions.

CTR [ps]

d 01 × 01 03 × 03 05 × 05 09 × 09 17 × 17 33 × 33 no ML

4 306± 4 328± 5 300± 5 301± 4 289± 4 281± 5 371± 6

8 316± 4 334± 5 312± 5 300± 5 294± 4 282± 7

12 305± 5 341± 5 310± 5 299± 4 290± 5 288± 4

16 313± 5 340± 5 303± 5 299± 4 293± 6 287± 5

20 322± 5 345± 4 306± 5 294± 3 291± 5 287± 5

The values are based on coincidences being in an energy window from 430 keV to 590 keV. The column ‘no ML’ refers to performing only an analytical time skew calibration (first part of the
residual physics calibration scheme), without subsequent use of machine learning.

evaluation, all models showed a similar MAE progression, although
models trained on extensive in-plane source distributions showed
slightly better performance, especially at large label magnitudes.
Since one also has to consider that the overall training statistics
do strongly differ (e.g., the number of training samples for the
1 × 1 case is approximately a factor 332 smaller compared to
the 33 × 33 case), we cannot strictly identify if this effect comes
from the source distribution or statistics. An indication that the
performance depends on the in-plane arrangement of the sources
might be the case where 3 × 3 sources were utilized since those
models performed worse compared to the 1 × 1 case even though
the training data was bigger by a factor of 9. However, in the
3 × 3 case, it must also be said that the sources are oriented more
towards the detector edge than towards the detector center, which
can be a further influencing factor. The physics-based evaluation
showed that the linearity property is stronger pronounced inmodels
trained on comprised source distribution, while the ε-agreement is
slightly higher for models trained on extended source distributions.
Overall, all explicit correction models passed the physics-based

quality check. The CTR values being achieved by the trained explicit
correction models are significantly better (nearly 25% for data with
an energy from 430 keV to 590 keV, and 36% for data with an
energy from 300 keV to 700 keV) compared to not using machine
learning. Furthermore, only a small performance degradation in
CTR is observed for a large energy window, which suggests that
trained models are capable of correcting time walk effects, which
is interesting when high sensitivity is to be considered. All trained
models show a consistent picture of the achievable timing resolution
for a given in-plane source distribution. Minding the two extreme
cases of having only one source or 332 sources, the results suggest
that models with a low maximum tree depth are preferable for
the explicit formulation. Our previous studies [44] showed that
highermaximum tree depth resulted in the best performance for the
implicit correction approach. These two findings are not mutually
exclusive or contradictory. Instead, we believe that the explicit
correction approach is better suited for boosting models, where
iteratively weak learners are added to minimize the residuals of
the existing models. Minding the label distribution in the explicit
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TABLE 4 Obtained timing resolutions after usage of explicit correction models trained on data with different in-plane source distributions.

CTR [ps]

d 01 × 01 03 × 03 05 × 05 09 × 09 17 × 17 33 × 33 no ML

4 314± 4 337± 4 309± 3 308± 3 295± 3 287± 4 446± 5

8 323± 4 345± 4 323± 4 307± 4 301± 3 289± 5

12 311± 5 360± 3 319± 4 308± 3 300± 3 295± 3

16 330± 3 368± 4 313± 4 308± 4 300± 4 295± 3

20 349± 5 383± 4 320± 2 303± 3 299± 3 294± 4

The values are based on coincidences being in an energy window from 300 keV to 700 keV. The column ‘no ML’ refers to performing only an analytical time skew calibration (first part of the
residual physics calibration scheme), without subsequent use of machine learning.

FIGURE 15
Obtained timing resolutions for explicit correction models trained on
data with different in-plane source distributions. The values are based
on coincidences being in an energy window from 430 keV to 590 keV.
The correction model ‘no ML’ refers to performing only an analytical
time skew calibration (first part of the residual physics calibration
scheme), without subsequent use of machine learning.

correction case, from a statistical standpoint a good first correction
estimation would be 0 ps. For the implicit correction approach, a
first estimation being 0 ps would be unsuitable for many samples,
thus themodel has to bemore complex. Since the explicit correction
approach yields promising results even with small maximum tree
depth, it becomes possible to reduced the model size by a factor of
218−4 (see Equation 14 and minding the best model of [44]). This
massive reduction inmemorymakes the approach interesting for an
on-chip application [53] and edge-AI application were a high data
throughput is required.

6 Summary and outlook

In this work, we presented a novel way of defining timing
residuals using a residual physics-based timing calibration approach,
allowing explicit access to TOF corrections. We demonstrated that
the explicit correction approach offers many benefits compared to
the implicit correction models: independence from the used spatial
sampling along the axis in transaxial direction, high linearity across
the full test data range, and only minor degradation regarding

the achievable CTR. Since the novel formulation does not rely on
measuring source positions between facing detectors, we removed
the demand for a dedicated motorized setup, making the method
more practical for an in-system application. Compared to our proof-
of-concept study, where the best implicit correction model had a
maximum tree depth of 18 [44], the novel explicit approach offers
a significant reduction in the memory requirements of a model by
a factor of approximately 218−4 (see Equation 14) which makes it
suitable for high throughput applications like a PET scanner.

For the future, and with the perspective of an in-system
application, we want to test how stable the correction models
perform when applied to different detector stacks of the same
design and material. Through the design of our features, we expect
some degree of robustness. However, we are also investigating
foundational modeling approaches [60, 61] that will hopefully
allow us to train generalistic models suitable for many detector
stacks of the same kind. Additionally, we plan to investigate
how various in-plane source distributions affect the training of
correction models, with the goal of designing a suitable calibration
phantom. Furthermore, we want to explore in future studies how
the explicit correction models perform concerning the reported
feature importance when applied repeatedly to data corrected with
the predicted corrections.
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Appendix

Consideration of the linearity of
explicit correction models

Although, we will not provide a formal proof why the explicit
correction models show a strong linearity robustness, in this section
we analyze the behavior more theoretically. We will follow the
notation used in the previous sections. Let {ta,i} and {tb,i} be the set
of measured timestamps of detector a and b. By using the explicit
correction approach, our model generates predictions {pi} serving
as correction values for the measured timestamps such that the
corrected timestamps {tcorra,i }, {t

corr
b,i } are given as

tcorra,i = ta,i − pi,

tcorrb,i = tb,i + pi,
(A1)

and the corrected time difference Δtcorri is given as

Δtcorri = t
corr
a,i − t

corr
b,i . (A2)

The linearity analysis relies on a linear regression using

Δt𝔼 ≈ μ (z;ε,b) = −
2
c
⋅ ε ⋅ z+ b, (A3)

with the variables on the right side of the equation sign being
defined in Equation 11. For our consideration we want to take a
closer look on left side of the equation sign, since it is the part
affected by the explicit correctionmodel. Formally the expected time
difference is given as

Δt𝔼 = 𝔼[{Δti}] , (A4)

which translates in the case of explicitly corrected timestamps to

Δt𝔼 = 𝔼[{Δt
corr
i }] (A5)

= 𝔼[{tcorra,i − t
corr
b,i }] (A6)

= 𝔼[{(ta,i − pi) − (tb,i + pi)}] (A7)

= 𝔼[{(ta,i − tb,i) − 2pi}] (A8)

= 𝔼[{Δti − 2pi}] . (A9)

If we assume that the explicit correction model was
successfully trained, we can approximate the predictions by the
labels (see Equation 6),

pi ≈ li ≔
Δtm,i −Δt𝔼 (z)

2
. (A10)

Inserting Equation A10 into Equation A9, yields

Δt𝔼 = 𝔼[{Δti − 2 ⋅ (
Δti −𝔼[{Δti}]

2
)}] (A11)

= 𝔼[{𝔼[{Δti}]}] (A12)

= 𝔼[{Δti}] , (A13)

which is the expected time difference for the non-corrected
timestamps. Although, we assumed that the predictions can be
approximated by the labels, the presented considerations provide
some basic understanding of the robustness of the explicit correction
models. Furthermore, the requirements and assumptions can
probably a bit softened since we approximate the expectation value
by a Gaussian fit.

TABLE A1 CTR values of different training step widths and an energy window of 300 keV to 700 keV.

CTR [ps]

d 10 mm 50 mm 100 mm no ML

implicit explicit implicit explicit implicit explicit

4 qcf 289± 3 qcf 297± 4 qcf 302± 3 446± 5

8 qcf 291± 4 ∗277± 3 300± 4 qcf 305± 4

12 284± 4 298± 5 qcf 306± 3 qcf 311± 4

16 288± 4 292± 4 qcf 305± 2 qcf 310± 3

20 qcf 296± 4 qcf 300± 2 qcf 299± 6

Models that have not passed the prior quality checks are marked with qcf (quality check failed). The maximal tree depth is denoted with d. ∗This model lies within a transition region and
should therefore be interpreted with caution.
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TABLE A2 CTR values of different training step width and no energy filter.

CTR [ps]

d 10 mm 50 mm 100 mm no ML

implicit explicit implicit explicit implicit explicit

4 qcf 317± 3 qcf 327± 3 qcf 332± 3 674± 5

8 qcf 320± 3 ∗312± 2 330± 3 qcf 335± 4

12 314± 3 327± 3 qcf 336± 2 qcf 347± 3

16 317± 3 321± 3 qcf 338± 3 qcf 346± 3

20 qcf 326± 3 qcf 331± 2 qcf 334± 4

Models that have not passed the prior quality checks are marked with qcf (quality check failed). The maximal tree depth is denoted with d. ∗This model lies within a transition region and
should therefore be interpreted with caution.

TABLE A3 Obtained timing resolutions after usage of explicit correction models trained on data with different in-plane source distributions.

CTR [ps]

d 01 × 01 03 × 03 05 × 05 09 × 09 17 × 17 33 × 33 no ML

4 349± 3 392± 4 338± 3 337± 2 324± 3 316± 3 674± 5

8 361± 2 403± 4 358± 3 336± 4 331± 3 318± 4

12 344± 3 446± 4 358± 3 340± 3 328± 4 323± 3

16 392± 3 473± 4 350± 3 342± 3 334± 3 325± 3

20 444± 4 521± 4 369± 3 336± 3 332± 3 324± 3

No restrictions on the energy are applied. The column ‘no ML’ refers to performing only an analytical time skew calibration (first part of the residual physics calibration scheme), without
subsequent use of machine learning.

TABLE A4 Settings used during measurement.

Parameter Value

measurement mode hardware coincidence trigger

coincidence window (hardware) 3

coincidence window (software) [ns] 50

breakdown voltage [V] 32

overvoltage [V] 7

vth_t1, vth_t2, vth_e 20, 20, 15
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