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Geometric structure of
parameter space in immiscible
two-phase flow in porous media

Håkon Pedersen* and Alex Hansen

PoreLab, Department of Physics, Norwegian University of Science and Technology, Trondheim,
Norway

In a recent paper, a continuum theory of immiscible and incompressible two-
phase flow in porous media based on generalized thermodynamic principles
was formulated (Transport in Porous Media, 125, 565 (2018)). In this theory, two
immiscible and incompressible fluids flowing in a porous medium are treated
as a single effective fluid, substituting the two interacting subsystems for a
single system with an effective viscosity and pressure gradient. In assuming
Euler homogeneity of the total volumetric flow rate and comparing the resulting
first-order partial differential equation to the total volumetric flow rate in the
porous medium, one can introduce a novel velocity that relates the two pairs
of velocities. This velocity, the co-moving velocity, describes the mutual co-
carrying of fluids due to immiscibility effects and interactions between the
fluid clusters and the porous medium itself. The theory is based upon general
principles of classical thermodynamics and allows for many relations and
analogies to draw upon in analyzing two-phase flow systems in this framework.
The goal of this work is to provide additional connections between geometric
concepts and the variables appearing in the thermodynamics-like theory of
two-phase flow. In this endeavor, we will encounter two interpretations of the
velocities of the fluids: as tangent vectors (derivations) acting on functions or as
coordinates on an affine line. The two views are closely related, with the former
viewpoint being more useful in relation to the underlying geometrical structure
of equilibrium thermodynamics and the latter being more useful in concrete
computations and finding examples of constitutive relations. We apply these
relatively straightforward geometric contexts to interpret the relations between
velocities and, from this, obtain a general form for the co-moving velocity.

KEYWORDS

flow in porous media, co-moving velocity, affine space, differential geometry, contact
geometry

1 Introduction

The formulation of an effective continuum-level theory of immiscible and
incompressible two-phase flow in porous media based on rigorous physical principles is a
problem of great importance spanning several disciplines within physics and mathematics
[1–4]. The behavior of such flows underpins a range of complex phenomena seen in nature,
industrial applications, and general theoretical models where one can map a problem onto
a description where two interacting populations, here fluids, are exploring a constrained
and complex network.

Flow in porousmedia has a long history.The earliest study of porousmediawe knowof is
that of Reinhard Woltmann, who introduced the concept of volume fractions in connection
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with the movement of water sediments in 1794 [5]. Sixty years
later, Henri Darcy found a linear relation between single-phase flow
rate and pressure drop in sand packings [6]. His result may be
expressed as a local constitutive equation relating flow velocity and
pressure gradient,

v⃗ = − K
μϕ
∇P, (1)

where v⃗ is the seepage (or pore) velocity of the fluid, P the pressure,
K the permeability, ϕ the porosity, and μ the fluid viscosity. Two-
phase flow in the form of water and air in soils entered the literature
with the works of Buckingham in 1907 [7], where he introduced
capillarity as a central concept. He also made the first attempts
at formulating a generalization of the Darcy law for unsaturated
flow. Richards wrote equations for the unsaturated movement of
water in soil in 1931 [8], which are still in use in this context
today. In 1936, Wyckoff and Botset [9] made the first steps toward
relative permeability theory, followed by Muscat and Meres [10],
who introduced the concept of relative permeability, generalizing
the “capillary conductance” concept that Buckingham introduced
[7]. Leverett introduced the capillary pressure curve [11] into the
framework of Muscat and Meres in 1941, completing the theory as
it is used in practical calculations today.

We summarize the relative permeability theory in the following.
We have two immiscible and incompressible fluids, one more
wetting with respect to the porous matrix than the other. We refer
to them as the wetting (w) and non-wetting (n) fluids. From the
perspective of one of the fluids, the pore space it sees is the total
pore space of the porous medium minus the pore space occupied by
the other fluid, and vice versa.The relative reduction of pore space for
each fluid implies a reduction in effective permeability for each fluid,
leading to the two constitutive equations, which are generalizations
of the Darcy Equation 1; [4].

v⃗w = −
Kkrw
μwϕSw
∇Pw, (2)

v⃗n = −
Kkrn
μnϕSn
∇Pn, (3)

where v⃗w and v⃗n are the seepage velocities of the wetting and non-
wetting fluids, respectively, μw and μn are the viscosities of each fluid,
respectively, Pw and Pn are the pressure in each fluid, respectively,Sw
and Sn are the wetting and non-wetting saturations, and krw and krn
are the relative permeabilities of the two fluids, respectively.

The saturations Sw and Sn are defined as the fraction of pore
space occupied by each fluid so that

Sw + Sn = 1. (4)

If the relative permeabilities depend on the saturation Sw and
the pressures Pw and Pn, that is, krw(Sw,Pw,Pn) and krn(Sw,Pw,Pn),
the constitutive Equations 2, 3 will be generic in the sense that any
constitutive pair of constitutive equations may be written in this
form. They do, however, gain physical content if the assumption is
made that they depend only on the saturations, that is, krw(Sw) and
krn(Sw). This is the assumption made in all practical calculations.

The difference in pressure between the two fluids is defined as
the capillary pressure curve Pc,

Pn − Pw = Pc (Sw) . (5)

It is also assumed in practical calculations that the capillary
pressure curve depends on the saturation Sw only. The capillary
pressure curve is a particularly difficult quantity, both conceptually
and in terms of measurement [12].

We define the average pore velocity v⃗ as

v⃗ = Swv⃗w + Snv⃗n, (6)

That is, we are using a volume average because we are assuming the
fluids to be incompressible, allowing us to avoid the fluid densities
entering the equations,

∇ ⋅ [ϕv⃗p] = 0. (7)

Volume conservation gives

ϕ
∂Sw
∂t
+∇ ⋅ [ϕSwv⃗w] = 0, (8)

ϕ
∂Sn
∂t
+∇ ⋅ [ϕSnv⃗n] = 0, (9)

where t is time. The set of Equations 2–9 is closed as long as krw(Sw),
krn(Sw), and Pc(Sw) are provided.

Going beyond these phenomenological theories has turned out
to be difficult. The dominating approach is that of homogenization,
either based on pore-levelmomentum transfer [13–17] or pore-level
energy transfer [18–21]. The pore-scale equations, either based on
hydrodynamics (momentum transfer) or thermodynamics (energy
transfer), must then be averaged; see Whitaker [22, 23]. This
averaging is based on equating the average of the gradient of a
variable associated with pore space to the gradient of the average
variable plus an integral over the surface area of the pores. Because
the surface area of porous media typically scales as the volume,
this integral does not vanish as one moves up in scale. The variable
appearing in the surface integral is then split into an average and a
fluctuating part, resulting in the average and gradients of the average
being expressed in terms of the fluctuations of the original variable.
A closure assumption is then necessary that relates the fluctuations
to the average independently.

Another important homogenization approach based on
thermodynamics is thermodynamically constrained averaging
theory (TCAT) [24–27].

McClure et al. [28, 29] emphasize that homogenization should
also include averaging over time and point out that different
processes are associated with different time scales: the larger the
scales, the longer the averaging time will be.

In another approach, McClure et al. [30] derive the relative
permeability equations from an energy budget based on
thermodynamic considerations and homogenization. The relative
permeability equations do appear as a first term in a series
expansion. However, it is not shown in [30] that the higher-order
terms are negligible.

The topology of a porous medium seen as a geometrical object
may be described using the four Minkowski functionals: volume,
surface area, mean curvature, and the Euler characteristics. The
Hadwiger theorem states that the Minkowski functionals form a
complete basis set for all extensive functions that are invariant
with respect to the orientation of the object [31]. The use of this
theorem to characterize the free energy of fluids in a porousmedium
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combined with homogenization constitutes another approach to the
scale-up problem [32–35].

An approach circumventing the complexities associated
with homogenization is based on classical non-equilibrium
thermodynamics [36–40]. By using the extensiveness of the internal
energy of the fluids, the Euler theorem for homogeneous functions
allows for defining thermodynamic variables such as pressure and
chemical potentials on the Darcy scale. Gradients in the intensive
variables are introduced, and the machinery of classical non-
equilibrium thermodynamics [36, 37] is then used. The underlying
homogenization is somewhat hidden in this approach, but it
underlies the way a representative elementary volume (REV) is
defined and used.

Homogenization leads to complex equations with many
variables. The root of this difficulty is that homogenization can only
produce averages over the original variables. There is no inherent
mechanism built into it that can produce emergent variables that
capture emergent properties [41].

A very different approach to the scale-up problem, that is,
deriving a Darcy (or continuum) scale description of immiscible
two-phase flow in porous media from the physics at the pore level,
is based on statistical mechanics [42, 43]. Statistical mechanics
was originally developed for the bridge between a molecular
description of thermal systems and thermodynamics, which is
a continuum-scale theory. Continuum-scale variables such as
temperature and pressure emerge naturally in this framework.
Jaynes generalized statistical mechanics from being specifically
constructed for molecular systems to any system fulfilling a set of
conditions [44]. In the context of immiscible and incompressible
two-phase flow in porous media, the Jaynes generalized statistical
mechanics could be implemented when the flow was assumed to be
in a steady state [45–48]. By this, we mean that the two immiscible
fluids are mixed in such a way that no continuum-scale saturation
gradients exist. It does not mean that the interfaces between the
fluids remain fixed. Rather, Avraam and Payatakes [45] classified
steady-state flow into different flow regimes: connected pathway
flow, ganglion dynamics flow, and drop traffic flow. Only in the
first one, characterized by slow flow, are the interfaces stuck. In the
ganglion dynamics regime, the fluids form clusters larger than the
pores, which break up and merge. The fast-flow drop traffic regime
is characterized by one of the fluids having broken up into small
droplets that move in traffic-like patterns.

A necessary condition for implementing the Jaynes approach
is to demonstrate that entropy is not generated by the system.
Under any kind of flow conditions, steady state or not, molecular
entropy is generated through viscous dissipation and movement
of contact lines at the pore level. However, consider a cylindrical
porous medium sample. We consider an area orthogonal to the
average flow direction along the cylinder axis. The pores are filled
with wetting fluid or non-wetting fluid. The distribution of the
pores, the fluids within the pores, and the accompanying velocity
field may be characterized by a configurational entropy in the sense
of Shannon [49]. This configurational entropy is not produced
when the flow is under steady-state conditions. Using the area
covered by the pore Ap, the area cutting through the wetting fluid
Aw, and the area cutting through the non-wetting fluid An, so
that Aw +An = Ap, the wetting and non-wetting volumetric flow
rates through the area, Qw and Qn, so that Qw +Qn = Qp, which

is the total volumetric flow rate as variables extensive in the area
Ã, we may build a statistical mechanics upon them using the
maximum (configurational) entropy assumption. In the process,
emergent intensive variables appear. More than that, a complete
thermodynamics-like description appears at the continuum level. By
this, wemean relations between the intensive and extensive variables
that closely resemble those of thermodynamics. We will refer to this
thermodynamics-like framework as a pseudo-thermodynamics.

In 2018,Hansen et al. [50] used extensivity to derive a number of
pseudo-thermodynamics relations between the seepage velocities of
the fluids, vw and vn, and the saturation Sw.This work should be seen
as a precursor to [42, 43]. It is this work that the present article will
focus on. Central to it was to provide a two-way mapping between
the two seepage velocities vw and vn and the average seepage velocity
v. Assuming the flow is along the cylinder axis and Equation 6
may be written

v = Swvw + Snvn. (10)

This provides the mapping (vw,vn) → v. The generalized Darcy
Equations 2, 3 provide constitutive equations for vw and vn, and
Equation 6, or Equation 10, then provides a constitutive equation
for the average velocity v. It is, however, not possible uniquely to
construct the inverse mapping v→ (vw,vn).

A central accomplishment in [50] was to deduce the existence
of a new velocity, the co-moving velocity vm, to pair with the
average velocity v, thus making the inverse mapping (v,vm) →
(vw,vn) possible.

vw = v+ Sn[
∂v
∂Sw
− vm], (11)

vn = v− Sw[
∂v
∂Sw
− vm]. (12)

The mapping (vw,vn) → v, on the other hand, is complemented
by the mapping (vw,vn) → vm,

vm = Sw
∂vw
∂Sw
+ Sn

∂vn
∂Sw
. (13)

Equations 10–13 form the two-way mapping (vw,vn) ↔ (v,vm).
Why would one want to construct the inverse mapping,
(v,vm) → (vw,vn)? It was observed experimentally in 2009 [46, 51]
that the average seepage velocity v follows a power law in the
pressure gradient with an exponent considerably larger than one (as
would be the case for Darcy flow) over a wide range of capillary
numbers.This observation has been followed up inmultiple articles;
see, for example, [52–60]. Experimentally, one finds this power-law
behavior around a capillary number of the order of 10−5 and up. The
power law appears when an increase in pressure gradient results in
the mobilization of interfaces that would otherwise be held in place
by the capillary forces. If we assume that the increase in mobilized
interfaces is proportional to the increase in pressure gradient and
the increase in effective permeability is proportional to the increase
in mobilized interfaces, we end up with an exponent equal to two.
The flow rate-pressure gradient reverts to being linear again when all
interfaces thatmaymove aremoving [55]. Having themapping from
(v,vm) to (vw,vn), Equations 11, 12, make it possible to reconstruct
the seepage velocity constitutive equations for each fluid from the
constitutive equation between v and the pressure gradient.
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An important remark here is that both ordinary
thermodynamics and the pseudo-thermodynamics formalism for
porous media flow provide a general set of relations between the
variables involved, for example, Equations 10–13. These relations
then must be supplemented by constitutive equations in order to
describe a particular flow problem.This is what relative permeability
theory provides, and this has also been the aim of homogenization
efforts. The aim of the statistical mechanics approach to porous
media flow and its ensuing pseudo-thermodynamics so far has
not been to provide the constitutive equations but rather to build
a framework in which they may be placed. Thus, the generalized
Darcy Equations 2, 3 could be a possible choice.

To verify whether a thermodynamic framework can support
the inclusion of these constitutive relations, one must consider the
mathematical backbone of thermodynamics to check whether such
as this can be justified and whether it is possible to reproduce or
obtain new results using this framework. This backbone is, in fact,
based on geometry, framed in terms of abstractmanifolds, structures
on these spaces, and potential symmetries of the relations of the
theory. Hence, these are natural objects to consider.

The perhaps most important observation of the pseudo-
thermodynamic two-phase flow problem is that homogeneity plays
a central role, which amounts to imposing a scaling behavior on
the variables. Hence, if one is concerned with the velocities of the
fluids in the porous medium, scaling can be viewed as a symmetry
of the system. Moreover, affine forms of the involved functions
often appear in the two-phase flow problem, for instance, if the
total volumetric flow rate has an irreducible flow rate that does
not scale homogeneously [50, 61]. Scaling symmetry, in particular,
is a strong motivator for seeking a geometric description of the
problem. Ideally, such a description should be framed in a form
appropriate for generalization to more thermodynamic variables
[62] while possibly admitting a formulation that makes it possible
to obtain novel constitutive relations for the co-moving velocity
with respect to the allowed transformations of the variables of the
problem. Lastly, unlike earlier work on the geometric formulation
of the problem [63], we here seek a structure where there is
a mathematical distinction between the extensive and intensive
variables.

To investigate these possibilities in this article, we will reframe
the theory of [50] using the basic concepts from two related
geometric viewpoints.The first one is the basic differential geometry
and (tangent) bundle structure of the configuration space of
extensive variables, where the velocities correspond to tangent
vector fields. The second one is a classical geometric view of the
velocities as points in an affine space. Due to the simplicity of the
configuration spaces considered in this article, the latter can be
viewed as a “global” formulation of the former “local” description.
In essence, the local description in terms of tangent vectors can be
extended to the global description by treating the integral curves
of the tangent vectors, which define lines in terms of a set of
coordinates that are “dual” or “conjugate” to the extensive variables.
This description will not be laid out in detail in this article (see
Section 3.3 for a basic introduction) and is mostly left for future
work. We will only need basic concepts from both the classical and

differential viewpoints; the difficulty here is not mathematical but
rather lies in the physical interpretation of the results1.

The unifying principle in the two approaches is the assumption
of degree-1 homogeneity in the total volumetric flow rate.Moreover,
it is assumed that one can switch between a global and a differential
formulation without complications, meaning, in essence, that the
underlying space of extensive variables is trivial. In this article,
this means that this space is isomorphic to ℝn, as considered in
earlier works [63]. Hence, the thermodynamic velocities obtained
from the Euler homogeneous function theorem and from the exact
differential corresponding to the volumetric flow rate are equal.
This is the essential content of assuming that Q is extensive in the
pore areas.

In the thermodynamic description, the thermodynamic
velocities are equations of state (EOSs). The seepage velocities are
related to driving forces in the system through constitutive relations.
By viewing these driving forces as externally fixed parameters and
letting the velocities be functions of the saturation only, the problem
is equivalent to a kinematics problem with the saturation as the
parameter determining the dynamics2. In other words, saturation
plays the role of a “time” parameter, and homogeneity is necessary to
introduce this quantity. Hence, a geometric formulation of the flow
problem in terms of a single variable occurs naturally if extensivity
is taken as a basic tenet of the theory. This is especially convenient
if saturation is the control variable, and it will be shown that this
assumption simplifies both the local and global formulation of the
problem as much as possible.

The local (differential) description, in particular, can be further
distinguished by the view of the total volumetric flow rate either
as defining an equation-of-state surface Q = Q(Aw,An) in a space
of extensive variables (Q,Aw,An) or as a function on the space
of extensive variables (Aw,An). The difference between the two
viewpoints is that they are extrinsic or intrinsic views of the
configuration space and give the theory slightly different flavors.
However, picking one or the other does not radically alter the
interpretations of the involved quantities; the extrinsic view is
obtained by extending the area-configuration space by an extra
dimension. This dimension can be described via an additional
extensive variable, and the image of Q(Aw,An) is viewed as
embedded in this extended configuration space as a 2D EOS
surface. This surface can itself be the subject of study in a
differential description [64]. This view will only be considered
briefly in Section 5.1.

The “classical” geometric viewpoint in this work interprets the
values of the functions corresponding to the velocities vw, vn, v and
vm as points in an affine space.The geometric relations aremotivated
by the particular form of the equations presented in Section 2.

1 Essentially, all geometric concepts used in this work are common tools

in mathematical physics. It is the application to the physical problem at

hand that has not been covered in detail before.

2 If the externally set parameters that determine the flow are viewed

as thermodynamic variables themselves [62], one obtains the same

interpretation, and the question of which variables are fixed then depends

on the choice of control variables. The conjugate variables to the

extensive ones are generalized thermodynamic forces, which have an

analogy in analytical mechanics.
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We will see how both views, which use many of the same types
of spaces but with different objects defined on them, can aid in
our understanding of what the co-moving velocity, Equation 13,
represents and how to potentially work with it. Moreover, we will
see how this theory relates to a constitutive relation for the co-
moving velocity

vm = bv′ + av0, (14)

which has been found to be accurate to within the experimental and
numerical precision available [61, 65, 66], and v0 is a velocity scale.

The tangent–vector formulation can be seen in relation to
previous works [67]. The difference here is that the tangent vectors
are considered derivative operators, where the action of the tangent
vector fields on functions defined on the space yields the velocities.

The structure of the article is as follows: in Section 2, we
present the preliminaries of the pseudo-thermodynamic theory
of two-phase flow [50], including the co-moving velocity itself
and clarification on homogeneity and the separation of the total
system into interacting subsystems. In Section 3, we introduce the
machinery of manifolds, tangent and affine spaces, and bundles
constructed from these spaces. These bundles are the natural
habitats of the vector fields presented in this work, which will
be represented in terms of partial derivatives with respect to the
chosen coordinates. We will also present the preliminaries of using
affine geometry in the classical geometric viewpoint, including affine
spaces, affine transformations and how the velocities can be viewed
and manipulated as abstract points. In Section 4, we show how
the co-moving velocity appears in the two geometric viewpoints
presented above and how it relates to the interpretation of the
equations in Section 2. This is the main part of this work, with the
goal of clearing up what the relations in Section 2 are seemingly
stating in geometric terms and show how the co-moving velocity
obtained in this way relates to already known relations.

Before summing up our results in Section 6, we will in Section 5
comment briefly on the usage areas of the results of Section 4.
Moreover, we comment on two related topics to the concepts
introduced in this work: how the results are related to contact
geometry and the notion of a connection on a bundle. A high-level
overview of Sections 2–5 is given in Figure 1.

2 Immiscible two-phase flow in
porous media formulated as a
thermodynamic problem

Consider a porous medium sample as shown in Figure 2. We
assume the immiscible fluids enter through the bottom and leave
through the top. The side walls are impenetrable. Within the porous
medium, the fluids mix by forming clusters. The clusters merge and
split, creating a steady state. We choose a plane orthogonal to the
average flow direction far enough from the bottom so that it is in the
region where the flow is in a steady state. In this plane, we choose a
representative elementary area (REA), which is large enough for the
macroscopic variables to have well-defined averages but not larger.
The REA has an area Ã. We use the tilde to signify that the area
Ã is the area of a single plane. Associated with the REA, there is a
time-averaged volumetric flow rate Q of fluid passing through Ã at
each instant.

FIGURE 1
A visual overview of the topics of each section of the article. Section II
introduces the particular two-phase flow problem. Section III
interprets the quantities and relations of Section II in terms of the two
indicated geometric frameworks, with the goal of providing a better
foothold for the generalization of the theory and connections with
other systems subject to similar assumptions. In Section IV, the
formalism introduced in Section III is used to obtain expressions for
the co-moving velocity (white boxes), interpretable as a Euclidean
vector and differential operator in the affine and differential
descriptions, respectively. In Section V, the quantities of the theory are
put into the context of contact geometry and connections, two topics
that both represent ways of adding additional structure. This could
provide a means for extending the formalism to describe phenomena
like phase transitions in a geometric context.
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FIGURE 2
The porous medium sample with an REA indicated. The pore area Ap

can be divided into a wetting area Aw and a non-wetting area An so
that their sum is Ap.

The average value of Ã over the entire domain, defined as
the integral of Ã = Ã(z), where z is the coordinate along the flow
direction, is denoted by A. We will define all areas in this way, as
their averaged values over the domain in the overall direction of Q
where the flow is in a steady state. We will in the following refer to
the averaged area A as the area of the REA. In the following, we will
introduce several other kinds of areas. These will, in the same way,
be averages over sets of REAs.

We define the porosity ϕ of the porous medium as Equation 15:

ϕ ≡
Ap

A
, (15)

whereAp is the area ofA that cuts through the pores.The solidmatrix
area As is given by As = A (1−ϕ). We assume the porous medium
to be homogeneous. The pore area Ap is an extensive variable; it
scales with a factor λ when we let A↦ λA, where λ is a real number.
The porosity ϕ does not change under this scaling; that is, it is an
intensive variable.

The pore area of the REA, Ap, is split into an area Aw of (more)
wetting fluid and an area An of (less) non-wetting fluid. The fluids
are taken to be incompressible. We have that

Aw +An = Ap. (16)

We then define the wetting and non-wetting saturations as
Equation 17 and 18.

Sw =
Aw

Ap
=
Aw

ϕA
, (17)

Sn =
An

Ap
=

An

ϕA
, (18)

obeying Equation 4.
Because we consider the mutual flow of two fluids, Q can be

decomposed as a sum of the volumetric flow rates of the individual
fluids, denoted Qw and Qn. We then have

Q(Aw,An) = Qw (Aw,An) +Qn (Aw,An) , (19)

so Q may be seen as a composite thermodynamic-like system
consisting of two subsystems. We define the seepage velocities as

v = Q
Ap
, (20)

vw =
Qw

Aw
, (21)

vn =
Qn

An
. (22)

These velocities of the individual fluids passing through
the REA are the ones measured in experiments. We note that
Equations 20–22 are not theDarcy (or superficial) velocities because
one is not dividing by the total area A, but rather Ap, Aw, and An,
which contain an additional factor of ϕ, Swϕ and Snϕ, respectively.
The weighted mean velocities in Equations 20–22 are often called
interstitial velocities, advection velocities, or simply flow velocities
and are equivalent to the (average) volumetric flux densities3 divided
by the saturation. They are the mean velocities of the fluid elements
passing through the REA4.

The total volumetric flow rate Q is extensive in the variables Aw
and An, meaning that

Q(λAw,λAn) = λQ(Aw,An) . (23)

We are here assumingAw andAn to be the control variables.Thepore
area Ap is then a dependent variable. This is, of course, not possible
to arrange in the laboratory. However, theoretically, it is possible.

By defining Qw, Qn in Equation 19 as functions of Aw, An and
not as Qw(Aw) and Qn (An), we imply that Q is not a sum of simple,
non-interacting subsystems [68]; the “subsystem” flow rates Qw, Qn
include interactions between the two phases of fluids. Taking a cue
from thermodynamics, one could write Q as the sum of two non-
interacting volumetric flow rates Qw,0, Qn,0 and an interaction term
Qint

Q(Aw,An) = Qw,0 (Aw) +Qn,0 (An) +Qint (Aw,An) . (24)

Equation 24 requires physical input to determine the scaling
properties of each term and is simply a formal separation of the
system into two subsystems, one for each fluid [69]. Equation 23 still
holds for the function Q(Aw,An) by definition.

In general, a separation such as the one in Equation 24 is not
possible to write down explicitly in all cases because the flow can
be very complex. The only information we have is that the total
volumetric flow rate Q(Aw,An) scales as Equation 23. This identity
does not exclude non-trivial scaling behavior or quasi-homogeneity
[70] in each subsystem. Note that Equation 19 is formally not a
separation into thermodynamic subsystems because the interaction
between the systems is not explicitly accounted for, and both terms
depend on both areas. Both Equations 19, 24 have the correct scaling
behavior, but the difference lies in how the interaction is handled.

3 Or Darcy velocities, even though they are, strictly speaking, not velocities

but (areic) flux densities. These have the same units as velocity.

4 If the Darcy velocities were used instead, the presence of the porous

medium and the fact that there are two fluids present in the pore space

would not be respected, which is what we are inherently interested in.
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FIGURE 3
Scaling the area A by a factor λ scales the volumetric flow rate Q in the same manner, demonstrating that Q is a Euler homogeneous function
of degree-1.

One could, in theory, use Equation 24 for what follows; however, one
only knows the relations in Equations 21, 22. We do not have such
information about Qw,0,Qn,0, which would allow us to determine
Qint. Hence, Equation 19 is used for what follows.

Using Equations 19–22, we find Equation 10. Equation 19 can
then be rewritten as Equation 25:

Q = Awvw +Anvn. (25)

We now use the assumption that Q is degree-1 Euler
homogeneous in the areas [50], see Figure 3. Taking the derivative
with respect to λ on both sides of Equation 23 and setting λ =
1, we get

Q(Aw,An) = Aw(
∂Q
∂Aw
)
An

+An(
∂Q
∂An
)
Aw

. (26)

By dividing Equation 26 by Ap, we get

v = Sw(
∂Q
∂Aw
)
An

+ Sn(
∂Q
∂An
)
Aw

. (27)

Thepartial derivatives acting onQhave units of velocity, sowe define
the thermodynamic velocities as Equations 28, 29:

v̂w = (
∂Q
∂Aw
)
An

, (28)

and

v̂n = (
∂Q
∂An
)
Aw

. (29)

We may then write Equation 27 as

v = Swv̂w + Snv̂n. (30)

We will utilize the notation v̂i for the (set) (v̂w, v̂n), and the same
(un-hatted) notation for the set of seepage velocities, vi ≡ (vw,vn).

The thermodynamic velocities v̂i are not the same as the physical
velocities vw and vn. Rather, the most general relation between {v̂i}
and {vi} that fulfills both Equations 10, 30,

v = Swv̂w + Snv̂n = Swvw + Snvn, (31)

is given by [50].

v̂w = vw + Snvm, (32)

v̂n = vn − Swvm, (33)

which defines the co-moving velocity, denoted vm. Hence, the co-
moving velocity, which first appeared in Equation 13, is a quantity
with units of velocity that relates the thermodynamic and seepage
velocities.

It was shown in [50] that

vm + vw − vn = v̂w − v̂n = v′, (34)

where v′ = dv/dSw, which will be used throughout this work.
One can show [50] that v̂i satisfies an analog of the

Gibbs–Duhem relation, Equation 35,

Sw(
dv̂w
dSw
)+ Sn(

dv̂n
dSw
) = 0. (35)

The interpretation is, like in classical thermodynamics, that the
intensive thermodynamic velocities are fully dependent. In the same
work, it was shown that vm can also be expressed as Equation 13.
Equations 10, 13 constitute the transformation (vw,vn) → (v,vm).
From the above relations, one can show that

v̂w = v+ Sn
dv
dSw
, (36)

v̂n = v− Sw
dv
dSw
. (37)

Combining Equation 36 and 37 with Equations 32, 33 leads
to Equations 11, 12, constituting the transformation (vp,vm) →
(vw,vn).

As already discussed, the constitutive equation for
vm (Equation 14) is to within the precision of the measurements
an affine function of v′ = dv/dSw.

3 Spaces and manifolds

We will, in this section, describe the theory
presented in Section 2 using manifolds and bundle structures.
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FIGURE 4
The chart ϕ is a (smooth) map from a neighborhood U of a point p on
the general manifold M to an open subset of ℝn. Here, M is
illustrated as a surface embedded in ℝ3; however, the definition of a
manifold is, strictly speaking, independent of embedding into larger,
ambient spaces. The way this is depicted in the figure is thus only for
the purpose of illustration.

In [67], a two-dimensional vector space of the extensive area
variables (Aw,An) was studied, and the terminology of manifolds
was left out. The idea here is similar, but we instead define the
space of extensive areas to be a two-dimensional manifold where
(Aw,An) is a possible set of coordinates labeling a point on the
manifold; see Figure 4. We label this manifold by M. Because we
have from Equation 16 that Ap is a dependent variable, we only
need two independent extensive variables as coordinates onM. We
choose them to beAw andAn, and the assignment of the coordinates
(Aw,An) ∈ ℝ2 to an abstract point p ∈M is formally done by a map
φ.5. The tangent space at each point of M, which is simply the
space of all tangent vectors that have this point as their initial point
or origin, has a vector space structure by definition; see Figure 5.
Intuitively, this is a vector space of the “linear approximations” of
paths in themanifold, one space for each point inM. In otherwords,
at each point ofM, the tangent space is a space of possible directions
inM.Wewill describe these directions in terms of partial derivative
operators, which is quite common due to its simple description in
terms of coordinates [71].

In Figures 4, 5, the manifold is illustrated with curvature and
embedded into ℝ3. However, the definition of a manifold does not

5 M itself does not initially have the structure of a vector space, but with

the identification of M with ℝ2 and the assignment of a point p0 ∈M as

an origin, one can view M as such. Such a point was picked in [63].

FIGURE 5
The tangent space TpM at a point p ∈M can be imagined as a plane
(strictly speaking, a vector space) attached to M at the point p. A
tangent vector v ∈ TpM can be imagined as a “small arrow” tangent to
the manifold. The tangent vector v can be expressed in some basis, for
instance, (e1,e2).

necessitate a larger space to embed the manifold in, and structure-
like curvature could be intrinsic to the manifold itself. Such an
additional structure could also be envisioned in our case. However,
in this work, we only consider a neighborhood U of a point p ∈M
isomorphic to a neighborhood of ℝ2.6, meaning we only work in
a patch ℝ2 (see Figure 4) and disregard any additional structure of
M.7.

Because our space of extensive variables is now simply ℝ2, it
might seem unnecessary to separate the manifold from its tangent
space. However, we cannot come to any of the conclusions in this
work if we do not formally keep them separate. The motivation here
for introducing a manifold and its tangent spaces is to be able to
formally discern extensive and intensive variables. This is necessary
to explain why our theory acts like a thermodynamic theory.
As mentioned earlier, the vector spaces in [67] did not separate
between the space of extensive variables and that of velocities; areas
and velocities were simply elements of the same vector space. In
a geometrical approach to physics, one often separates the two
by means of a bundle structure8, with a base manifold acting
as a configuration space and some space of objects attached to
each point of the configuration space. The geometry of classical
mechanics as a whole is based on this structure, and geometric
descriptions of thermodynamics use exactly the same framework.
For instance, what we call “extensive” and “intensive” variables
in thermodynamics are examples of canonical coordinates [72],
the coordinates on the “thermodynamic phase space” analogous
to the phase space of positions and momenta in Hamiltonian

6 Alternatively, one could view the manifold itself as isomorphic to ℝ2

globally, but this does not matter for our purposes.

7 We note that such additional structure is an interesting potential avenue

of exploration in itself.

8 Other mathematical gadgets exist for making such a designation, such as

the use of contact forms (see Section 5.1).

Frontiers in Physics 08 frontiersin.org

https://doi.org/10.3389/fphy.2025.1571054
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


Pedersen and Hansen 10.3389/fphy.2025.1571054

mechanics. Without a clear distinction between the two types of
variables, one would not be able to introduce geometric structures
that define thermodynamic equilibrium states, Legendre-manifolds
[72], or talk about metrics on the thermodynamic phase space,
which connects thermodynamics to statistical mechanics [73].Thus,
separating the extensive and intensive variables in the same way as
in geometrical physics is a natural step in a “geometrization” of the
theory in this work.

3.1 Tangent space, bundle, and frames

We introduce the tangent bundle structure to formally
distinguish extensive variables and velocities. A tangent bundle is
intuitively simply a base space (here, a configuration space) together
with the space of possible “directions” at each point of this space.
The meaning of “direction” can be made more precise in several
equivalent ways [74]. Here, we apply the perhaps most common one
by identifying directions with partial derivative operators, which
gives themost straightforward relations in the current context.These
operators act on functions defined on the base space, of which Q
is an example. The point is to make a separation into two types of
variables and encode the fact that all information about the system
should be captured in the function Q.9.

Consider at every point p ∈M the tangent space TpM at that
point; see Figure 5. The collection of all such tangent spaces of M
along with their points of attachments is a manifold called a tangent
bundle [74]10. We denote the total space of the tangent bundle of
M by TM. An element of the tangent bundle TM is a pair (p,u),
where p ∈M is the point of attachment of the tangent space on
M, together with a tangent vector u ∈ TpM. We can express p in
coordinates as, for example, p = (Aw,An), and u can be expressed via
the components (u1,u2) of the vector u expressed in some vector
space basis ofTpM.With the bundle structure follows the projection
π:TM→M. For each (p,u), π is simply the projection onto the base
point p; that is, we “forget” about the vector u.

Because M ≅ ℝ2, we have that for each p ∈M that TpM ≅
Tpℝ2 ≅ ℝ2, and that TM ≅ Tℝ2 ≅ ℝ2 ×ℝ2. This means that
dim (TM) = 4.

Consider now a general tangent vector fieldV onM, also called
a section of the bundle TM. V is a map V:M↦ TM, a choice of
a vector Vp ∈ TpM at every point p ∈M. We are here assuming
that this choice of vector at each point is smooth in the sense that
the vector components are smooth functions on the manifold. Let
vi be a basis of the tangent space TpM. We will use a bold font on
general basis vectors to separate them from their coordinates. We
can, as usual, expand any tangent vector Vp, p ∈M, in the basis
vi as Equation 38:

Vp = vi (p)vi, (38)

9 This is the viewpoint in thermodynamics, where knowledge of the

state function in terms of the natural variables completely determines

the system.

10 This is a fiber bundle with base space, where the fibers are given by the

tangent spaces at each point. To be precise, the tangent bundle is the

disjoint union of all the tangent spaces of M.

where vi are the coordinates of Vp with respect to vi, which are
functions of p. We use the Einstein summation convention here and
onward. Similarly, we can expand a vector field V using a set of
sections si as

V = f isi, (39)

where f i are functions on M.
We adopt the common convention that the basis of tangent

vectors at a point p ∈M are directional derivatives acting on smooth
functions on the base space at that point [71, 74]. A chart on
some open set U ⊂M containing the point p, given, for example,
by coordinate (functions) xi(p) ≡ (Aw,An), gives a natural basis for
the tangent space TpM: the partial derivatives with respect to the
coordinate functions xi viewed as “attached” at p.

Equation 40 introduces the notation

{ ∂
∂xi
|
p
}
n

i=1
≡ {∂xi|p}

n

i=1
, (40)

where n is the dimension of the manifold. In the case of p =
(Aw,An) ∈M, we then have that

{ ∂
∂Aw
, ∂
∂An
} ≡ {∂w,∂n} (41)

is a basis for the tangent space at each point p.The partial derivatives
act on smooth functions f:M→ℝ, which are simply functions that
take points on the manifold M as input. The total volumetric flow
rate Q = Q(Aw,An) is such a function.

We can now identify the thermodynamic velocities
(Equation 28, 29) as being the basis (∂w,∂n) acting on the function
Q; we have “decoupled” the vectors from the functions on which
they act. The partial derivatives with respect to Aw and An at
a point p, denoted by ∂w|p and ∂n|p, respectively, acting on the
volumetric flow rate Q define the thermodynamic velocities. We
have such a derivation at each point p ∈M, so we can view {∂w,∂n}
as coordinate vector fields on M. These correspond to the sections
si in Equation 39. In the same way, from now on, we identify any
velocity with some tangent vector acting onQ. For instance, the pore
velocity function v can be identified with a tangent vector field that
has components (Sw,Sn) in the basis {∂w,∂n}, that is Sw∂w + Sn∂n.
Upon acting on Q, we get the pore velocity function v.

In the same way, we view the seepage velocities vi as being
defined by derivations acting onQ. In other words, we say that there
exists a basis ei of the tangent spaces of M that yield the seepage
velocities upon acting on Q,

ei (Q) ≡ vi, (42)

where i = w,n. The basis ei is strictly speaking a frame, which means
that the frame elements ei could be linearly dependent.

In the following, we will use the notation v, v̂w, vn, etc., to signify
the velocity functions and use the notationV, ∂i and ei for the vector
fields associated with the velocity functions.

Note, in particular, that Equation 26 can be written as the action
of a tangent vector field on Q, which acts as the identity. We have a
vector field Δ acting like Equation 43:

Δ (Q) = Ai∂i (Q) = Aw(
∂Q
∂Aw
)
An

+An(
∂Q
∂An
)
Aw

, (43)
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which by Equation 26 is equal to Q through the Euler theorem.
Strictly speaking, we should be more careful with the notation:
Aw and An as prefactors to ∂w and ∂n are here coordinates on
the “fiber,” the tangent space. This means that they are simply the
components of a vector. Meanwhile, Aw, An in ∂w and ∂n are the
coordinate functions onM. We will not encounter problems by not
distinguishing them in this work, so we keep the notation as is for
simplicity.

We have in this section shownhow the velocities in Section 2 can
be interpreted as objects on a tangent bundle with base space M.
When these tangent vectors act on the function Q, we obtain the
ordinary velocity functions, which give a number for each p ∈M.
This simple fact is the link to the “classical” geometric viewpoint we
alluded to in Section 1. In what follows, we will use this relation with
ordinary numbers and motivate the introduction of affine spaces
from the definition of the pore velocity v. We will then use the fact
that we can relate tangent vectors to points of an affine space (the
tangent vector spaces are actually affine spaces over themselves) and
show how this is helpful in the geometric interpretation presented
in this work.

3.2 Affine spaces of velocities,
displacement, and tangent vectors

The idea presented in the previous section applies differential
operators to define fields corresponding to the velocities, which
acted onQ to produce the velocity functions.This type of separation
is well suited for generalization to more high-level frameworks
and has been considered by other authors in the context of
thermodynamics (see, e.g., [70]). However, the relations in Section 2
can be interpretedmore straightforwardly in terms of classical affine
geometry. In this section, we show how this can be done, noting
that this does not exclude the differential geometric viewpoint:
the classical picture is here possible due to the identification
M ≅ ℝ2. The reason one might use this framework instead of
a differential geometric one is that it provides a more intuitive
picture in terms of configurations of points and lines that can be
visualized more easily. Moreover, it is closely related to constitutive
relations like Equation 14 because these relations are framed in
terms of functions and not algebraic objects like vector fields.
This view could potentially be useful in obtaining new constitutive
relations for vm in the future.

First, we will show explicitly how classical affine geometry enters
the problem. Let the tangent vectors introduced in the previous
section act onQ, such that we obtain the ordinary velocity functions.
By the map given in Equations 32, 33, we can rewrite the definition
of the pore velocity function v, Equation 30, as

v = Swv̂w + Snv̂n = vm + Sw (v̂w − vm) + Sn (v̂n − vm) . (44)

If we were to treat the velocities themselves as points in some
abstract space and then apply our intuition from Euclidean spaces
where the difference between two points corresponds to a vector,
Equation 44 is exactly a vector (a linear combination with Sw,Sn as
coefficients) “attached” at the point vm. In this section, we will make
this ideamore formal through affine spaces.The differences between
the differential-geometric and the affine descriptions presented in

previous sections will be elucidated, and the necessary concepts for
analyzing the co-moving velocity vm in terms of affine maps will
be given in Section 4.

Formally, an affine space [75] is a set A of points together with
a vector space A⃗, equipped with a map A× A⃗→A. This map can
be said to be the action of a vector v ∈ A⃗ on a point p ∈A, acting
as a displacement to another point p′ ∈A. The “difference” between
two points p,p′ ∈A can be identified with an element v ∈ A⃗, which
intuitively mean that the difference between two points can be
identified with the vector between them. We then have a space A
of points, and a space A⃗ of all displacements between points of A.

Coordinates on affine spaces entail a choice of an origin (a “zero
vector”) and a linear basis with respect to this origin. Consider an
affine space A of dimension n, and let o ∈A be a choice of origin.
Let (e1,e2,…,en) ≡ {ei} be a choice of basis of A⃗. Then, any point
p ∈A can be written as

p = o+ (p− o) = o+ piei, (45)

where (p− o) is a vector because it is the difference between two
points, which we on the second line of Equation 45 expanded in the
basis ei with components {pi}. The components {pi} are the affine
coordinates of the point p. A new choice of origin o or basis {ei}
specifies a new set of affine coordinates. The choice of an origin
and a linear basis with respect to this origin is an affine frame or
affine basis.

An affinemap f is amap between affine spaces that preserves the
affine structure. Any suchmap f:A→ B between affine spacesA,B,
with associated vector spaces A⃗ and B⃗, respectively, is defined by the
property that for any two points a,b ∈A, we have

f (a) − f (b) = λ (a− b) , (46)

where λ is a linearmap. Expressed equivalently, we have Equation 47,

f (p+ u) = f (p) + λu, (47)

where p ∈A is a point, u ∈ A⃗ is a vector, and λ is a linear map. By
fixing points o1 ∈A, and o2 ∈ B, a general affine map f:A→ B can
be written in the form

f (p) = o2 + ( f (o1) − o2) + λ (p− o1) , (48)

for p ∈A. Here, ( f(o1) − o2) is a translation ofB which only depends
on o1 and o2, and λ(p− o1) is a linear map of the vector (p− o1) ∈
A⃗. At any point, we can form a vector space and define some
basis with respect to this point. We can, for instance, take the
derivative operators discussed in Section 3.1 as a basis for the
vector space at this point. In this work, we can identify it with
the tangent space at that point. Thus, the vector λ (p− o1) can be
treated as a tangent vector attached at o1, obtained in coordinates
by specifying affine coordinates for the point p. A very important
point is that by Equation 48, a translation of the origin is also given
by a vector or, equivalently, a tangent vector in this case.

A special case of an affine map is an invertible affine map
from an affine space A to itself, f:A→A. Such a map is an affine
transformation of A and satisfies Equation 49:

f (p) = o+ ( f (o) − o) + λ (p− o) (49)
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with p ∈A and o ∈A is taken as the origin, and ( f(o) − o) is a
translation.

For an affine combination of points {ei} with coefficients αi, an
affine map f satisfies

f(
n

∑
i=1

αiei) =
n

∑
i=1

αi f (ei) . (50)

In terms of the concepts introduced in this section, one
can see that Equation 44 expresses v as an affine combination with
vm singled out as a choice of origin. Thus, we interpret the velocities
v, v̂i, vi, and vm as points of an affine space A, with an associated
vector space A⃗ of displacements. We view the space of velocities as
affine because vm determines a “moving origin,” vm = vm (Sw).

Formally the velocities are points of A,

v, v̂i,vi,vm ∈A, (51)

whereas the velocity differences (v̂i − vm) are not vectors in A⃗. They
are simply functions, giving a real number for each value of the
saturation Sw.

In terms of symmetry groups of affine spaces, affine
transformations of these spaces are said to act transitively. Consider
two pairs of points, such as the thermodynamic velocities (v̂w, v̂n)
and the seepage velocities (vw,vn) in A. If we have a map g ∈ G
for some group G such that g(v̂w, v̂n) = (vw,vn), the group G
is said to act 2-transitively on A. The map f in Equation 56 is
exactly such a 2-transitive map. That f acts 2-transitively of (v̂w, v̂n)
means that if we know how one velocity is mapped, the map
of the other is known. This is exactly what is described by the
relation defined in Equations 32, 33. A concrete example of a group
of affine transformations is the group consisting of translations
and homotheties, or the group of dilations [76]. We will apply
these transformations in a practical example of a capillary fiber
bundle model in Section 4.2.

Wenow stress an important point regarding the relation between
the “classical” and differential-geometric descriptions: the vector
space of displacements A⃗ and the tangent vector spacesTpM at each
point p ∈M are formally not the same spaces. However, they are
isomorphic in the case ofM ≅ ℝ2. The tangent spaces at each point
of M can, in the case where we regard the underlying space to be
simply M ≅ ℝn, be identified with each other by translations. This
is not possible in general; for a general manifold, each tangent space
must be viewed as distinct, as the concept of simple displacements
needs amending [75]. We note that in the infinitesimal (tangent
vector) case, the co-moving velocity vm is, in general, an example
of a particular type of section of a bundle; see Section 5.2.

In Section 3.1, we defined the tangent vector spaces TpM, p ∈
M, without endowing M itself with any particular structure. In
fact, we could view M itself as an affine space. As an example of
why this might be useful, consider the case where we have some
constant irreducible saturation in the two-phase flow system. If
the irreducible saturation is associated with some constant non-
vanishing flow rate, we have a constant term in our description of the
areas and the velocities that we must take into account. The problem
can then be simplified if one could specify a new convenient origin
inM, for instance, one corresponding to the irreducible saturation.

Therefore, we have seen that it can be useful to view M as
not having a fixed origin O. The latter was considered in [67]. By

specifying some origin O, one obtains a vector space structure. On
the other hand, in order to refer to the relation between the choices
of origins, one needs the affine structure. It turns out that in the case
where we take the base space M to itself be an affine space, we can
identify the tangent spaces at different points of M by translations
of M: given some vector u, one can consider the translation or
displacement τu:M→M of all points of the affine space M by
this vector [76]. Note that this is a translation of all points of the
space M and does not act as a derivation at a point as in the case of
tangent vectors. These translations are elements of the vector space
associated to M viewed as an affine space.

Let this associated vector space toM be denoted byM⃗.We note
thatM⃗ can be identifiedwith the “vector space of areas” from earlier
work [67]. The vector space M⃗ associated to the affine spaceM can
be viewed as containing the displacements between points of M,
simply as withA and A⃗ from earlier in this section. A tangent vector
u ∈ TpM can be regarded as a tangent vector to a curve (which
we take to be only a line) t↦ p+ tu at the point p ∈M [75]. Any
displacement vector u′ ∈ M⃗ with the same direction as u would
give the same curve. If we consider the limit where the displacement
given by u′ goes to zero, we see that we naturally have that we can let
u ∈ M⃗. Thus, we can view the tangent space at each point p ∈M as
a copy of M⃗ attached to p. This identification between vectors of M⃗
and vectors in TpM at each p ∈M is only possible due to the affine
structure ofM, and it is important to note that this does not hold for
general manifolds. This is so because there is, in general, no natural
way of identifying vectors at different points of a manifold without
introducing a connection on the bundle [71, 77]. Such a connection
is extraneous to the manifold itself. Note that the difference between
the two is that the elements of M⃗ are, intuitively, “detached” from
any point p.

To sumup, we only need a single spaceM, whose displacements
live in the vector space M⃗. We can either use the tangent vectors
at each point to describe the velocities at each point p ∈M, or we
can let these tangent vectors act on Q and instead use the (signed)
distances between points of M as representing the displacements.
This correspondence is possible due to the identification M ≅ ℝ2.
In the latter case, we essentially do not use the manifold structure of
M and only treat it as the linear space ℝ2.

3.3 The saturation as a coordinate and
parameter

In the description of velocities as points in an
affine space, Equation 51, we have an important relation for the
space M of extensive variables: we can use the velocities to identify
“directions” in M. More explicitly, ratios of distances (the “lengths”
of the vectors in M⃗) can be identified with points on an affine line
L ⊂M through their functional values. We can specify points on
this line either by specifying a value of Sw, or by specifying the values
of the velocity differences. We will now clarify this point.

The specific coordinates on M do not really matter [67], so we
specify points p ∈M using the extensive areas, p = (Aw,An) ∈M.
However, for practical reasons, it is often convenient to work with
the coordinates [50] (Sw,Ap), defined by

Ap ≡ Aw +An, (52)
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Sw ≡
Aw

Aw +An
=
Aw

Ap
. (53)

If we view Ap as fixed and constant, we only have a single variable
Sw. For each constant value Ap = A

∗
p , Sw parametrizes a line L ⊂M

running between (Aw,An) = (0,A
∗
p ) and (A

∗
p ,0). In these coordinates

(Aw,An), we have the “trivial” parametrization (SwA
∗
p , (1− Sw)A

∗
p ).

Because M ≅ ℝ2, each L (one for each value of A
∗
p ) can be seen

as an affine subspace ofM In terms ofmanifolds, L is a sub-manifold
of M. The use of the term “affine subspace” in this case is only due
to our identification ofMwith the real planeℝ2, viewed as a vector
space itself. Sw is, in this context, called an affine coordinate on the
line L. Moreover, Sw is a parameter that specifies a point on the line
L defined by Aw +An −A

∗
p = 0.

The velocity functions are equivalent to one-dimensional maps
of the parameter Sw, which, for example, sends Sw↦ v̂w (Sw) ∈
L. The relation between Sw and the velocities are obtained
by solving Equation 31 for Sw, finding

Sw =
v− v̂n
v̂w − v̂n

=
v− vn
vw − vn

(54)

where the velocity differences are simply the values of the
corresponding functions. Thus, Sw give the position of v on the line
segment with v̂w and v̂n or vw and vn as endpoints for v.

The view of Sw as a parameter specifying a point on the line L is
quite useful for concrete computations. In fact, instead of letting Ap

equal a constantA
∗
p , we can consider all relations “modulo” the scale

factor Ap, and work with the parameter Sw alone. By this, we mean
that transformations in the parameter Sw are related to a (potentially
continuous) family of lines {Li} in M, where each line Li is given
by a linear inhomogeneous equation aAw + bAn = c, where a, b, and
c are constants. This serves as the entry point for continued work
on the affine-geometric interpretation of the system and connects
the affine relations in this work to projective geometry [76, 78]. In
this context, where we can specify points on a line L by using the
“dual” intensive quantities to the extensive variables, the velocities
{v, v̂w, v̂n}, or equivalently {v,vw,vn}, can be called a type of projective
basis or projective frame [78, 79]. A map of the velocities sending
v̂i↦ vi can, in this context, be said to be a map defined on the dual
space of M. What is meant by “dual” depends on the context, but
in this specific case, one is referring to the projective dual of M,
denoted M

∗
. This is simply the space where each point a ∈M

∗

represents a line in M. The velocities can then be seen as elements
of M

∗
because they exactly specify lines in M. This can be seen

by writing Equation 31 as

Aw (v̂w − v) +An (v̂n − v) = Aw (vw − v) +An (vn − v) = 0. (55)

In Equation 55, (Aw,An) specifies points of M, while the (ratio
of the) velocities give the slope of the line through the point (Aw,An).
In the special case that M ≅ ℝ2, this duality is trivial; however, this
is the formal relation between the extensive and intensive variables
in the affine viewpoint. We will not need more specifics about these
spaces and reserve this for future work.

4 The co-moving velocity and affine
maps

We will now investigate how the co-moving velocity vm, first
presented in Equation 13, can be described in terms of the two
views of the velocities presented in previous sections. As already
mentioned in Section 3.2, we have a natural identification between
the tangent spaces at each point of M and the vector space M⃗ of
displacements of points ofM. From the discussion in the preceding
sections, we can work with either the distances between points given
by the differences (vi − vm), or with tangent vectors at each point.
We will start by using the former description, where it is implicit
that we have restricted ourselves to a line L ⊂M such that Sw is
a parameter along L, as discussed in the previous section. We will
then use the tangent vector description towrite the relations in terms
of vector components before simplifying the obtained relations. The
result will, in the two cases, be an expression for a function of v′ =
dv/dSw and a vector field corresponding to the co-moving velocity
vm, respectively.

4.1 vm from affine maps

Let f be an affine map. We now apply the general property
in Equation 50 of these maps to show how the linear term in
Equation 14 can be obtained. Comparing with Equation 31, we see
that themapping {v̂i} ↦ {vi}, whichwe define to be given by ourmap
f, by definition should satisfy

v = f (v) = f (Swv̂w + Snv̂n)

= Sw f (v̂w) + Sn f (v̂n)

= Swvw + Snvn, (56)

which holds because Sw + Sn = 1 at all times. Thus, f can be seen as
an affine map f:v̂i↦ vi leaving the convex combination v invariant.

The details about the map f depend on which
interpretation we have for the velocities. As expressed in the
discussion around Equation 56, f as a map of the velocities is
formally a map on M

∗
, the space of lines in M. However, because

we can simply view the velocities as functions of Sw only, f is simply
a map of the one-dimensional number line ℝ. It is not important if
this number line is embedded in some higher dimensional space.We
will call this line l, the image of Sw ∈ L under the velocity functions.
This is what wewill take as themeaning of themap f of the velocities:
as a map of their functional values on the line l. We will return to
the case of f acting on tangent vectors, where the idea is exactly the
same but expressed differently.

With the notion of an affine map f, we can revisit the right-hand
side of Equation 44. The velocities (v̂n + Snvm), (v̂n + Swvm) are in
this case not velocity differences; they are expressions of a particular
affine map called a homothety; see Section 4.2. In fact, v itself can be
written as a homothety. To see this, we rewrite Equation 31 as

v = v̂w + Sn (v̂n − v̂w) = vw + Sn (vn − vw) , (57)

where the middle and third expressions, respectively, are
homotheties of ratio Sn with centers vw and v̂w [76].
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Consider {v̂i} and {vi} as points in two affine spaces A, B with
associated vector spaces A⃗ and B⃗, respectively. Using Equation 34
and Equation 56, we have that

f (v̂w) − f (v̂n) = vw − vn

= dv
dSw
− vm. (58)

The velocity difference (vw − vn), where vi = f(v̂i), is then equivalent
to a linear map λ of (v̂w − v̂n) according to Section 3.2. In writing,
( f(v̂w) − f(v̂n)) = (vw − vn), we can specify a choice of origin in A
and B. We choose the origins o ∈A and p ∈ B, and use Equation 48
and Equation 58 to write Equation 59,

f (v̂w) = f (v̂n) + λ(v̂w − v̂n) , (59)

which from Section 3.2 is equivalent to

f (o+ u) = p+ ( f (o) − p) + λu

= p+ λu, (60)

for some vector u, and where we let f(o) ≡ p. We can then set
f (o+ u) = f (v̂w), the new origin p = f (v̂n), λu = (v′ − vm).The point
is that the affine map f also moves the origins of the velocities.

As before, we can associate the vector u with its (Euclidean)
length of the distance between points on the line l. Thus, the
meaning of Equation 60 is simply that a velocity defined by the
distance u from some origin o is mapped to a new origin p and a
linear map of the distance u. Even if we a priori have no preferred
way of defining such an origin or vector u, the map f suggests that
the origin should move, and the distance u from the origin is scaled
by λ.

We are now ready for a simple yet important result. Comparing
Equation 58 to the definition inEquation 46,we see thatwe canwrite

f (v̂w) − f (v̂n) = λ(v̂w − v̂n)

= λ(v′) = v′ − vm, (61)

where λ is a linear map. In one dimension, the only linear maps are
multiplication by a scalar, so λ is only a number. Thus, we have

vm,A = (1− λ)v
′, (62)

where the subscript A is included simply to stress that this result
is the one obtained from the affine relations in this section11. We
will see that we get a similar form in Equation 62 when treating the
velocities as tangent vector fields in Section 4.3.

4.2 Homotheties and irreducible capillary
flow

Intuitively, Equation 57 means that v is the point located at a
fraction Sn along the line segment between v̂w and v̂n in A. Thus,

11 Comparing Equation 62 to Equation 14, one could be tempted to identify

(1− λ) ≡ b. However, the term av0 in Equation 14 does not appear from

considering an affinemap f in this way. Moreover, there is no reason that

b in Equation 14 should be equal to (1− λ).

if either v̂w or v̂n (or both) were to change while v was kept fixed,
Sn would also change, and hence also Sw = 1− Sn. Thus, any change
in one of the thermodynamic velocities is accompanied by an equal
and opposite change in the other thermodynamic velocities. This is
the relation between the middle and last expressions in Equation 57
and also in Equation 56. In fact, affine maps are the only maps
that “commute” with the saturation Sn in this way, which we see
is the defining property, which we use to introduce vm through
Equations 32, 33.

We will now use two particular affine maps, a translation and
a homothety, to demonstrate that even though the maps between
the seepage and thermodynamic velocities can be modeled as affine,
endowing both the space of velocities and extensive variables with
this structure allows for considering more complicated expressions
for vm. We here use an example of a capillary fiber bundle with two
types of capillaries, considered in earlier works on vm [50]. This will
show that the derivation of vm can be expressed in terms of affine
maps in a rather straightforward manner.

Let τu be a translation of A by the vector u, and let hs,λ be a
homothety of center s and ratio λ. Intuitively, τu simply translates
all points x in A to the points u+ x, while hs,λ scales all vectors ⃗sx
for all points x ∈A by a factor λ. Because the set of translations and
homotheties of an affine space forms a group [76], a composition
of τu and hs,λ is again a homothety ̃h ̃s,λ of center ̃s. Explicitly, if
hs,λ : p↦ s+ λ (p− s), and τu : p↦ p+ u with u a vector, we have

τu ◦ hs,λ : p↦ s+ u+ λ (p− s) . (63)

We can rewrite Equation 63 as a new homothety ̃h with respect to a
point ̃s and the same ratio λ as

τu ◦ hs,λ : p↦ s+ u
1− λ
+ λ(p−(s+ u

1− λ
)). (64)

If we define

̃s = s+ u
1− λ
, (65)

we can define τu◦hs,λ ≡ ̃h ̃s,λ and write Equation 64 as

̃h ̃s,λ : p↦ ̃s+ λ (p− ̃s) . (66)

The formalism in terms of homotheties, as defined above, can
be applied directly to the system studied in Section 7.3 of [50]. This
system consists of N capillary fibers in parallel, of which Ns have
a smaller cross section as and the rest, Nl = N−Ns, have a larger
cross section al. We assume the smaller cross section is so small that
only the wetting fluid can enter these capillaries. Each capillary is
filled with either wetting or non-wetting fluid only.The wetting pore
area is then Aw = As +Alw where As = Nsas and Alw is the area of the
large capillaries that are filled with wetting fluid. This means that the
system has an irreducible saturation given by Sw,i = As/Ap. Hence,
the wetting area is given by Aw = ApSw,i +Ap (Sw − Sw,i). The non-
wetting saturation is given by Sn = 1− Sw. We denote the velocity of
the non-wetting fluid by vn, and the velocity of the wetting fluid in
the small capillaries vsw and in the large capillaries by vlw.The average
flow velocities through the capillary fiber bundle are then

v = Sw,ivsw + (Sw − Sw,i)vlw + Snvn. (67)
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We may now interpret the velocities as points in a space A. We
combine Equations 10, 67 to find

Swvw = Sw,ivsw + (Sw − Sw,i)vlw. (68)

We express vw by dividing the left-hand side of Equation 68 by Sw,
and insert this into Equation 57 to obtain

v = vw + Sn (vn − vw)

= [vlw +
Sw,i
Sw
(vsw − vlw)]

+ Sn[vn −(vlw +
Sw,i
Sw
(vsw − vlw))]

= vlw +
Sw,i

1− Sn
(vsw − vlw)

+ Sn[vn −(vlw +
Sw,i

1− Sn
(vsw − vlw))]. (69)

Comparing Equation 69 to Equations 64, 65, we see that we have
defined a composition of a homothety of ratio Sn of the point vn
with respect to the center vlw and the translation of the point vlw
by the constant vector Sw,i (vsw − vlw). We can thus identify it with a
translation of the origin from Sw,ivlw to Sw,ivsw. We may then rewrite
Equation 69 one last time as

v = vlw − vm + Sn (vn − (vlw − vm)) , (70)

where we have identified

vm =
Sw,i
Sw
(vlw − vsw) . (71)

Comparing Equation 70 to Equation 66, we get that ̃s = vlw − vm,
meaning it can be viewed as a translation of the homothetic center
vlw. vm is exactly the translation vector of the homothetic center in
the space of velocities.

We find from Equation 67 that

v′ = dv
dSw
= vlw − vn. (72)

Hence, vm in this system isnot on the form suggested byEquation 62.
The reason for this is that there is nomechanism in the capillary fiber
bundle system to generate an equilibrium thermodynamics as the
fibers are non-interacting.

We have in Section 4.1 related vm to the affine map f, with the
result that Equation 62 is linear in v′. Equation 61 means that f acts
the same way on both thermodynamic velocities. This restriction is
what gives us Equation 62. When the constituent subsystems do not
interact with each other as in the capillary fiber bundle example,
which in general can happen in sub-regions of the saturation
range, we see that we do not have a single map f acting as in
Equation 61. However, the velocity v itself can be expressed in terms
of a homothety, which is affine. This means that Equation 62 is not
correct in this case. Solving Equation 71 for vlw and inserting into
Equation 71 gives us Equation 73:

vm =
Sw,i
Sw

v′ +
Sw,i
Sw
(vn − vsw) , (73)

which contains a linear transformation in v′.12 and a translation
term thatmoves the origin. In Section 5.2, wewill see some solutions
for describing this geometrically.

4.3 vm as a tangent vector field

Wenow turn to the interpretation of velocities as tangent vectors
in the tangent spaces ofM, whereM is again viewed as a manifold.
We will exploit the fact that M ≅ ℝ2 to circumvent a deeper
discussion of connections (see Section 5.2 for a brief treatment) and
mathematical fiber bundles. We will simply say that we are able to
choose an origin o in each tangent space that may depend on the
point p ∈M. We regard vectors in the tangent space TpM to be
attached at the point o ∈ TpM. This origin is given by some section
s of TM, which we assume to be non-vanishing for the domain in
M we are considering. This means that the vector field itself has
no singular points. A section of a bundle exists independently of a
representation in terms of coordinates, so there is no intrinsic way of
defining coordinates for a section unless more structure is provided.

We can encode an “indeterminate” origin in the tangent spaces
of the bundle TM by letting the origin of the tangent spaces be
given by a section s0. This gives us an affine bundle [80], where the
fibers are now related by affine maps. We cannot use the choice s0
to define the coordinates of the section s0 itself; the choice of s0 is
rather a part of the choice of affine frame generalized to the bundle
(see Section 3.2), which allow us to define coordinates for vectors13.

In the following, we investigate what form of the co-moving
velocity is permissible if we allow the thermodynamic and seepage
velocities to be related by affine transformations in each tangent
space. To do this, we must view each tangent space as an affine
space. Intuitively, this means that we allow for picking an origin
in each tangent space, with the restriction that this choice of
originmust vary smoothly between neighboring tangent spaces.The
tangent space at a point of a manifold is a vector space, while the
affine tangent plane is any parallel translation of this tangent space.
This complicates the matter because each of the linear structures
of tangent spaces, as introduced in Section 3.1, is lost when we
allow for such translations. One must then decide on how affine
transformations are to be defined. We here outline two methods,
one related to each of the two approaches in Section 3.1 and IIIB.
We will use both of these in this section to obtain an expression
analogous to Equation 62. This will serve to demonstrate how the
differential and classical viewpoints are related.

The first method is to define an analog of a differential
displacement vector, whose role is to translate the origin in each
tangent space from 0 to the new origin, say o. In this way, one
can work exclusively with vector fields. The consequence is that
the components of the fields, the f i in Equation 39, acquire an
extra term,

f i↦ ̄f i + ai, (74)

12 The map is non-linear in Sw but appears as a multiplicative factor of v′;

hence, the map of v′ is linear.

13 An application of this formalism is seen inmechanics; see [81]. We follow

the same reasoning here.
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where ai in general are functions of the base point, and ̄f i

are the (linear) components of the vector fields. We will end
up with field components in the form of Equation 74 later in
this section.

The second way to work with this type of bundle structure
is to keep the choice of origin in each tangent space, the zero
section s0, undetermined.This approach is equivalent in formulation
to the formalism already introduced in Section IIIB. The vectors
can then be viewed as “ordinary” Euclidean vectors (which we are
unable to define explicitly because the origin is undetermined),
while the points are viewed as formal objects subject to the rules of
Section 3.2. In the end, only differences of points and vectors matter
because the co-moving velocity is defined in terms of differences
of points in Equations 32, 33. From Section 3.2, this means that
we must only consider linear maps of the ensuing vectors. In the
end, when we compute an analog of the co-moving velocity, a
linear structure is therefore recovered. This will allow us to write a
concrete expression for a vector field corresponding to vm in terms
of coordinates at the end of this section. In the derivations below,
we start out by describing the velocities as abstract points, which
are decomposed into a general choice of origin and vector. We then
end up considering linear transformations only when differences of
points are computed.

Consider first a single tangent space TpM. Recall that TpM is
itself an affine space, denotedAp with an associated vector space A⃗p.
We consider the origin of A⃗p as a point ô ∈Ap. Let another choice of
origin be o. A choice of o in each fiber is determined by a section s.
In each tangent space, we can then identify a vector (⃗oô)p = u ∈ M⃗p
between the points ô,o ∈Ap, and this vector can be decomposed
into components. We have a choice of such a vector in each tangent
space, given by the section s. Thus, we can associate the section
s to a vector field that we can describe using vector components.
We rename this field from s to Vm, to make the analogy clear.
Note that this is exactly what is implied by the right-hand side of
Equation 44.

We use the index α = w,n to label which velocity we are referring
to. For each α, a vector is given by two components because
dim(TpM) = 2. Because we here view each TpM as an affine space,
every vector is defined with respect to some choice of origin, which,
in general, is a function of the point p ∈M. As done before, we use
the notationA for the affine space of points corresponding to TpM
and M⃗ for the associated vector space.

We label the velocities viewed as points of the affine spaceAp by
a left superscript p (.). Thus, the thermodynamic velocities, denoted
pv̂α, and the seepage velocities, pvα, which we stress are not functions
but abstract points ofTpM =A, are then expressed as Equations 75,
76:

pv̂α = ôα + ⃗v̂α, (75)

pvα = oα + v⃗α, (76)

where ôα,oα ∈A, ⃗v̂α, v⃗α ∈ A⃗.We here regard the points and velocities
corresponding to the thermodynamic and seepage velocities to
belong to the same affine and vector space, which simplifies the
notation in Section 4.

In the notation introduced above, we can write the relations in
Equations 32, 33 as

pv̂α − pvα = (ôα + ⃗v̂α) − (oα + v⃗α)

= (ôα − oα) + ( ⃗v̂α − v⃗α)

= Oj
αej,α + λ

j
αej,α

≡ vjαej,α, (77)

where the index j runs over the dimension of A, dim (A) = 2, and
vjα = (O

j
α + λ

j
α). λ

j
α are the components of the tangent vectors in

⃗A. Thus, we see that by introducing a shift in the origin, the new
components are linear inhomogeneous functions (in other words,
affine functions) of the components λjα.14

In Equation 77, we expanded (ôα − oα) and ( ⃗v̂α − v⃗α) in the same
basis ejα. In particular, the basis is not dependent on which velocity
we are referring to, as the basis is the same for all α. Therefore, we
have ej,α = ej; that is, we drop the index α.

The last line in Equation 77 then defines two co-moving
velocities.

pv̂w − pvw = vjwej ≡ Snv⃗
w
m, (78)

pv̂n − pvn = vjnej ≡ −Swv⃗
n
m. (79)

The quantities v⃗αm are written as vectors because they are defined
as the difference between two points, hence vectors. In Section 2,
invariance of v requires that v⃗wm = v⃗nm ≡ v⃗m. This places restrictions
upon the coefficients vjα.

Wenowadopt the view inEquation 56, namely, that themapping
in Equations 32, 33 is given by an affine map f, or in this case, an
affine transformation. This view presents no new difficulties and
simply means that we view the components in Equation 77 as being
related by the map f. From Section 3.2, we then have Equations 80
and 81:

v⃗α = ̄f ( ⃗v̂α) , (80)

oα = f (ôα) , (81)

where ̄f is the linear part of the affine map f. If the components
of the linear part ⃗v̂α of pv̂α (same for the seepage velocities) with
respect to the basis ej are x

j
α, then the components of v⃗α are related

to xjα by a linear transformation, xjα↦ xiαλ̄
j
i,α. Because we only use a

single map f in Equation 56, the linear transformation is equal for
α = w,n, so we can drop the index α on the matrix representation
of the linear transformation. The assumption that the mapping in
Equations 32, 33 is given by a single map f is the simplest choice we
can make. If we allowed for a pair of maps, meaning that f↦ fα, the
transformation would not be affine. This would also imply that we
have two thermodynamic velocities, meaning v⃗wm ≠ v⃗nm, whichmakes
us unable to define a single v⃗m and hence a single vm.15

14 Affine functions of the components of the vectors are central in the

definition of affine bundles; see, for example, [82].

15 In Equation 77, this assumption also means that the origins for vw and vn

are taken to be the same.
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From the above, we can now rewrite Equation 77 as

v̂α − vα = (ôα − oα) + ( ⃗v̂α − v⃗α)

= (ôα − f(ô)α) + ( ⃗v̂α − ̄f (v⃗α))

= Oj
αej + (x

j
α − xiαλ̄

j
i)ej

= (Oj
α + xiα (I

j
i − λ̄

j
i))ej. (82)

where Iji is the identity matrix, xjα are the components of ⃗v̂α
in the basis ej, and λ̄ji is the matrix representation of the linear
transformation ̄f. Using Equation 82 and Equation 77–79, we can
then write the difference (pvw − pvn) as (Equations 78, 79)16

pvw − pvn = (v
j
w − v

j
n)ej

= [(xjw − x
j
n) + (xinλ̄

j
i − x

i
wλ̄

j
i)]ej

= [(xjw − x
j
n) + (xin − xiw) λ̄

j
i]ej

= (xiw − xin)(I
j
i − λ̄

j
i)ej (83)

To relate Equation 83 to vm, we need to make some restrictions. We
choose coordinates (Sw,Ap) on M, which induces the coordinate
basis (∂Sw ,∂Ap

) on the tangent space. In general, both vectors enter
into Equation 83. We can now either set Ap = A

∗
p where A

∗
p is a

constant (which essentially means that we restrict to a subspace or
“sub-manifold” of M), or consider the extensive variables on M
up to a common factor of λ, where λ need not be constant (we
could here, for example, set λ = Ap). The two possibilities give us

two potential definitions of saturation, which we could label S
A
∗
p

w
and Sλw. The former definition is the most straightforward, where all
quantities are seen in relation to an “absolute” total area. The latter
possibility is related to projective spaces, which are outside the scope
of this work. However, no matter which of the two possibilities is
invoked, the basis ej reduces to a single element, and we label this
single element simply by ∂Sw as before.The fourth line in Equation 83
is then trivial and can be simplified to

pvw − pvn = ̃γ∂Sw
= (1− γ)∂Sw (84)

Equation 84 can, upon acting on the function Q, be identified with
(v′ − vm), so that γ∂Sw ≡ v⃗m where γ is a function onM. Equation 84
has the same content as Equation 62, only described in terms of
tangent vectors. Moreover, as in Equation 62, we cannot explicitly
get a term corresponding to the constant av0 in Equation 14.Wewill
return to this and its generalization in Section 5.2.

5 Discussion and connection to
further formalisms

The two ways of viewing the velocities discussed in this work
might seem almost equivalent, but the two approaches represent

16 Note that if we had allowed for unequal origins, the

matrices in Equation 83 would have the index α (i.e., they would

be tensors), and there would be an additional term due to potentially

different choices of origin for vw and vn.

very different views of the base space and the velocities. In viewing
the velocities simply as “points on a line” in Section 3.2, the
velocities are then examples of homogeneous coordinates [76, 83]
on projective spaces. These coordinates can be interpreted as labels
for points along the real number line (in our case), which we are
free to regard as the function values corresponding to the velocities.
The co-moving velocity is, in this context, simply another point
on the number line. This way of viewing the velocities allows
for working with concrete numbers. In viewing the velocities as
points of an affine space attached to each point of the base space
of extensive variables, we lose the “tangibility” of the “classical”
method. However, the language of bundles andmanifolds underpins
investigations into the geometry of thermodynamics.

As a side note, we see from the considerations in Section 4
that we cannot get an isolated constant term av0 as in the
phenomenological constitutive relation in Equation 14 in the
framework presented here.17 This conclusion follows from the
observation that the map in Equations 32, 33 is given by a
single affine transformation, the affine map f. The term av0 was
first obtained [50] from fits of experimental data. A physical
interpretation of it was then presented in [61]: we have from
Equations 34, 14 that

av0 = [vn − vm]dv/dSw=0, (85)

if the average seepage velocity has a minimum for some saturation
Sw. There is, however, no a priori reason to believe that this term
should follow from an analytical approach based on geometry with
only two independent variables. However, the space of extensive
variables M is, strictly speaking, not complete as is. The statistical
mechanics formalism based on Jaynes maximum entropy principle
[44] developed by Hansen et al. [42, 43] includes configurational
entropy, and it is natural that it is included in M.

5.1 A note on contact geometry

As mentioned in Section 1, contact geometry [72] is the
appropriate setting for a formalization of classical thermodynamics.
The idea is to introduce a thermodynamic phase space M of
extensive and intensive quantities in the system, which in classical
thermodynamics would be, for example, energy, entropy, volume,
and particle numbers along with conjugate variables. If there are
n+ 1 extensive variables, we have n intensive variables, so the total
number of variables are 2n+ 1. Therefore, dim (M) = 2n+ 1. All the
thermodynamic variables are initially taken to be independent. One
then introduces a contact one-form, which is simply the Gibbs one-
form from thermodynamics. If we take only energy E, entropy S, and
volume V as extensive variables, the contact form Θ looks like

Θ = dE− γSdS+ γVdV, (86)

17 Strictly speaking, it can be done if the factor in front of v′ and ∂Sw in

Equation 62 and Equation 84 contains a term that cancels v′ exactly

as v′→ 0; that is, a term ∼ (v′)−1. However, such a term would not

correspond to any well-defined vector field or would require knowing

the function Q itself.
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The quantities γS and γV are in equilibrium thermodynamics simply
the temperature T and pressure P; however, they are not identified as
such initially: this is only the case on some sub-manifoldN ⊂M that
characterizes the equilibrium states of the system. In fact, the contact
form Θ defines such a sub-manifold as Θ = 0, called a Legendre
sub-manifold [72]. More concretely, the contact form Θ defines a
distribution D on M, which is simply the selection of a subspace
Lx ⊆ TxM of the tangent space TxM at each x ∈M. Given such a
distribution D stemming from the contact form Θ in Equation 86,
it turns out that the Legendre sub-manifolds N ⊂M that have the
distribution D as their tangent space have maximal dimension
n. Such sub-manifolds N are more generally called integral sub-
manifolds [75, 83] of the distributionD.18 A curve c = c(t) inM that
lies on N can be interpreted as some quasi-static thermodynamic
process. The tangent vectors to the curve c(t) are all contained inD,
whichmeans that the curve cannot “leave” the equilibriummanifold
N. It turns out that on the integral sub-manifoldsN, we have exactly

γS|N =
∂E
∂S
, (87)

−γV|N =
∂E
∂V
, (88)

in accordance with equilibrium thermodynamics. The energy E is
here expressed as a function E = E (S,V). In N, E is exactly what is
called a thermodynamic potential.

The parallel between thermodynamics and the formalism
discussed here and in [42, 43] has been developed in [42, 43]. We
discuss contact geometry in this context in the following, however,
without including the configurational entropy and its conjugate, the
agiture (a temperature-like variable). We have the extensive variable
Q expressed as Q = Q(Aw,An). The related contact form is then

Θ = dQ− γAw
dAw − γAn

dAn, (89)

where γAw
,γAn

are identified with v̂w, v̂n, respectively on an
equilibrium sub-manifold, which in our case means steady-state
flow. vm enters when the form in Equation 89, restricted to the
steady-state manifold, is rewritten as Equation 90; [67]:

Θ = dQ− (vw + Snvm)dAw − (vn − Swvm)dAn = 0. (90)

Note that formally, the quantities Sw and Sn must in general be
treated as independent of Aw, An; see Section 5.2. It is clear that
vw and vn in place of the thermodynamic velocities in Equation 89
restricted to the steady-state manifold would not define a Legendre
sub-manifold. vm is then a correction that brings us back to this
equilibrium sub-manifold.

In the above, we have used the assumption of extensivity of
Q in the remaining extensive variables. This produces the well-
knownGibbs–Duhemrelation [50]. In a geometric context, degree-1
homogeneity in the extensive variables reduces the thermodynamic
phase space M [84] in the following sense: if the thermodynamic
phase space M is decomposed as M = E ×I = ℝn+1 ×ℝn, where
the space E , dim (E) = n+ 1, contains the variables we denote as
“extensive” and I , dim (I) = n, contains the variables we denote as
“intensive,” the homogeneity-requirement on the extensive variables

18 These sub-manifolds N are also called leaves of the distribution D.

sends E = ℝn+1 to the quotient space [75] ℙ(E) = ℙ(ℝn+1), the
projectivization of E . Thus, projective spaces occur naturally when
we introduce homogeneity, and a further study of these types of
spaces can be undertaken when working with the velocities as
introduced in Section 3.2.19

Contact geometry, as stated in Section I, is closely related to
Hamiltonian mechanics [72], which utilizes Hamiltonian functions
(which are smooth functions on phase space), which again defines
Hamiltonian vector fields. The integral curves of these vector fields
yield equations ofmotions for theHamiltonian system. Similar types
of relations hold in geometric formulations of thermodynamics
[72, 84]. In this work, a choice of Hamiltonian corresponds to a
choice of Q. This means that the function Q itself is assumed to
contain all the information about the system.

5.2 Connections and bundle structure

When introducing the description in terms of vector fields in the
context of this work, one is faced with the difficulty of making sense
of expressions like Equation 34. Here, the derivative operator ∂Sw is a
vector field.Moreover, we replace the function v by a vector fieldV =
Sw∂w + Sn∂n. Therefore, we have a situation where we are evaluating
the derivative of a section V in the direction of another section, ∂Sw .
This “derivative of a section” of the tangent bundle with respect to
another section necessitates a way of connecting the tangent spaces
at different points of the base manifold M because we are asking
precisely how a vector field changes if we follow it along another
vector field along its integral curves onM.Thus, we need the general
concept of a connection [71, 83, 86] on the tangent bundle. There
are many realizations of this concept, and a thorough treatment is
outside the scope of this work. What we will say is that one way
of working with a connection is via the covariant derivative [71],
which measures the change in the components of a vector field and
the frame itself along another vector field.

An important point about the covariant derivative is that it solves
the specific problem of differentiating tangent vectors to the tangent
bundle TM as a whole, and not only tangent vectors to the base
space M. To get a tangent vector that actually lies in the tangent
space, one needs a way of “projecting” these vectors back to the
tangent space. This is often done via the use of a metric [71]. Note
that we have not assumed any type of metric structure on the space
of extensive variables or the thermodynamic phase space as a whole.
This is a topic of ongoing research (see [64, 87]), which is closely tied
to information theory and the Hessian of the entropy (or energy) of
the system. However, in our case, we have a priori no knowledge of a
metric, which means that we have no idea of what the contribution
from such a structure is on the base space M. We will, therefore,
leave the discussion about metrics here.

In the case of V = Sw∂w + Sn∂n and ∂Sw , we can form the
covariant derivative ∇∂SwV, where V is expressed in the coordinate

19 Projective spaces are also relevant for the intensive variables: one can

introduce an additional “gauge” variable [72, 85] in I, which is often

more convenient to work with. The intensive variables are an example

of homogeneous coordinates on I, which are the standard type of

coordinates used when working with projective spaces.
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frame (∂w,∂n). Recall that we associated the general (possibly non-
coordinate or anholonomic) frame (ew,en) to the seepage velocities.
V expressed in this frame is then simply V = Swew + Snen. A general
expression for the covariant derivative using an arbitrary frame {ei}
and vector fields X, u is [71].

∇uX = (ujei∇ej (X
i) + ujXi∇ej (ei))

= (ujej (Xk) +XiujΓkji)ek, (91)

where Γkji are the connection coefficients20 of the connection
with respect to the basis, and the notation ej (vk) (for all indices)
denotes the action of the frame element ej on the function vk. If we
first set V = Sw∂w + Sn∂n so that {ei} = (∂Sw ,∂Sn), X

i = Vi = (Sw,Sn),
and u = ∂Sw = (Aw +An)(∂w − ∂n) so that ui = (Aw +An,−Aw +An),
one can show that the covariant derivative ∇∂SwV reduces to
(∂w − ∂n), which applied to Q yields v̂w − v̂n. However, if we
change the frame from the coordinate frame to the seepage-frame,
(∂w,∂n) ↦ (ew,en), the last terms in both lines of Equation 91 are
not necessarily zero. In fact, the first term of the first line of
Equation 91 can be written as vw − vn, and the second term is exactly
Equation 13. In general, if the frame is a non-coordinate-frame,
the connection coefficients Γkji contains contributions from both
the metric and the commutation coefficients [71] of the frame,
which describes exactly the dependency of the frame elements.
Thus, we can connect the co-moving velocity to the existence of
a type of metric, the dependency between the frame elements,
or both.

We can draw an analogy between Equation 13 and the
connection term ujXi∇ej (ei) in Equation 91. This term contains the
derivatives of the frame elements with respect to ∂Sw , which are
expanded in the frame itself to yield the connection coefficients. If
we instead stick to the first line in Equation 91, using the relation
ew ∼ vw, en ∼ vn, we see that a term ∂Swvα in Equation 13 is analogous
to the covariant derivative of a single vector in the frame {eα}, so we
have ∂Swvα ∼ ∇∂Sweα. Thus, the vector field Vm associated to vm can
be written as

Vm = Sw∇∂Swew + Sn∇∂Swen. (92)

This is a well-defined vector field because ∇∂Sweα produces vector
fields, and a linear combination of vector fields is again a vector
field. Moreover, because the functions Sw,Sn on M satisfy Sw + Sn =
1, Equation 92 is defined on an affinebundle. An affine bundle has no
preferred zero section, and the only expressions that are independent
of the choice of zero section are affine combinations of sections.
The situation is, therefore, analogous to affine combinations that are
independent of the choice of origin [88]. The vector fields related
to both Equation 31 and Equation 92 share the property that they
are affine combinations of sections and are, therefore, independent
of any choice of origin in the spaces of velocities. Because they are
independent of the zero section, we could use these vector fields
themselves as zero sections. The defining difference between vector
bundles and affine bundles is that vector bundles always have a zero
section, so defining a zero section of the affine bundle is equivalent
to a vector bundle.

20 These are, given some additional assumptions, simply what we call the

Christoffel symbols [71].

The relationship between these considerations, Equation 84,
and the discussion after Equation 62 can be formulated in terms
of the connection. We will only provide an explanation on a
conceptual level, as a thorough treatment is outside the scope of
this work.

On a one-dimensional manifold, the only possible form of the
covariant derivative is g (x)∂x.21. We have here a single variable
Sw, which is, in reality, a parameter along a line embedded in a
higher dimensional space. Let this space be two-dimensional as
before, with the same frame elements {ei}, i = w,n as we have
already considered. View Vm as the zero section of an affine bundle.
On the level of bundles, an arbitrary zero section is handled by
a solder form [80]22.

On the tangent bundle, a solder form represents a relation
between the tangent space at a point and the vertical spaces
of the bundle TM. The vertical space at a point p of TM
consists of all tangent vectors to TM that project to tangent
vectors of M. These spaces form a bundle called the vertical
bundle VTM. A solder form τ at a point x ∈M is defined in
terms of a distinguished section, here Vm, and is a linear map
(not affine):

τx : TxM→ VVM(x)TM. (93)

Intuitively, τx can be seen as relating the tangent vectors atTxMwith
all tangent vectors of the entire bundle TM that project to vectors
on TxM. This is one way of formulating the necessary freedom in
the transformation between thermodynamic and seepage velocities,
expressed in terms of bundles.

Due to the linearity of the map τx, the solder form can be
incorporated into the covariant derivative, where its effect enters
into the connection coefficients Γkij in Equation 91. The connection
coefficients contain contributions from a metric (that can be zero),
in addition to terms that can arise if the frame is anholonomic, that
is, not a coordinate frame. This is the case for a solder form, which
enters into the connection coefficients as this latter type of term.
These are the terms that give rise to the torsion of the connection.
In terms of the frame {ei}, an often-used picture of torsion of a
connection is to parallel transport the frame vectors along each other
some unit distance. If the two parallel-transported vectors and the
two frame vectors form a closed parallelogram, the connection is
free of torsion [71]23.

The takeaway is that in our case, Equations 91, 92 are not
mutually exclusive, as VM can be included in Equation 91. We
then have several ways of viewing VM: either as related to a

21 The covariant derivative can be seen as a projection operator that

projects the tangent vectors to the tangent bundle TM itself onto the

tangent spaces of M.

22 In particular, a connection on an affine bundle is an example of an

affine connection, of which the covariant derivative is onemanifestation.

The connection on the affine bundle is, in this case, an example of

a more general definition of a connection called a Cartan connection

[89, 90].

23 This is a bit imprecise, as how fast the gap between the transported

vectors is matters as the distance they are transported increases. It poses

no harm to ignore this here.
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solder form, or more generally, the connection coefficients of some
frame, or as induced by some metric. In conclusion, a differential
geometric treatment that allows for additional “translational” terms
in Equations 62, 84 is much more involved and depends on how the
frame {ei} is defined.

6 Conclusion

In this work, we have introduced basic geometric ideas into
the analysis of a pseudo-thermodynamic description of two-phase
flow in porous media. The goal was to pave the way for the usage
of geometry in interpreting and classifying relations occurring in
theory and in equilibrium thermodynamics in general. A relatively
terse introduction of necessary concepts was presented in the
context of our choice of extensive and intensive variables, in addition
to the underlying assumption of degree-1 Euler homogeneity
of the total volumetric flow rate in the extensive variables. In
this endeavor, we have provided two potential routes for further
study of the relations presented in Section 2. One is to apply
the language of classical affine and projective geometry and work
directly with functional values of the velocities. To the authors’
knowledge, this approach is new in the context of two-phase flow
in porous media and uncommon in the study of thermodynamics
in general.24

The second route is to bring the formalism closer to
contemporary formulations of the geometric structure of
thermodynamics. The approach in this article was a natural
continuation of investigating vector spaces and coordinates on the
space of extensive variables in previous work [67].

On the subject of continued work on the tangent vector
fields presented in this work, it would be interesting to see how
the terms ∼ a in Equation 14 can appear if more variables are
included in the space of extensive variables. Even though the
framework presented here cannot claim any predictive power
for the parameters b,a in the constitutive equation for vm, it
aids in gaining an intuition for what the co-moving velocity
and other relations in Section 2 represent geometrically. The
geometric concepts introduced here still apply to future work on the
theoretical basis of the pseudo-thermodynamic theory of two-phase
flow, which applies more standard formalism used in geometric
equilibrium thermodynamics (for instance, contact geometry).
Moreover, a separate study in terms of contact geometry is highly
relevant.

In the classical description, where points of the affine space
of velocities were identified with numbers, the most natural way
forward is to formulate the theory in terms of projective geometry.
Projective geometry is a particularly rich and well-known topic
in both mathematics and physics and presents many avenues of
exploration. One of these could be to try to explicitly compute an
invariant of projective geometry, the so-called cross ratio [76, 78],
from the values of the velocities. One could use this to investigate
the assumption of homogeneity in more detail and possibly use

24 One only implicitly uses this structure when considering specific

quantities in thermodynamics.

projective relations as a guide to obtain new constitutive relations
for the co-moving velocity.
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