
TYPE Original Research
PUBLISHED 16 April 2025
DOI 10.3389/fphy.2025.1572883

OPEN ACCESS

EDITED BY

Jamal Berakdar,
Martin Luther University of
Halle-Wittenberg, Germany

REVIEWED BY

Outmane Oubram,
Universidad Autónoma del Estado de
Morelos, Mexico
Michael Schüler,
Paul Scherrer Institut (PSI), Switzerland

*CORRESPONDENCE

Wen-Xue Cui,
cuiwenxue@ybu.edu.cn

RECEIVED 07 February 2025
ACCEPTED 31 March 2025
PUBLISHED 16 April 2025

CITATION

Chen X-C, Nie X-F, Li Y-W and Cui W-X (2025)
Symmetries and topological phase transitions
in modified Haldane models with long-range
hoppings and gain-loss effects.
Front. Phys. 13:1572883.
doi: 10.3389/fphy.2025.1572883

COPYRIGHT

© 2025 Chen, Nie, Li and Cui. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with
these terms.

Symmetries and topological
phase transitions in modified
Haldane models with long-range
hoppings and gain-loss effects
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Wen-Xue Cui1,2*
1Department of Physics, College of Science, Yanbian University, Yanji, China, 2State Key Laboratory of
Surface Physics and Department of Physics, Fudan University, Shanghai, China

We investigate a non-Hermitian modified Haldane model on a honeycomb
lattice incorporating third nearest neighbor hopping t3. The results indicate that
the system satisfies the pseudo-Hermitian and anti-PT symmetries, ensuring
the reality and orthogonality of the eigenstates. We present the phase diagrams
in the m/t2-ϕ and m/t2-t3 planes to elucidate the topological phases of the
system. For specific values of t3, the system reveals Chern insulating phases
characterized by Chern numbers ±2 and ±1, alongside trivial insulating phases.
Upon introducing gain and loss γ in the on-site energy, additional phases with
Chern number ±1 emerge between the two Chern insulating phases. The edge
states possess topological properties and their number corresponds to the
value of the Chern number by calculating and analyzing the edge states of
a semi-infinite honeycomb lattice. Due to symmetry breaking caused by the
truncation of the real-space lattice, the edge states acquire a significant amount
of imaginary energy, while most of the bulk state energies remain almost real.
Our work enhances understanding of the influence of long-range hoppings
and gain-loss effects on the topological phases of non-Hermitian modified
Haldane models.

KEYWORDS

modified Haldanemodel, pseudo-Hermitian and anti-PT symmetries, topological phase
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1 Introduction

Since the discovery of the quantum Hall effect and topological insulators [1–7],
substantial research has concentrated on the topological properties of the two-dimensional
honeycomb lattice. A series of novel topological phases beyond the classical Landau
phase transition theory have been discovered, making the exploration of novel topological
phases and phase transitions [8–19] a rapidly emerging hotspot in the field of
condensed matter physics. The Haldane model [20], a seminal contribution to the field
of topological materials, offers a theoretical framework for understanding the band
structure, topological invariants, and edge states associated with a honeycomb lattice.
This model describes a honeycomb lattice with nearest-neighbor (N1) and next-nearest-
neighbor (N2) hoppings terms, along with staggered on-site energy that breaks inversion
symmetry. Moreover, the Haldane model exemplifies a distinctive system in which
quantum Hall effect [20, 21] is inherently linked to the properties of the lattice band
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structure through the introduction of a magnetic phase ϕij, rather
than depending on an external strong magnetic field. This magnetic
phase is reflected in the complex hopping terms t2e

iϕij , which break
time-reversal symmetry without generating a net magnetic flux
within the plaquettes. By varying the Haldane flux and the on-site
energy, the system can undergo a topological phase transition from
a normal insulator to a Chern insulator.

Over the past few decades, research on topological phases
and topological phase transitions in two-dimensional materials
has primarily been based on the assumption of Hermitian
Hamiltonians. However, real physical systems are typically open
and interact with the environment, making it inevitable to search
for novel topological phases in non-Hermitian systems. In recent
years, significant advances have been achieved in investigating
topological phases and properties associated with the Haldane
model in non-Hermitian systems incorporating gain and loss
mechanisms [22–26]. Unlike their Hermitian counterparts, non-
Hermitian systems not only provide accurate simulations of the
open system behaviors in practical environments [27, 28], but
they also exhibit unique features, including complex-valued energy
spectra [29–31], nonorthogonal eigenvectors [32], parity-time (PT )
symmetry [33–35], and skin effects [36–38]. The existence of these
non-Hermitian properties significantly enriches the topological
phases associated with topological invariants extending beyond the
existing Hermitian framework, which is crucial for exploring exotic
physical phenomena. Long-range hopping and non-Hermiticity are
particularly noteworthy. Theoretically, certain systems, such as the
decorated honeycomb lattice [39], the multiorbital triangular lattice
[40], and ultracold atomic gas on a triangular lattice [8, 9], have
been predicted to exhibit non-trivial topological phases with higher
Chern numbers by adding long-range hopping. Experimentally,
the study of non-Hermitian two-dimensional lattices has been
conducted in photonic lattices [41–46], cold atom systems [47–49],
and electronic circuits [50–53]. Notably, previous studies have
shown that topological phase transitions in both Hermitian [10,
11, 14–16, 19] and non-Hermitian systems [23–26] can be induced
by variations in the staggered on-site energy and the hopping
terms, including long-range hopping terms that may lead to novel
topological phases and large Chern numbers. Such changes can
significantly affect the band behavior of the system, particularly
regarding the opening and closing of energy gaps and the
inversion of bands, which serve as vital indicators of topological
phase transitions. Given that most studies have concentrated on
two-band systems, it is natural to question whether long-range
hopping terms will yield a richer topological phase and induce
topologically nontrivial states in the multi-band non-Hermitian
modified Haldane model with gain and loss.

Inspired by the aforementioned inquiries, we explore the
topological properties of the non-Hermitian modified Haldane
model, which incorporates the third nearest neighbor (N3) hopping
t3. Our findings reveal that the model exhibits pseudo-Hermitian
and anti-PT symmetry, ensuring the presence of purely real
eigenvalues and pairwise orthogonality of eigenstates. To further
elucidate our observations regarding the topological phases, we
present the phase diagrams in the m/t2-ϕ and m/t2-t3 planes,
respectively. The introduction of t3 results in exhibiting higher
Chern numbers C = ± 2. Notably, when we incorporate gain and
loss in the on-site energy, the system reveals additional phases

characterized by Chern numbers ±1 located between the two
Chern insulating phases. To substantiate the existence of topological
phases, we utilize a semi-infinite honeycomb lattice geometry to
investigate the properties of edge states. Due to the truncation
of the lattice in real space, the reality and orthogonality of the
eigenstates are affected. Consequently, the energies of the edge states
display significant imaginary components, whereas the energies of
the majority of bulk states remain nearly real.

2 Model and Hamiltonian

We consider a non-Hermitian Haldane model on the
honeycomb lattice, as illustrated in Figure 1. This model features
distinct complex on-site mass terms, with the real parts ±m
denoted by thick and thin outlines, while the imaginary parts ±γ,
representing on-site gain or loss, are illustrated using red and blue
colors. The lattice vectors are defined as a1 = (1,0) and a2 = (0,√3),
respectively. The coupling strength for N1 is represented by t1,
whereas the coupling strength forN2 is associatedwith an amplitude
t2 and a complex phase denoted by ϕij.The phase ϕij is defined along
the electron hops, being positive for clockwise and negative for
anticlockwise directions. Additionally, coupling N3 is considered
with a strength of t3. In momentum space, the Hamiltonian of the
system can be written as

H (k) =(

ξ1 ξ2 ξ4 ξ5
ξ∗2 ξ3 ξ∗5 ξ6
ξ4 ξ5 ξ∗1 ξ2
ξ∗5 ξ6 ξ∗2 ξ∗3

), (1)

where

ξ1 = −m− iγ+ 2t2 cos ϕ coskx − 2t2 sin ϕ sinkx,

ξ2 = 2t1 cos(kx/2)e
−i√3ky/6,

ξ3 =m− iγ+ 2t2 cos ϕ coskx + 2t2 sin ϕ sinkx,

ξ4 = 4t2 cos(ϕ− kx/2)cos(√3ky/2) ,

ξ5 = (t1 + 2t3 coskx)e
i√3ky/3 + t3e

−i2√3ky/3,

ξ6 = 4t2 cos(ϕ+ kx/2)cos(√3ky/2) , (2)

where k = (kx,ky) denotes the wave vector. For γ = 0 and t3 =
0, the terms associated with gain-loss and long-range hopping
in Equations 1, 2 vanish, and the current system reduces to the
well-known Haldane model [20]. It undergoes a topological phase
transition between a quantum anomalous Hall insulator (QAHI)
and a trivial insulator occurs whenm = ± 3√3t2 sin ϕ, and holds the
point group symmetry of C3 (m ≠ 0).

3 Results and discussion

3.1 Pseudo-Hermitian and anti-PT
symmetries

We turn to discuss the symmetries of the current system with
γ ≠ 0 and t3 ≠ 0. Now, we choose the Haldane flux ϕ = − π/2 and
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FIGURE 1
Schematic of a modified non-Hermitian Haldane lattice with complex on-site mass terms, where the real parts ±m are represented by thick and thin
outlines, and the imaginary parts ±γ corresponding to on-site gain or loss are depicted using red and blue colors. t1 and t3 represent the N1 and N3
hopping strengths, respectively. N2 hopping strength is associated with an amplitude t2 and a complex phase represented by ϕij. a1 and a2 denote the
lattice vectors.

define 4× 4 matrices expressed as follows

Γu = (
0 σu
σu 0
), (3)

where σu=0 is the identity matrix and σu=1,2,3 are the 2× 2 Pauli
matrices. It can be shown that the Γ matrices defined in Equation 3
satisfy the following properties: Γ0Γ0 = I, Γ0 = Γ†0, and {Γi,Γj} = 2δij
for i, j = 1,2,3.We find that the current non-Hermitian Hamiltonian
satisfies the pseudo-Hermiticity condition symmetry [30, 54–56],
and a relation can be proved by

Γ0H (k)Γ0 =H(k)†, (4)

We introduce a complete set of biorthonormal eigenvectors
{〈ψm|, |ψn〉} that satisfy the biorthogonality condition ⟨ψm|ψn⟩ =
δmn. Considering the eigenvalue equation 〈ψm|H(k) = 〈ψm|Em and
H(k)†|ψm〉 = E

∗
m|ψm〉, we derive Γ0Γ0H(k)(Γ0|ψm〉) = Γ0H(k)

†|ψm〉
= E
∗
m(Γ0|ψm〉). This implies that the energy eigenvalues of H(k)

are purely real or occur in complex conjugate pairs. Additionally,
the current non-Hermitian Hamiltonian also satisfies the anti-PT
symmetry condition [35, 57–59].

{H (k) ,Γ3Γ1T} = 0, (5)

where T denotes the complex conjugation operator. By combining
the anti-commutation relation {Γ1,Γ3} = 0 and the eigenvalue
equation H(k)|ψn〉 = En|ψn〉, we can derive the following equation
H(k)Γ1Γ3T|ψn〉 = Γ3Γ1T(H(k)|ψn〉) = −E

∗
nΓ1Γ3T|ψn〉. By defining

|ψn′〉 = Γ1Γ3T|ψn〉, we conclude that |ψn′〉 is an eigenstate of
H(k) with eigenvalue −E

∗
n . Furthermore, the orthogonality of the

eigenstates |ψn′〉 = Γ1Γ3T|ψn〉 and |ψn〉 can be further proved;
specifically, the inner product ⟨ψn|Γ1Γ3T|ψn⟩ = 0. It is important to
note that if the phases of the N2 couplings deviate from ±π/2,H(k)
would not satisfy the symmetries discussed above. In Figures 2a, b,

we illustrate the real and imaginary parts of the energy spectrum
in momentum space with parameters t1 = 1, m/t2 = 3, γ = 0.5,
t3 = 0.5, and ϕ = − π/2. It has been observed that specific real
components of the energy spectrum correspond to imaginary
components with non-zero values, which are attributed to on-site
gain and loss. Furthermore, there are regions where the imaginary
component is zero, signifying the presence of purely real energy
eigenvalues. This observation is consistent with the previously
discussed symmetries.

3.2 Chern numbers and phase diagram

To compute the Berry phase of multi-band systems in k-space
using a discretized approximation, we select a mesh of closely
spaced k-points {ki} that covers the relevant region of the Brillouin
zone. We begin with the states |ψn,k0

〉, |ψn,k1
〉,…, |ψn,kN−1

〉 in an
arbitrary gauge. For each neighboring pair of points, we compute
the overlapM(ki,ki+1)mn = ⟨ψm,ki

|ψn,ki+1
⟩, wherem,n ∈ {1,2,3,4} label the

energy bands. Utilizing these overlaps, we can obtain the total Berry
phase φtot for the two valence bands within the first Brillouin zone
via Equation 6:

φ = −Im ln(
N−1

∏
i=0

detM(ki,ki+1)), (6)

which can then be used to calculate the Chern number as C =
φtot/2π. This process further facilitates the construction of phase
diagrams. In Figure 3, we present the phase diagrams of the two
valence bands within the parameter space defined by ϕ and m/t2.
Specifically, for (a) γ = 0.5 and t3 = 0; (b) γ = 0 and t3 = 2; and (c)
γ = 0.5 and t3 = 2. The remaining parameter is fixed at t1 = 1. In
the absence of N3 hopping, Figure 3a reveals three distinct regions
of Chern insulators: a pink region with a Chern number of C =
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FIGURE 2
(a) Real and (b) imaginary parts of the energy spectrum of modified non-Hermitian Haldane model in momentum space. The parameters of the system
are set to t1 = 1, m/t2 = 3, γ = 0.5, t3 = 0.5, and ϕ = − π/2.

FIGURE 3
Phase diagrams of the two valence bands in the non-Hermitian modified Haldane model are depicted on the m/t2-ϕ planes for (a) γ = 0.5, t3 = 0; (b) γ =
0, t3 = 2; and (c) γ = 0.5, t3 = 2, with t1 fixed at 1. The cyan and red regions represent the Chern insulating phases with C = +2 and C = −2, respectively.
The pink and blue regions denote Chern insulating phases with C = +1 and C = −1, respectively. The white region signifies the conventional insulator
phase with a zero Chern number.

+1, a blue region with Chern number C = −1, and a white region
representing a trivial topological state with C = 0. In this scenario,
the system reduces to the case described in Ref. [24], exhibiting a
phase diagram analogous to the well-known Haldane model [20].
However, upon introducing N3 hopping with t3 = 2 and the on-site
energy γ = 0, significant changes in the Chern insulating regions
are observed in Figure 3b. These regions now exhibit distinct Chern
numbers: C = +2 (cyan region), C = −2 (red region), C = +1 (pink
region),C = −1 (blue region), andC = 0 (white region), respectively.
It is evident that N3 hopping considerably alters the Chern numbers,
but no additional topological phases emerge. When both N3
hopping and the on-site energy are included with γ = 0.5 and t3 =
2, we observe the emergence of higher Chern numbers and an
additional region of topological phases. As illustrated in Figure 3c,
this additional topological phase region is characterized by a Chern
number of C = +1 and C = −1. It is situated between the two Chern
insulating regions, specifically between the blue and cyan regions
and between the pink and red regions. Thus, the introduction of N3
hopping facilitates the attainment of a large Chern number in our
system, while the on-site energy γ induces additional phase regions
when t3 is present.

To demonstrate the impact of N3 hopping on the topological
properties of the system, we present a phase diagram of the two

valence bands as a function of m/t2 and t3. For Figure 4a, we set
γ = 0; and for Figure 4b, γ = 0.5. The remaining parameters are
fixed at t1 = 1 and ϕ = − π/2. In Figure 4, it is observed that in the
absence of N3 hopping, a topological phase is characterized by a
non-zero Chern number of C = −1, which persists even for the
minimal value of t3. With an increase in t3, additional topological
phases can be obtained. In Figure 4a, where the on-site energy
term γ is set to 0, three distinct regions corresponding to different
Chern numbers are identified. The cyan region indicates a Chern
number of C = +2, while the blue region corresponds to C = −1.
These two regions represent nontrivial topological phases with non-
zero Chern numbers. Conversely, the white region signifies a Chern
number value of C = 0, indicating a topologically trivial insulating
phase. When the on-site energy γ is introduced, an additional phase
region emerges between the two distinct Chern insulating phases,
as illustrated in Figure 4b. This new phase is characterized by a
Chern number of C = +1, which contrasts with the phase diagram
presented in Figure 4a. Notably, the introduction of non-Hermiticity
leads to a transformation of the non-trivial phase characterized
by a Chern number of C = +2 to C = +1. This transformation is
significant as it plays a crucial role in the emergence of new regions
of topological phases and in facilitating topological phase transitions
that are attributed to changes in the eigenvalue spectrum. Setting
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FIGURE 4
Phase diagrams of the two valence bands are depicted on them/t2-t3 planes for (a) γ = 0 and (b) γ = 0.5. The cyan and blue regions represent the Chern
insulating phases with C = +2 and C = − 1, and while the white region signifies the conventional insulator phase with a zero Chern number. The Chern
number as a function of m/t2 is shown for (c) γ = 0 and (d) γ = 0.5. Other parameters are choosen by t1 = 1, t3 = 2, and ϕ = − π/2.

FIGURE 5
Schematic of a semi-infinite ribbon with zigzag edges to be finite along the y direction and infinite along the x direction. The dashed-lined rectangle
containing N = 160 unit cells along the y-direction.
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FIGURE 6
Energy spectra of a semi-infinite ribbon as a function of dimensionless momentum k with kx are shown for (a) t3 = 0.1, (b) t3 = 0.6, (c) t3 = 1.4, and (d)
t3 = 2. The other parameters are chosen by t1 = 1, m/t2 = 3, γ = 0.5, and ϕ = − π/2. The colorbar represents the imaginary part of the energy eigenvalues.

the Haldane flux to ϕ to ϕ = π/2 keeps the phase diagram consistent;
however, the Chern numbers will experience a sign reversal. Then,
we show the Chern numbers of the system as a function ofm/t2 for
fixing the value of t3 = 2. As depicted in Figures 4c, d, we observe
a series of phase transitions. Specifically, in Figure 4c, the Chern
number varies successively as C = 0, C = −1, C = 2, again C = −1,
and ultimately returns to C = 0. In contrast, Figure 4d reveals a
different trend: the Chern number changes from C = 0 to C = −1,
remains at C = +1, progresses to C = +2, returns to C = +1, stays at
C = −1, and finally reverts to C = 0. In both figures, the variations
in the Chern number indicate the occurrence of topological phase
transitions.

3.3 Topological edge states in semi-infinite
honeycomb lattice

According to the bulk-boundary correspondence, edge states are
expected to emerge in systems characterized by a non-zero Chern
number. Previous studies, including those involving the Haldane
model [20], have corroborated this behavior by demonstrating that
the number of edge states corresponds to the associated Chern
number. To clarify the bulk-edge correspondence and determine
whether the edge states in the current system exhibit topological or
trivial properties, we will analyze the characteristics of edge states in
a semi-infinite honeycomb lattice ribbon geometry [16, 60–62].This
geometry is infinite in the x-direction and finite in the y-direction.

The presence of edges disrupts translational symmetry in the y-
direction while maintaining it in the x-direction. The sites along
the y-direction are designated as A1,B1,C1,D1,…,AN,BN,CN,DN,
as illustrated in Figure 5. By applying the Fourier transform
exclusively in the x-direction, we can readily derive the
following four sets of coupled eigenvalue equations of
the wave functions

EkxAkx,n = t1 [{1+ e
−ikx}Bk,n +Dk,n−1]

+ [−m− iγ+ 2t2 cos (ϕ)cos(kx) − 2t2 sin (ϕ) sin(kx)]Ak,n

+ (t2e
−iϕ + t2e

iϕe−ikx)(Ck,n +Ck,n−1) + t3 [Dk,n + 2 coskxDk,n−1] ,

EkxBkx,n = t1 [{1+ e
ikx}Ak,n +Ck,n]

+ [m− iγ+ 2t2 cos (ϕ)cos(kx) + 2t2 sin (ϕ) sin(kx)]Bk,n

+ (t2e
−iϕ + t2e

iϕeikx)(Dk,n +Dk,n−1) + t3 [Ck,n−1 + 2 coskxCk,n] ,

EkxCkx,n = t1 [{1+ e
ikx}Dk,n +Bk,n]

+ [−m+ iγ+ 2t2 cos (ϕ)cos(kx) − 2t2 sin (ϕ) sin(kx)]Ck,n

+ (t2e
iϕ + t2e

−iϕeikx)(Ak,n +Ak,n+1) + t3 [Bk,n+1 + 2 coskxBk,n] ,

EkxDkx,n = t1 [{1+ e
−ikx}Bk,n +Ak,n+1]

+ [m+ iγ+ 2t2 cos (ϕ)cos(kx) + 2t2 sin (ϕ) sin(kx)]Dk,n

+ (t2e
iϕ + t2e

−iϕe−ikx)(Bk,n +Bk,n+1) + t3 [Ak,n + 2 coskxAk,n+1] .
(7)

where n is an integer ranging from 1 to N and N represents
the total number of unit cells along the y-direction with N =
160. The coefficients Ak,n, Bk,n, Ck,n, and Dk,n correspond to the
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respective wave functions. By solving Equation 7, we can obtain the
energy eigenvalue spectra of a semi-infinite ribbon as a function
of momentum kx, as illustrated in Figures 6a–d. We set the value
of the N3 hopping parameter for (a) t3 = 0.1, (b) t3 = 0.6, (c) t3 =
1.4, and (d) t3 = 2. The other parameters are fixed at t1 = 1, γ =
0.5, and ϕ = − π/2. In Figure 6a, there are two edge states along
the zigzag edges (x axis) of the ribbon. These two edge states
continuously connect the bulk bands as kx changes, propagating
along opposite edges of the ribbon. This indicates that the system
is in a topological state, characterized by gapped bulk states and
gapless edge states that traverse the energy gap. This observation
is consistent with the Chern number phase diagram, where the
Chern number is C = −1. As t3 increases, the band gap closes
and subsequently reopens. We observe the presence of two pairs
of topologically protected gapless edge states in the energy gap,
with each zigzag edge of the ribbon hosting two independently
propagating edge states, as shown in Figure 6b. This result aligns
with the phase diagram, where t3 = 0.6 corresponds to a phase with a
Chern number of C = 2. With the further increase of t3, the number
of edge states changes again. In both Figures 6c, d, there are two
edge states traversing the energy gap, each propagating along a
zigzag edge and corresponding to Chern numbers C = 1 and C =
−1, respectively. Additionally, we conduct a finite-size effect analysis
on the edge states of the semi-infinite band. Our findings indicate
that as the number of lattice sites along the y-direction increases, the
spectrum of the edge states becomes increasingly dense. However,
this densification does not compromise the robustness of the edge
states nor does it induce skin effects. We present the imaginary part
of the energy eigenvalues, represented by the color bar. Due to the
truncation of the lattice in real space, the symmetry of Equations 4, 5
is broken, disrupting the reality and orthogonality of the system’s
eigenstates. Consequently, the edge state energies exhibit significant
imaginary components, whereas the energies of most bulk states
remain nearly real.

4 Conclusion

We have constructed a non-Hermitian modified Haldane
model and analyzed its symmetries, demonstrating that the system
satisfies both the pseudo-Hermitian and anti-PT symmetries.
This finding indicates the presence of pure real regions within
the energy spectrum. Furthermore, we have obtained two distinct
phase diagrams in the m/t2-ϕ plane and the m/t2-t3 plane by
computing the Chern numbers. Our results indicate that the
system can support higher Chern numbers of ±2 when t3 is
present. More importantly, by introducing gain and loss to the
on-site energy, the system reveals additional phases between the
two Chern insulating phases, characterized by Chern numbers of
±1. To substantiate the existence of these topological phases, we
employed a semi-infinite honeycomb lattice geometry to investigate
the characteristics of topological edge states. We found that the
edge states span the energy gap and continuously connect the bulk
bands, exhibiting topological properties consistent with the Chern
number. Additionally, the truncation of the lattice in real space
disrupts the reality and orthogonality of the eigenstates, resulting
in significant imaginary components in the edge state energies.
In contrast, the energies of most bulk states remain nearly real.

Our work provides a deeper understanding of the impact of long-
range hopping on the topological phases of non-Hermitianmodified
Haldane models.
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