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Multifractal analysis and
modification of coal pore
structures with impact of clean
compound biomass surfactants

Lingling Yang1 and Yuan Yuan2,3*
1Department of Biotechnology, Hefei Technology College, Hefei, China, 2School of Economics and
Management, Huainan Normal University, Huainan, China, 3School of Engineering Sciences,
University of Science and Technology of China, Hefei, China

This study investigates the modification of coal pore structures using composite
biomass surfactants and explores its implications for methane adsorption
and desorption characteristics. Coal samples from the 13–1 coal seam in
Liuzhuang Mine, Huainan, China, are analyzed using low-temperature nitrogen
adsorption experiments. The box-counting-based multifractal theory is used
to assess coal pore heterogeneity and connectivity before and after surfactant
treatment. The results reveal significant improvements in pore structure
uniformity and connectivity, providing insights into the relationship between
pore characteristics and methane adsorption behavior. This research offers a
foundational understanding for optimizing coalbed methane extraction and
enhancing environmental sustainability in coal mining operations.
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1 Introduction

The extraction of coalbed methane (CBM) plays a critical role in addressing global
energy demands while concurrently reducing greenhouse gas emissions. Nevertheless, the
efficiency of CBM recovery is significantly constrained by the complex pore systems in
coal, which are characterized by heterogeneous pore size distributions, low connectivity,
and limited permeability [1]. These structural attributes directly impact key processes such
as methane adsorption and desorption, as well as diffusion and migration, thereby posing
substantial challenges for effective gas extraction [2–4]. While traditional fractal models
have been employed to describe the self-similarity inherent in porous materials, they often
fail to fully capture the complex and multifactorial heterogeneity native to coal pores,
particularly under chemical modification. This gap underscores the necessity for advanced
analytical frameworks capable of quantifying structural intricacies and informing targeted
enhancements.

Multifractal theory has arisen as a robust analytical approach for examining the
hierarchical and non-uniform characteristics of coal pore networks. Unlike conventional
monofractal models, multifractal analysis decomposes complex systems into a spectrum of
singular metrics, enabling precise quantification of spatial heterogeneity and connectivity
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[5–7]. By analyzing scaling behaviors across diverse probability
distributions, multifractal methods offer critical insights into the
evolution of pore structures under external modifications, such
as those resulting from the application of surfactants [8–11].
Recent investigations highlight the efficacy of multifractal theory in
correlating pore geometry with gas storage and transport capacities
[12–14]. However, its application to assess structural changes
induced by biomass-based surfactants remains limited, leaving
critical knowledge gaps in the development of environmentally
sustainable CBM extraction techniques.

Chemical surfactants, predominantly synthetic variants,
have been extensively studied for their ability to improve coal
wettability and enhance pore connectivity [15, 16]. Nonetheless,
their persistence in the environment and associated toxicity
raise concerns that conflict with global sustainability objectives.
Biomass-derived surfactants, made from renewable sources such
as soybean protein isolates, offer a promising alternative due to
their amphiphilic properties and high biodegradability [17–20]. For
example, soybean protein isolates (SPIs) modified with glucose have
demonstrated improved adsorption capabilities on coal surfaces,
leading to altered surface hydrophobicity and more uniform pore
networks [21, 22]. Despite these advancements, the multifractal
response of coal pores to such biomass-based surfactants remains
underexplored, impeding the systematic design of green chemical
modification strategies. Expanding our understanding of this area
is vital for achieving sustainable CBM recovery solutions.

This study addresses these gaps by integrating multifractal
theory with low-temperature nitrogen adsorption experiments
to evaluate pore structure modifications in anthracite coal
treated with composite biomass surfactants. Coal samples from
the Liuzhuang Mine were analyzed before and after surfactant
treatment, focusing on multifractal spectra (e.g., f(α)∼α, Dq∼q)
and connectivity parameters such as the Hurst index.The objectives
are threefold: 1) to establish quantitative links between surfactant-
induced pore modifications and methane adsorption-desorption
behavior, 2) to assess the efficacy of biomass surfactants in
reducing structural heterogeneity, and 3) to provide a theoretical
foundation for optimizing CBM recovery through sustainable
chemical interventions. By bridging multifractal analysis with green
chemistry, this work advances both fundamental understanding and
practical applications in energy resource management.

The subsequent sections are organized as follows: Section 2
details coal sample preparation and surfactant modification
protocols and introduces experimental methods for pore structure
characterization. Section 3 presents multifractal analyses and
connectivity assessments, while Section 4 discusses implications
for CBM extraction and environmental sustainability.

2 Coal sample collection and
experimental methods

2.1 Coal sample collection

Coal samples were extracted from the 13-1 coal seam situated
in Liuzhuang Mine, Huainan, China. This seam exhibits structural
variability, ranging from simple to complex formations. Positioned
within the central portion of the fourth coal-bearing stratum, the

seam’s thickness spans from 0.98 m to 11.07 m, averaging 4.34 m.
The primary coal seams exhibit gas content values between 0.21 and
1.47 m3/t, with a mean of 0.65 m3/t. The gas saturation is very low,
and the maximum value is only 18%, which belongs to reservoirs
with poor permeability.

According to the industrial analysis method of coal (GB/T 212-
2008), the collected coal samples are tested for industrial analysis.
The coal quality characteristics are shown in Table 1.

In Table 1, Mad (Moisture Content as Determined by Air-
Drying, %), refers to the percentage of moisture present in
a coal sample after it has been subjected to air drying at
ambient conditions. This parameter is crucial for understanding
the water content that affects the coal’s heating value and
combustion efficiency; Aad (Ash Content as Determined in Air-
Dried Condition, %), denotes the percentage of inorganic residue
or ash remaining after the combustion of a coal sample that has
been air-dried. The ash content is significant as it impacts the coal’s
combustibility, ash disposal, and overall energy yield; Vdaf (Volatile
Matter Content as Determined in Dry and Ash-Free Condition, %),
represents the percentage of volatile matter in the coal, expressed
on a dry and ash-free basis. This parameter is essential for assessing
the coal’s behavior during combustion and gasification, as volatile
matter influences ignition, flame characteristics, and overall energy
release; Fcd (Fixed CarbonDensity, %), indicates the density of fixed
carbon within a coal sample, which is a key indicator of the coal’s
carbon content remaining after the volatile matter has been released.
The fixed carbon density is vital for determining the coal’s heating
capacity and its suitability for various industrial applications.

2.2 Preparation of modified solution

In this paper, soybean protein isolate was used as the main
raw material, and based on alkaline protease hydrolysis reaction,
soybean protein isolate hydrolysate was grafted with glucose to
obtain modified soybean protein isolate based surfactant (modified
SPI). The structure is shown in Figure 1. Using the modified SPI as
the main body, the modified solution was prepared with 1wt%KCl
base solution and rhamnolipidemic biomass surfactant.

Figure 1 illustrates the basic unit structure of the modified
soybean protein isolate (SPI), which serves as the primary
component of the biomass surfactant used in this study. This
structural representation is crucial for understanding the chemical
modifications made to the SPI, such as the grafting of glucose
through alkaline protease hydrolysis. These modifications enhance
the surfactant’s functionality, enabling it to improve the pore
structure of coal by optimizing uniformity and connectivity.

2.3 Coal sample modification treatment

Following the crushing of the original coal sample, coal powder
with a particle size range of 60–80 mesh was carefully screened
and subsequently immersed in six different composite modification
solutions with varying ratios (1:9 to 3:2). The samples were
thoroughly soaked, rinsed, and filtered, then dried to achieve a
constant weight. Finally, the treated samples were bagged, sealed,
and stored for further use.
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TABLE 1 Coal quality characteristics.

Sampled coalfield Coal type Metamorphic stage Mad/% Aad/% Vdaf/% Fcd/%

Liuzhuang Mine Anthracite II 1.49 26.42 39.33 40.77

FIGURE 1
Basic unit structure diagram of modified soybean protein isolate (modified SPI).

FIGURE 2
ASAP 2460 automatic rapid surface area and porosity analyzer (mack corporation).

2.4 Experimental instruments and
conditions

In compliance with the Chinese national standard for
determining the specific surface area of solid materials via the
gas adsorption BET method (GB/T 19587-2017), a specific
surface area and micropore adsorption analyzer was employed
for the low-temperature nitrogen adsorption experiments (refer
to Figure 2). The experimental process was conducted at a
temperature of 77 K, utilizing approximately 5 g of the sample, with
an equilibrium time interval of 10 s.

2.5 Analysis method

The Barrett–Joyner–Halenda (BJH) method, which is based on
Kelvin capillary condensation theory and assumes cylindrical pore
geometry, is awidelyusedapproach forpore size analysis (see [23, 24]).
Nonetheless, traditional methods remain inadequate for accurately
characterizing micropores or narrow mesopores, particularly when
analyzing pore size distributions below 10 nm. These techniques
often underestimate pore diameters by approximately 20%–30%.
In comparison, Nonlocal Density Functional Theory (NLDFT)
has emerged as a more advanced and dependable framework for
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investigating the pore structures and adsorption properties of porous
materials. Unlike conventional approaches, NLDFT integrates both
statistical and spatial correlations between adsorbate molecules as
well as their interactions with pore walls, achieving molecular-level
precision in representing adsorption phenomena. This methodology
has been widely employed in the analysis of microporous and
mesoporous materials, such as activated carbons, zeolites, and
coal matrices, due to its ability to accurately model intricate
adsorption isotherms and pore size distributions. By addressing the
shortcomingsof classicalmodels likeBrunauer–Emmett–Teller (BET)
and Barrett–Joyner–Halenda (BJH)—which often rely on simplified
geometric assumptions—NLDFT offers a more nuanced depiction
of pore connectivity, heterogeneity, and molecular-scale interactions.
Specifically,NLDFT enables the prediction of adsorption energies and
thespatialdistributionofadsorbedmoleculeswithinporousnetworks,
rendering it an effective tool for evaluating both microporous and
mesoporous structures. In this study, the NLDFT methodology
is leveraged for the quantitative characterization of mesopore size
distributions, establishing a robust framework for elucidating the pore
structures of coal and other porous systems.

3 Multifractal characteristics of coal
pore structure

3.1 Multifractal theory

The multifractal characteristics of pores are studied by the box-
counting method. Considering that N2 (77K) adsorption is suitable
for mesoporous, that is, the pore size range is 2nm–50 nm. In this
section, the aperture range of 2–50 nm is taken as an example.
According to the Kelvin equation (see [23–26]),

ri = −
0.414

lg( P
P0
)
,

ri is the curvature radius of the gas adsorbed in the pore, and
the relative pressure range corresponding to the aperture range of
2–50 nm can be calculated. The interval I measured by the relative
pressure (P/P0) distribution is tested experimentally, and the interval
is divided into N small partitions, and the sampling interval is
carried out in the form of logarithmic arithmetic increase. In the
context of gas adsorption, the relative pressure is partitioned into
multiple equally sized intervals, denoted by ε. To quantitatively
evaluate the distribution characteristics of gas adsorption within
each interval, the mass probability function corresponding to the
i-th interval is defined, focusing on the relative pressure associated
with gas adsorption.

μi(ε) =
Ni(ε)
Nt

(1)

where Ni(ε) is the gas adsorption capacity of box i, which is the sum
of all pore size distribution results in subinterval I i. Nt is the total
amount of gas adsorption. Calculating

μi(q,ε) =
μqi (ε)

∑N(ε)
i=1

μqi (ε)
(2)

μi(q,ε) is the probability of order q in the i-th subinterval. Define the
denominator in the above formula as follows:

U(q,ε) = ∑N(ε)
i=1

μqi (ε), (3)

which is called partition function or statistical moment
function. Define

α(q) = limε→0

∑N(ε)
i=1

μi(q,ε) lg μi(ε)

lg ε
(4)

characterizes the local singular intensity of the object, and the
larger the value of α(q), the higher the regularity of the aperture
distribution. The multifractal spectral function of the aperture
distribution with respect to α(q) can be expressed as:

f(α(q)) = limε→0

∑N(ε)
i=1

μi(q,ε) lg μi(q,ε)

lg ε
. (5)

Themultifractal spectrum, denoted as f (α(q)), characterizes the
fractal dimension of subsets sharing an equivalent singularity index.
If the aperture distribution exhibits multifractal properties, f (α(q))
will display a unimodal convex function profile.Within this analysis,
the q value spans from−10 to 10with an increment of 1 for each step.

Define the generalized fractal dimension as

D(q) = limε→0
1

q− 1

lg[∑N(ε)
i=1

μi(ε)
q]

lg ε
, (q ≠ 1). (6)

Specifically,

D(1) = limε→0

∑N(ε)
i=1

μi(ε) lg μi(ε)

lg ε
. (7)

Multifractal theory is a theoretical framework for describing
systems with complex distributions or structures. It describes the
inhomogeneity and complexity of systems through a series of
fractal dimensions (see Equations 1-7). In multifractal theory, the
generalized fractal dimension D(q) is a key parameter used to
characterize the distribution characteristics of the system at different
scales, where q is a real number and can take any value. Different
values of generalized fractal dimensions correspond to different
types of dimensions, of which D0, D1, and D2 are the three most
commonly used dimensions, each of which has a specific meaning.

Capacity dimension D0: Also known as the box dimension,
it is the most basic fractal dimension used to describe the rough
structure of a set. D0 reflects the global distribution characteristics
of the entire coal sample pore diameter, regardless of the internal
details of the coal sample pore diameter or the uneven distribution.
The larger the result, the wider the distribution range of the pore
diameter. Information dimension D1: Also known as information
dimension or Shannon dimension, is defined by the concept of
Shannon entropy.D1 reveals the detail structure andnon-uniformity
of coal sample pore size distribution, which is a measure of the
complexity of coal sample pore size. The larger the result, the more
concentrated the pore size distribution. Correlation dimension D2:
Also known as correlation dimension or correlation dimension, it is
defined by considering the correlation between the points within the
pore diameter of the coal sample. D2 can be regarded as a measure
to describe the correlation between the internal structure of coal
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FIGURE 3
Linear fitting relationship between partition function and scale (taking LZ coal sample 3:7 as example).

sample pore size, reflecting the density of some areas in coal sample
pore size and the uniformity of distribution. The larger the result,
the more uniform the spacing of pore size distribution. D0, D1 and
D2 describe the fractal characteristics of coal sample pore size from
different perspectives, including its global structure, information
complexity and internal correlation, which together form the basis
of multifractal analysis, and can be used to comprehensively reveal
the distribution characteristics and internal laws of complex systems.
D (-q)-D(q) describes the difference in fractal dimensions between
sparse and dense regions of the system. This difference reflects the
heterogeneity and complexity of the internal structure of the system.
When D (-q)-D(q) > 0, it indicates that the fractal dimension of the
sparse region in the system is higher than that of the dense region,
which means that the non-uniformity of the system is strong, and
the sparse region contributes more to the fractal characteristics of
the system.

3.2 Characteristics of pore multifractal
parameters

Taking mixed 3:7 as an example, let the total interval I = [0.38,
0.94]. Using the same dichotomy as [12, 27], the interval I of length
L is divided into N(ε) = 2k boxes of scale ε, and the length of the
boxes ε = 2−kL. In order to make the minimum subinterval contain
the measured value, k = 0,1,2,3,4 is selected in this paper.

3.2.1 Generalized dimension spectrum
In the multifractal analysis of aperture distribution, the first

step is to verify whether the object of study exhibits multifractal
properties at the spatial scale under investigation. The existence of
a linear relationship between U (q,ε) and lgε is a key prerequisite
to confirm that an object has multifractal characteristics. The
relationship between the generalized fractal dimension U (q,ε) and
log-aperture lgε (see Figure 3) of the coal sample modified with
the mixed biomass surfactant shows a significant linear correlation.
The results confirm the multifractal properties revealed by the pore
size distribution data of N2 (77K) adsorption experiments at low
temperature.

FIGURE 4
Generalized dimensional spectral D (q)∼q curve of pore size
distribution of coal samples (taking LZ coal sample 3:7 as example).

The generalized dimension spectrum D(q)∼q curves of coal
samples treated with biomass surfactants are shown in Figure 4.
Combined with the inverse “S” shape of the curve, the pore
size distribution of coal samples is characterized by non-uniform
distribution. The larger the range of D(q), the greater the
heterogeneity of the fractal structure. It can also be seen from
the figure that after the coal sample is modified, the generalized
dimension spectrum curve becomes more and more gentle, that is,
the volatility of the curve is weakened, and the range of the curve
(that is, the numerical range covered by the curve) is also gradually
shrinking, which indicates that the non-uniformity of high-rank
coal is smaller. In other words, the internal structural complexity of
the modified coal is reduced, and it has weaker inhomogeneity.

The results of D0, D1, D2 and D-10-D10 in the generalized fractal
dimensions of coal samples are shown in Table 2. For raw coal
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TABLE 2 Spectral parameters of generalized fractal dimension of
coal samples.

Mixe ratio Generalized fractal dimension
spectrum parameter

D0 D1 D2 D-10-D10

Raw coal 0.7925 0.7584 0.7264 0.4084

1:9 0.7925 0.7624 0.7339 0.3880

1:4 0.7925 0.7640 0.7371 0.3765

3:7 0.7925 0.7645 0.7382 0.3746

2:3 0.7925 0.7655 0.7401 0.3672

1:1 0.7925 0.7658 0.7410 0.3650

3:2 0.7925 0.7671 0.7437 0.3512

and composite (3:7) coal samples, their D0 values are the same
(0.7925), which indicates that the degree of pore space filling of
the two is consistent in fractal dimension. However, on D1 and
D2 values, the coal treated with the mixed biomass surfactant
is 0.7645 and 0.7382, respectively, which are higher than that of
raw coal (0.7584 and 0.7264). This means that compared with
raw coal, the uniformity of pore distribution and the degree of
correlation between pores are improved. The values of D-10-D10
reflect the diversity and complexity of pore structure. The D-10-D10
value of raw coal is 0.4084, while that of coal treated with mixed
biomass surfactant is 0.3746, indicating that the pore structure
of raw coal has higher diversity and complexity than that of
coal treated with mixed biomass surfactant. Although there is no
difference in the degree of pore space filling between raw coal and
the coal treated with mixed biomass surfactant, the coal treated
with mixed biomass surfactant performs better in the uniformity
of pore distribution and the degree of pore correlation. These
differences may have an impact on the physical and chemical
properties of coal samples, which in turn affect their performance in
practical applications.

3.2.2 Multifractal singular spectrum
In multifractal analysis, △α and △f are two important

parameters, which are used to describe the heterogeneity
and complexity of coal sample pores (see [12]). These two
parameters are derived from the analysis of multifractal spectrum,
which is extracted from coal sample pores through a series of
operations to represent the fractal dimension of coal sample
pores at different scales. The following are the meanings of these
two parameters.

In the multifractal spectrum, the minimum and maximum
values of α(q) represent the local shape characteristics of the sparsest
and densest parts of the coal sample pores, respectively. Thus,△α =
αmax-αmin describes the difference in fractal properties between the
densest and the sparsest parts of the coal sample pores. The larger
△α value indicates that the pore space distribution of coal sample is
non-uniform.

FIGURE 5
Multifractal spectral curve of pore size distribution of coal samples
(taking LZ coal sample 3:7 as example).

TABLE 3 Parameters of multifractal singular spectra.

Mixed ratio Multifractal singular
spectrum parameters

△α △f

Raw coal 0.5590 0.0313

1:9 0.5394 0.0385

1:4 0.5273 0.0485

3:7 0.5258 0.0474

2:3 0.5179 0.0567

1:1 0.5159 0.0585

3:2 0.4998 0.0785

In the multifractal spectrum, f(α) describes the fractal
dimension of coal sample pores with a specific local Holder index.
It can be understood as the richness or complexity of coal sample
pores under this fractal property. Something like △f = f (αmax) -
f (αmin) describes the difference in fractal dimension between the
densest and the sparsest parts. However, because of the way f(α) is
defined and calculated,△f is often used to represent the width of the
multifractal spectrum, that is, the shape and range of the spectrum,
and is not directly used to compare the fractal dimension of the
densest and sparsest parts.

The multifractal spectrum curve illustrating the pore
distribution of the coal sample treated with the mixed biomass
surfactant, compared to that of raw coal, is presented in Figure 5.
This confirms the presence of multifractal characteristics in the
pore size distribution. Correspondingly, the multifractal singular
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TABLE 4 Hurst index of coal samples (taking LZ coal sample as an example).

Raw coal Raw coal 1:9 1:4 3:7 2:3 1:1 3:2

Hurst index 0.8632 0.8669 0.8686 0.8691 0.8701 0.8705 0.8718

spectrum parameters of the coal samples were computed, with the
results summarized in Table 3.

As depicted in Figure 5, the spectrum curve of pore distribution,
comparing treated coal samples to raw coal following surfactant
modification, exhibits a unimodal convex profile. This finding
demonstrates that the pore size distribution, determined via
the low-temperature N2 adsorption method at 77 K, possesses
multifractal features. Table 3 provides the detailed results of
the calculated multifractal singular spectrum parameters for the
coal samples.

From the data in Table 3, it is evident that the treated coal
exhibits a smaller △α value and a larger △f value compared
to raw coal. These observations suggest that biomass surfactant
modification enhances the local density of the pore size distribution,
leading to a more uniform fractal behavior across different scales
relative to untreated coal. Such changes in pore structure likely exert
a favorable influence on the physical and chemical properties of the
coal samples, with potential implications for energy applications and
environmental sustainability.

3.3 Multifractal characteristic and
connectivity complexity

In the field of coal science, the Hurst index plays a significant
role in characterizing the pore structure of materials such as
coal seams, with a particular emphasis on their connectivity (see
[28–30]). Ranging from 0 to 1, the Hurst index reflects the degree
of long-range dependence and structural self-similarity, with values
closer to 1 indicating stronger self-similarity and persistence in the
material’s structural patterns. As a fundamental tool in fractal and
multifractal analysis, the Hurst index not only aids in assessing
pore connectivity but also provides insights into the anisotropic
and heterogeneous properties of coal seams. Building on the
multifractal framework, the generalized Hurst index extends this
concept to better capture the complex, scale-dependent nature of
pore connectivity in coal. Represented as H(q), the generalized
Hurst index is determined using the scale index τ(q) and the
multifractal spectrum f(α). It is expressed as follows:

H(q) =
τ(q) + 1

q
(8)

In Equation 8, H(q) signifies the generalized Hurst index, which
describes the connectivity of apertures, while τ(q) denotes the scale
index. Notably, when q = 2, H(q) reduces to the classical Hurst
index, typically ranging from 0.5 to 1. A higherHurst index indicates
stronger aperture connectivity, whereas a lower value reflects weaker
connectivity. Refer to Table 4 below for further details.

It can be found from the table that the Hurst index of the coal
treated with the mixed biomass surfactant is higher than that of the
raw coal, indicating that the pore connectivity is improved after the
mixed modification.

4 Conclusion

The study systematically investigates the multifractal
characteristics of coal pore structures under the influence of
mixed biomass surfactants, providing significant insights into
the optimization of coal pore connectivity and uniformity. The
findings reveal that the pore size distribution of coal samples,
as determined by low-temperature N2 adsorption experiments,
exhibits distinct multifractal properties. The application of mixed
biomass surfactants leads to a notable enhancement in the
uniformity of the pore structure, reducing internal heterogeneity
and improving the overall connectivity of the pore network.
This is evidenced by the increase in the Hurst index of treated
coal samples compared to raw coal, indicating improved self-
similarity and a more consistent distribution pattern across larger
spatial scales.

The generalized dimension spectrum (Dq∼q) and multifractal
singular spectrum (f(α)∼α) analyses further demonstrate the
reduction in structural complexity and heterogeneity of coal pores
after surfactant treatment. A reduced slope and a narrower range
in the generalized dimension spectrum suggest that the treated
coal exhibits a more homogeneous pore distribution. Similarly,
the decrease in Δα and Δf values in the multifractal singular
spectrum analysis confirms the reduction in pore heterogeneity
and complexity. These structural improvements are critical
for enhancing methane desorption, diffusion, and migration,
thereby addressing challenges in coalbed methane (CBM)
recovery.

However, the study has certain limitations. The scalability
of biomass surfactant applications in industrial settings remains
uncertain, as the study was conducted under controlled
laboratory conditions. Future research should evaluate the
economic feasibility and operational challenges of large-scale
implementation. Additionally, the study focuses on a specific
biomass surfactant formulation (such as subdivide the mixing
ratios) and coal seam. Exploring alternative biomass surfactant
formulations and testing their effects under varying coal seam
conditions could provide broader insights into their applicability
and effectiveness. These directions will further enhance the
understanding of biomass surfactants as sustainable solutions
for optimizing coalbed methane recovery and improving energy
resource management.
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