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The goal of multi-focus image fusion is to merge near-focus and far-focus
images of the same scene to obtain an all-focus image that accurately and
comprehensively represents the focus information of the entire scene. The
current multi-focus fusion algorithms lead to issues such as the loss of
details and edges, as well as local blurring in the resulting images. To solve
these problems, a novel multi-focus image fusion method based on pulse
coupled neural network (PCNN) and weighted sum of eight-neighborhood-
based modified Laplacian (WSEML) in dual-tree complex wavelet transform
(DTCWT) domain is proposed in this paper. The source images are decomposed
by DTCWT into low- and high-frequency components, respectively; then
the average gradient (AG) motivate PCNN-based fusion rule is used to
process the low-frequency components, and the WSEML-based fusion rule is
used to process the high-frequency components; we conducted simulation
experiments on the public Lytro dataset, demonstrating the superiority of the
algorithm we proposed.
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1 Introduction

Multi-focus image fusion is a technique in the field of image processing that combines
multiple images, each focused on different objects or regions, into a single image that
captures the sharp details from all focal points [1]. This approach is particularly useful in
applications where the depth of field is limited, such as in macro photography, surveillance,
medical imaging, and robotics [2, 3].

In typical photography, a single image can only present objects within a certain range
of focus clearly, leaving objects closer or farther away blurry [4, 5]. However, by capturing
several images with different focus points and then combining them through image fusion
techniques, it is possible to create a final image thatmaintains sharpness across a wider range
of depths [6–8].

The process of multi-focus image fusion generally involves several key steps: image
alignment, where all the images are aligned spatially; focus measurement, where the
sharpness of various regions in each image is assessed; and fusion, where the sharpest
information from each image is retained [9–11]. Advanced fusion algorithms, including
pixel-level, transform-domain, and machine learning-based methods, can be employed to
optimize the fusion quality and preserve important features from all focused regions. This
technology has a broad range of applications. In medical imaging, it helps to create clearer,
more detailed visualizations of organs or tissues. In surveillance, it enhances the clarity of
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objects at varying distances. In robotics, it contributes to improved
perception by enabling robots to focus on multiple objects
simultaneously [12, 13]. As computational power and algorithms
continue to advance, multi-focus image fusion is expected to play
an increasingly significant role in a variety of fields requiring high-
quality visual information [14–17].

Currently, image fusion can be categorized into two types:
traditional algorithms and deep learning algorithms [18–20].
Traditional algorithms typically rely on handcrafted features and
conventional image processing techniques, such as Laplacian
pyramid [21], wavelet transform [22], dual-tree complex wavelet
transform (DTCWT) [23], contourlet [24–26], shearlet [27, 28] and
gradient-based methods [29], to combine focused regions from
multiple images.Mohan et al. [30] introduced themulti-focus image
fusion method based on quarter shift dual-tree complex wavelet
transform (qshiftN DTCWT) and modified principal component
analysis (MPCA) in the Laplacian pyramid (LP) domain, and this
method outperforms many state-of-the-art techniques in terms of
visual and quantitative evaluations.Mohan et al. [31] introduced the
image fusion method based on DTCWT combined with stationary
wavelet transform (SWT). Lu et al. [32] introduced the multi-
focus image fusion using residual removal and fractional order
differentiation focus measure, and this algorithm simultaneously
employs nonsubsampled shearlet transform and the sum of
Gaussian-based fractional-order differentiation. These methods are
generally effective in simpler scenarios, but they may struggle with
more complex images, especially when dealing with varying levels
of focus and noise. Pulse coupled neural network (PCNN) also has
extensive applications in the field of image fusion, Xie et al. [33]
proposed the multi-focus image fusion method based on sum-
modified Laplacian and PCNN in nonsampled contourlet transform
domain, and this method excellently improves the focus clarity.

On the other hand, deep learning has extensive applications
in image fusion [34–37], image segmentation [38, 39], and
video restoration [40–44], and image super-resolution [45, 46].
Deep learning algorithms leverage convolutional neural networks
(CNNs), Transformer, Generative adversarial network (GAN),
Mamba and other advanced models to automatically learn features
and perform fusion in an end-to-end manner [47–49]. These
methods can adapt to a wide range of image complexities, providing
more accurate and visually appealing fused images, especially in
challenging conditions like low light or high noise environments [50,
51]. Deep learning approaches have shown superior performance in
recent years, particularly with the availability of large datasets and
powerful computational resources [52, 53].

Inspired by the ideas from the algorithm in Reference [33], in
this paper, a novelmulti-focus image fusionmethod based onPCNN
andweighted sumof eight-neighborhood-basedmodified Laplacian
(WSEML) in DTCWT domain is proposed. The motivation behind
this approach is to achieve a more robust and effective fusion
method that can handle complex images with varying focus levels
and noise, while also being computationally efficient. The source
images are decomposed by DTCWT into low- and high-frequency
components, respectively; then the average gradient (AG) motivate
PCNN fusion rule is used to process the low-frequency components,
and the WSEML-based fusion rule is used to process the high-
frequency components. The algorithm’s superiority is validated
through comparative experiments on public Lytro dataset.

2 DTCWT

The dual-tree complex wavelet transform (DTCWT) is an
advanced signal processing technique designed to overcome
some of the limitations of the traditional discrete wavelet
transform (DWT) [54]. It was introduced to provide better
performance in tasks such as image denoising, compression, and
feature extraction.TheDTCWT is particularly useful for applications
where directional sensitivity and shift invariance are important.

The DTCWT provides improved directional information
compared to the traditional wavelet transforms. It uses two parallel
trees of wavelet filters (hence “dual-tree”), one for the real part
and one for the imaginary part. This structure allows for better
representation of image features, especially edges and textures, in
multiple orientations. Unlike the traditional DWT, which suffers
from shift variance (i.e., small translations in the signal can cause
large changes in the wavelet coefficients), the DTCWT provides
a level of shift invariance [55, 56]. This makes it more robust to
small shifts or distortions in the input signal, which is critical
for many image and signal processing tasks. The transform uses
complex-valued coefficients rather than real-valued coefficients.
This allows for better capture of phase information in addition
to amplitude, providing more detailed and richer representations
of the signal or image. The DTCWT significantly reduces the
aliasing effect, a common issue in wavelet transforms when high-
frequency components mix with low-frequency ones. The dual-
tree structure and the use of complex filters help mitigate this
problem [57].

3 The proposed method

The multi-focus image fusion algorithm we proposed can
be mainly divided into four steps: image decomposition, low-
frequency fusion, high-frequency fusion, and image reconstruction.
The structure of the proposed method is shown in Figure 1, and the
specific process is as follows.

3.1 Image decomposition

The source images A and B are decomposed into low-frequency
components {LA,LB} and high-frequency components {HA

l,d,H
B
l,d}

using DTCWT. The LX|X ∈ (A,B) shows the low-frequency, and
HX

l,d|X ∈ (A,B) shows the high-frequency sub-bands l level in the d
orientation.

3.2 Low-frequency fusion

The low-frequency component of the image contains the main
background information of the image. The average gradient-based
(AG) motivate PCNN fusion rule is used to process the low-
frequency sub-bands, and the corresponding equations are defined
as follows [58, 59]:

AGij =
∑

i
 ∑

j
(( f(i, j) − f(i+ 1, j))2 + ( f(i, j) − f(i, j+ 1))2)

1
2

mn
(1)

Frontiers in Physics 02 frontiersin.org

https://doi.org/10.3389/fphy.2025.1575606
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


Jia and Ma 10.3389/fphy.2025.1575606

FIGURE 1
The structure of the proposed method.

Fij(n) = AGij (2)

Lij(n) = e
−αLLij(n− 1) +VL∑pq

Wij,pqYij,pq(n− 1) (3)

Uij(n) = Fij(n) ∗ (1+ βLij(n)) (4)

θij(n) = e−αθθij(n− 1) +VθYij(n− 1) (5)

Yij(n) =
{
{
{

1, if Uij(n) > θij(n)

0 else
(6)

Ti,j = Ti,j(n− 1) +Yi,j(n) (7)

In Equation 1, the f(i, j) is pixel intensity at (i, j) and m× n
is the size of the image. In the mathematical model of PCNN in
Equations 2–6, the feeding input Fij is equal to the normalized
AGi,j. The linking input Lij is equal to the sum of neurons firing
times in linking range. Wij,pq is the synaptic gain strength and
subscripts p and q are the size of linking range in PCNN. αL is
the decay constants. VL and Vθ are the amplitude gain. β is the
linking strength. Uij is total internal activity. θij is the threshold. n
denotes the iteration times. If Uij is larger than θij, then, the neuron
will generate a pulse Yij = 1, also called one firing time. In fact,
the sum of Yij in n iteration is often defined as Equation 7, called
firing times, to represent image information. Rather than Yij(n), one
often analyzes Tij(n), because neighboring coefficients with similar
features representing similar firing times in a given iteration times.
AG is input to PCNN to motivate the neurons and generate pulse of

neurons with Equations 2–6. Then, firing times Tij(n) is calculates
as Equation 7.

Get the decision map Dij based on Equation 8 and select the
coefficients with Equation 9, which means that coefficients with
large firing times are selected as coefficients of the fused. The fusion
rule is designed as follows:

DF,ij =
{
{
{

1 If TA,ij(n) ≥ TB,ij(n)

0 else
(8)

LF(i, j) =
{
{
{

LA(i, j) If Dij(n) = 1

LB(i, j) If Dij(n) = 0
(9)

where LF shows the fused low-frequency sub-band.

3.3 High-frequency fusion

The high-frequency component of the image contains
the detailed information of the image. The weighted sum of
eightneighborhood-based modified Laplacian (WSEML) is used to
process the high-frequency sub-bands with Equations 10–12 [60]:

WSEMLX(i, j) =
r

∑
m=−r
 

r

∑
n=−r

Φ(m+ r+ 1,n+ r+ 1)

× EMLX(i+m, j+ n) (10)
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FIGURE 2
Fusion results on Lytro-01. (a) Source A; (b) Source B; (c) GD; (d) FusionDN; (e) PMGI; (f) U2Fusion; (g) ZMFF; (h) UUDFusion; (i) Proposed.

EMLX(i, j) = |2X(i, j) −X(i− 1, j) −X(i+ 1, j)|

+|2X(i, j) −X(i, j− 1) −X(i, j+ 1)|

+ 1
√2
|2X(i, j) −X(i− 1, j− 1) −X(i+ 1, j+ 1)|

+ 1
√2
|2X(i, j) −X(i− 1, j+ 1) −X(i+ 1, j− 1)|

(11)

where X ∈ {A,B}, and Φ is a (2r+ 1) × (2r+ 1)weighting matrix with
radius r. For each element in Φ, its value is set to 22r−d, where d is its
four-neighborhood distance to the center. As an example, the 3× 3

normalized version of Φ is

1
16
[[[[

[

1 2 1

2 4 2

1 2 1

]]]]

]
The fused high-frequency sub-bands are defined as follows:

HF
l,d(i, j) =

{
{
{

HA
l.d(i, j) if WSEMLHA

l,d
(i, j) ≥WSEMLHB

l,d
(i, j)

HB
l,d(i, j) else

(12)

where HF
l,d(i, j) shows the fused high-frequency sub-bands.
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FIGURE 3
Fusion results on Lytro-02. (a) Source A; (b) Source B; (c) GD; (d) FusionDN; (e) PMGI; (f) U2Fusion; (g) ZMFF; (h) UUDFusion; (i) Proposed.

3.4 Image reconstruction

The fused image F is obtained by the inverse DTCWT on LF(i, j)
and HF

l,d(i, j).

4 Experimental results and analysis

To demonstrate the effectiveness of our algorithm,we conducted
simulation experiments on the commonly used public Lytro dataset
[61] and compared it with six classic image fusion algorithms,
namely, GD [29], FusionDN [62], PMGI [63], U2Fusion [64], ZMFF

[65], and UUDFusion [66]. Additionally, we employed six objective
evaluation metrics to qualitatively assess the experimental results,
namely, edge-based similarity measurement QAB/F [59], mutual
information metric QMI [59], nonlinear correlation information
entropy QNCIE [67], Chen-Blum metric QCB [67], image fusion
metric-based on phase congruency QP [67] and gradient-based
fusion performance QG [67]. The higher these metric values, the
better the fusion effect. We adopt a combined subjective and
objective evaluation approach to measure the effectiveness of the
algorithms. The parameters of the comparison algorithms were
set according to the original papers, while in our algorithm, the
decomposition level of DTCWT was set to 4 layers; parameters of
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FIGURE 4
Fusion results on Lytro-03. (a) Source A; (b) Source B; (c) GD; (d) FusionDN; (e) PMGI; (f) U2Fusion; (g) ZMFF; (h) UUDFusion; (i) Proposed.

PCNN is set as p× q, αL = 0.06931, αθ = 0.2, β = 0.2, VL = 1.0, Vθ =

20, Φ =
[[[[

[

0.707 1 0.707

1   0   1

0.707 1 0.707

]]]]

]

, and the maximal iterative number

is n = 200.
Figure 2 shows the fused results with different methods on

Lytro-01. The GD method retains significant focus information
fromboth the foreground and background.However, some blending
artifacts are visible, and the focus transitions may not be smooth.
The FusionDN algorithm preserves structural details well but
exhibits some loss of sharpness in the golfer and background.

The fusion quality is moderate, with slight blurring at focus
boundaries. The PMGI method achieves reasonable fusion but
struggles with preserving contrast and sharpness, especially in the
golfer’s details. The background appears slightly oversmoothed. The
ZMFF method performs well in maintaining the focus of both the
foreground (golfer) and background.The details are well-preserved,
but minor artifacts can be noticed in the focus transition areas.
The UUDFusion method produces an average fusion result, with
noticeable blurring in both the foreground and background. The
image lacks the clarity and sharpness needed for an effective all-focus
image.Theproposedmethoddelivers the best results. Both the golfer
(foreground) and the background are sharply focused, with smooth
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FIGURE 5
Fusion results on Lytro-04. (a) Source A; (b) Source B; (c) GD; (d) FusionDN; (e) PMGI; (f) U2Fusion; (g) ZMFF; (h) UUDFusion; (i) Proposed.

transitions between the focus regions.The image appears natural and
well-balanced, with no noticeable artifacts.

Figure 3 presents fusion results for various algorithms applied
to the Lytro-02 dataset, aiming to create an all-focus image by
combining the near-focus (foreground) and far-focus (background)
regions.The proposedmethod clearly outperforms all othermethods,
producing a sharp and balanced image where both the diver’s face
and the background arewell-preserved.The transitions between focus
regions are smooth and free of noticeable artifacts, resulting in a
natural-lookingimage.ZMFFdemonstratescompetitiveperformance,
preserving sharpness in both the diver’s face and the background.
However, slight artifacts and less refined transitions between focus

regions make it less effective than the proposed method. Similarly,
FusionDN and U2Fusion provide moderate results, balancing focus
between the foreground and background but lacking the sharpness
and clarity of the best-performing algorithms. PMGI maintains
good detail in the background but struggles with sharpness in the
foreground, leading to an imbalanced fusion result. GD performs
adequately, but the diver’s face appears softened, and overall sharpness
is inconsistent. Finally, UUDFusion produces the weakest fusion
result, with significant blurring in both focus areas, making it
unsuitable for generating high-quality all-focus images. In summary,
the proposed method achieves the most visually appealing and
technically superior fusion result, while ZMFF serves as a strong
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TABLE 1 The average metric values of different methods on Lytro dataset.

Year QAB/F QMI QNCIE QCB QP QG

GD 2016 0.7034 3.8521 0.8139 0.6115 0.7466 0.6987

FusionDN 2020 0.6018 5.7908 0.8221 0.6008 0.6221 0.5952

PMGI 2020 0.3901 5.8641 0.8225 0.5656 0.4620 0.3857

U2Fusion 2022 0.6143 5.7765 0.8221 0.5682 0.6657 0.6093

ZMFF 2023 0.7087 6.6271 0.8271 0.7412 0.7853 0.7030

UUDFusion 2024 0.5107 4.8412 0.8178 0.5989 0.5630 0.5055

Proposed 0.7409 7.1960 0.8313 0.7504 0.8137 0.7385

Notes: Bold font indicates the optimal values.

alternative with slight limitations. Other algorithms exhibit varying
levels of performance but fall short of achieving the balance and detail
provided by the proposed method.

Figure 4 compares the fusion results ofmultiple algorithms on the
Lytro-03 dataset. Each algorithm demonstrates varying capabilities
in handling multi-focus image fusion, balancing sharpness, color
fidelity, and detail preservation. These are the two input images with
distinct focal regions. Source A focuses on the foreground, while
Source B highlights the background. The goal of fusion algorithms
is to combine these focal regions into a single, sharp image. The
GD method struggles with detail preservation and produces a fused
image that appears slightly blurred, especially around the edges of the
child’s face. The colors also seem less vibrant, which detracts from
the overall quality. As a deep learning-based approach, FusionDN
performs well in preserving details and maintaining sharpness. The
child’s face and the Cartoon portrait are both clear, with vivid colors.
However, minor edge artifacts are noticeable, which slightly impacts
the naturalness of the result. The PMGI approach achieves a good
balance between sharpness and detail integration. However, it slightly
lacks precision in integrating the finest details.TheU2Fusion provides
decent sharpness and color fidelity but occasionally fails to balance
focus across regions. For example, the child’s face is slightly less sharp
compared to the background, resulting in a less seamless fusion. Some
areas also become very dark, resulting in severe information loss.This
ZMFF method exhibits noticeable limitations. The fused image lacks
sharpness, and the details in both the foreground and background are
not well-preserved. The colors are also muted, leading to an overall
decrease invisualquality.The imageproducedbyUUDFusionexhibits
severe distortion and artifacts, with significant color information loss
and poor fusion performance.The proposed method outperforms all
others in this comparison. It successfully combines the sharpness
and details of both the child’s face and the gingerbread figure. The
colors are vibrant and natural, with no visible artifacts or blurriness.
The transitions between the foreground and background are smooth,
creating a visually seamless result.

Figure 5 compares the fusion results of various algorithms on the
Lytro-04dataset, focusing onhowwell the algorithmspreserve details,
manage focus regions, and maintain color fidelity. Figure 5a focuses
on the foreground, specifically the man’s face and sunglasses, while
the background is blurred. Figure 5b focuses on the background (the
person and chair) but blurs the foreground. Figures 5c-i represent

the fusion results of different algorithms. The GD exhibits moderate
sharpness in both the foreground and background. However, some
details in the man’s sunglasses and the background elements appear
slightly smoothed, reducing overall clarity. The color representation
is acceptable but lacks vibrancy compared to other methods. As a
deep learning-basedmethod, FusionDNachieves good sharpness and
color fidelity. The man’s face and sunglasses are well-preserved, and
the background details are clear. However, subtle edge artifacts are
noticeable around the foregroundandbackground transitions, slightly
affecting the fusionquality.ThePMGIfails topreserve sufficientdetails
in both the foreground and background.Theman’s sunglasses appear
blurred, and the background lacks clarity.The overall image looks less
vibrant and exhibits significant information loss, making it one of the
weaker methods in this comparison. The overall quality of the fused
image is subpar. The U2Fusion method achieves decent fusion but
struggles with focus balance. The foreground (sunglasses and face)
is slightly less sharp, while the background elements are relatively
clear. The ZMFF method produces relatively good fusion results, but
the brightness and sharpness of the image still need improvement.The
UUDFusiongeneratesnoticeableartifacts anddistortions,particularly
in the background. The details in the foreground (the man’s face and
sunglasses) are not clear, with significant color distortion, resulting
in poor fusion performance.The proposed method demonstrates the
best performance among the algorithms. Both the foreground (man’s
face and sunglasses) and the background (chair and person) are sharp,
with vibrant and natural colors. The transitions between the focused
regions are smooth, and there are no visible artifacts or distortions. It
successfully preserves all critical details, making it the most effective
fusion approach in this comparison.

Table 1 shows the average metric values of different algorithms
in the simulation experiments on 20 data sets from the Lytro
dataset. Table 1 compares the performance of various algorithms on
the Lytro dataset across six evaluation metrics: QAB/F, QMI, QNCIE,
QCB, QP and QG. Each metric highlights different aspects of image
fusion quality. Among the listed methods, the proposed method
demonstrates the best overall performance. It achieves the highest
scores in all metrics, such as QAB/F = 0.7409, QMI = 7.1960, QNCIE =
0.8313, QCB = 0.7504, QP = 0.8137 and QG = 0.7385. These results
suggest that the proposed method is highly robust and effective,
delivering superior results across multiple dimensions of evaluation.
ZMFF also shows competitive performance. The FusionDN and
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U2Fusion maintain balanced performance but fail to excel in any
particular metric. UUDFusion performs consistently lower across
all metrics, indicating limited effectiveness compared to other
algorithms. In summary, the proposed method clearly outperforms
all other algorithms, providing the best fusion performance. The
ZMFF and GD are strong competitors in specific metrics, but
their inconsistencies in other areas limit their overall efficacy. This
comparison highlights the superiority of the proposed method for
image fusion tasks on the Lytro dataset. These results are consistent
with the objective evaluation shown in Figures 2–5.

5 Conclusion

In this paper, a novel multi-focus image fusion method based
on pulse coupled neural network and WSEML in DTCWT domain
is proposed. The source images are decomposed by DTCWT into
low- and high-frequency components, respectively; then theAG and
pulse coupled neural network-based fusion rule is used to process
the low-frequency components, and the WSEML-based fusion rule
is used to process the high-frequency components.The experimental
results show that our method achieves better performance in terms
of both visual quality and objective evaluation metrics compared
to several state-of-the-art image fusion algorithms. The proposed
approach effectively preserves important details and edges while
reducing artifacts and noise, leading to more accurate and reliable
fused images. Future work will focus on further exploring its
potential in other image processing tasks.
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