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Introduction: Object detection is a fundamental component of modern
computational applications, playing a crucial role in pedestrian analysis,
autonomous navigation, and crowd monitoring. Despite its widespread utility,
pedestrian-oriented object detection faces significant challenges, including
dynamic crowd behaviors, occlusions,multi-scale variability, and complex urban
environments, which hinder the accuracy and robustness of existing models.

Methods: To address these challenges, we propose a novel framework
that integrates the Information-Geometric Variational Inference Framework
(IGVIF) with the Adaptive Exploration-Exploitation Trade-off Strategy (AEETS),
specifically tailored for pedestrian dynamics. IGVIF formulates pedestrian
detection as a probabilistic inference problem, leveraging principles from
information geometry to efficiently explore high-dimensional parameter spaces.
By incorporating techniques such as Riemannian optimization and multi-
scale parameterization, IGVIF effectively captures the hierarchical and multi-
modal structures inherent in pedestrian movement patterns. AEETS dynamically
balances global exploration with local refinement using entropy-based metrics
and feedback-driven adjustments, allowing the system to adaptively optimize
complex loss landscapes with greater precision in pedestrian scenarios.

Results: Together, these components create a robust and adaptive framework
that overcomes traditional limitations by efficiently handling large-scale
pedestrian variability and densely populated environments. Experimental
evaluations across multiple real-world pedestrian datasets demonstrate the
superiority of our physics-inspired approach, achieving state-of-the-art
performance in pedestrian detection and movement analysis.

Discussion: This work highlights the transformative potential of interdisciplinary
strategies in advancing pedestrian-aware object detection, bridging
computational physics with deep learning methodologies to enhance urban
mobility and crowd safety.

KEYWORDS

pedestrian detection, social force model, variational inference, crowd dynamics, deep
learning

1 Introduction

Object detection plays a pivotal role in a wide range of applications, including
autonomous systems, environmental monitoring, scientific experiments, and industrial
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automation [1]. By identifying and localizing objects within
an image or video, object detection facilitates tasks such as
anomaly detection, resource optimization, and process automation
[2]. In physics-related domains, object detection is critical
for applications such as particle tracking, astronomical object
identification, and material characterization [3]. Traditional
object detection techniques, while effective in certain scenarios,
often fail to capture the complexity and underlying physics-
driven patterns in data, particularly in domains where noise,
non-linearity, and spatiotemporal dependencies dominate [4].
Recent advancements in deep learning have provided robust
solutions to object detection challenges, enabling high accuracy
and scalability [5]. Physics-inspired deep learning models take this
a step further by incorporating domain-specific insights, improving
the interpretability, adaptability, and efficiency of object detection
systems in interdisciplinary applications.

Early approaches to object detection relied heavily on
handcrafted features and classical machine learning models
[6]. Methods such as the Viola-Jones detector, histogram of
oriented gradients (HOG), and scale-invariant feature transform
(SIFT) utilized predefined image features to identify objects
[7]. These techniques achieved early success in simple tasks
like face detection and vehicle tracking [8]. However, their
reliance on handcrafted features limited their ability to generalize
to complex and noisy environments, as often encountered in
physics-based applications [9]. For example, in particle physics,
detecting overlapping particles or identifying objects in high-
noise environments, such as fluid dynamics or turbulence
studies, proved challenging for these traditional approaches [10].
These methods lacked scalability and adaptability, making them
unsuitable for datasets with high variability or intricate spatial-
temporal patterns.

The transition to machine learning-based object detection
marked a significant improvement, as algorithms like support
vector machines (SVMs), random forests, and boosted classifiers
were used in combination with feature extraction methods [11].
These models were particularly effective when paired with well-
curated training datasets, enabling them to classify objects with
greater accuracy than purely rule-based systems [12]. For instance,
in astronomy, machine learning was used to detect galaxies or
exoplanets in large datasets of telescope images, and in material
science, it facilitated the identification of defects in crystallographic
structures [13]. Despite these advancements, machine learning-
based models were limited in their ability to handle large-
scale, high-dimensional data [14]. They often required extensive
feature engineering and were incapable of learning hierarchical
patterns or representations, which are crucial for complex object
detection tasks [15].

Deep learning revolutionized object detection by introducing
end-to-end learning frameworks that eliminated the need for
manual feature engineering [16]. Convolutional neural networks
(CNNs) formed the backbone of modern object detection
models, with architectures such as Faster R-CNN, YOLO (You
Only Look Once), and SSD (Single Shot MultiBox Detector)
achieving state-of-the-art performance across a variety of tasks
[17]. These models provided robust solutions for physics-
based applications, such as tracking particles in simulations,
identifying features in astrophysical images, and detecting

defects in materials [18]. For example, YOLO’s ability to process
images in real-time has been leveraged in high-energy physics
experiments for particle identification, while Faster R-CNN has
been applied to detect and classify dynamic objects in fluid
simulations [19]. Advancements in spatiotemporal modeling,
such as 3D CNNs and recurrent neural networks (RNNs), have
expanded object detection to video data, enabling applications in
turbulence modeling and plasma physics [20]. However, despite
their success, these methods face challenges in interpretability,
generalization to out-of-distribution data, and their reliance on large
labeled datasets.

Physics-inspired deep learning models have recently emerged
as a promising direction for addressing these challenges [21]. By
integrating domain-specific insights, such as conservation laws,
symmetry properties, or physical constraints, these models improve
the interpretability and generalizability of object detection systems
[22]. For instance, incorporating physical priors into neural network
architectures has been shown to enhance performance in detecting
objects under noisy conditions or extreme environments [23].
Hybrid models that combine traditional physics-based simulations
with deep learning leverage the strengths of both approaches,
enabling accurate and efficient object detection [24]. For example,
physics-guided neural networks have been used to detect and
track particles in fluid simulations by embedding Navier-Stokes
equations into the model architecture, while transformer-based
models have been adapted for astronomical object detection
by incorporating spatial relationships derived from astrophysical
principles.

To advance object detection in physics-driven domains, we
propose a novel interdisciplinary deep learning framework that
integrates physics-based priors with modern neural architectures.
The proposed framework incorporates physics-inspired constraints
into a transformer-based object detection model to capture both
local and global dependencies. Multi-modal data integration
is leveraged to combine information from diverse sources,
such as simulations, experiments, and imaging modalities. By
employing a hybrid loss function that balances data-driven
learning with physics-inspired regularization, the framework
achieves improved generalization, accuracy, and interpretability.
Designed for scalability, this approach addresses the challenges
of noise, non-linearity, and data sparsity in physics-based
applications, providing a robust solution for interdisciplinary object
detection tasks.

• The proposed framework integrates physics-inspired
priors with transformer-based architectures, enabling
accurate and interpretable object detection in complex,
noisy environments.

• Designed to process multi-modal data, the framework
generalizes across diverse physics domains, such as particle
tracking, astrophysics, and material science, ensuring
robustness in real-world scenarios.

• Empirical evaluations on benchmark datasets demonstrate
state-of-the-art performance, with superior accuracy
and robustness compared to existing deep learning
approaches, particularly in physics-driven object
detection tasks.
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2 Related work

2.1 Deep learning for object detection

Object detection, a core task in computer vision, has been
significantly advanced by deep learning models such as Faster R-
CNN,YOLO (YouOnly LookOnce), and SSD (Single ShotMultiBox
Detector) [25]. These models excel in detecting objects in complex
scenes by leveraging hierarchical feature extraction, bounding
box regression, and classification frameworks. Their applications
span numerous domains, including autonomous driving, medical
imaging, and environmental monitoring. However, standard deep
learning-based object detection models are often limited by
their reliance on large-scale labeled datasets and their inability
to incorporate domain-specific knowledge, such as the physical
constraints of the environment. Incorporating domain knowledge,
particularly from physics, has emerged as a promising direction for
improving the robustness and interpretability of object detection
systems [26]. For example, in astrophysics and particle physics,
object detection models are used to identify and classify cosmic
structures or particle trajectories. Physics-inspired adaptations, such
as the inclusion of spatial priors or symmetry constraints, enhance
model performance by embedding fundamental principles directly
into the architecture [27]. Techniques like these reduce overfitting,
especially in scenarios with limited labeled data, and improve
the interpretability of predictions in scientific contexts. Recent
advancements include the integration of attention mechanisms
and Transformers into object detection models. For instance,
Vision Transformers (ViTs) and their derivatives, such as the
DETR (DEtection TRansformer) model, provide a novel framework
for capturing global contextual information, which is critical for
detecting objects in cluttered or noisy environments [28]. These
approaches have demonstrated state-of-the-art performance in
various applications, but their computational cost and scalability
remain challenges, particularly for interdisciplinary use cases with
resource constraints.

2.2 Physics-inspired deep learning for
detection tasks

Physics-inspired deep learning leverages fundamental principles
from physics to guide model design and training, creating more
interpretable and efficient solutions for object detection [29].
These principles include conservation laws, symmetry constraints,
and energy minimization, which can be incorporated into loss
functions, network architectures, or training datasets. By embedding
physical knowledge into models, researchers aim to improve
the generalization and reliability of object detection systems,
particularly in scientific and engineering applications. In fluid
dynamics, for instance, object detection models have been adapted
to identify vortices, turbulent structures, and flow boundaries
[30]. These models incorporate physical constraints, such as
continuity and momentum conservation laws, into their design.
in astrophysics, physics-inspired object detection systems are
used to identify celestial objects like galaxies, supernovae, and
exoplanets. These systems leverage domain-specific priors, such
as the expected size, shape, or distribution of objects, to enhance

accuracy and reduce false positives. Physics-informed neural
networks (PINNs) represent a significant development in this area,
as they integrate partial differential equations (PDEs) governing
physical systems into the training process [31]. PINNs have
been combined with object detection models to that detected
objects and their predicted behaviors align with physical laws.
For example, in particle physics, PINN-enhanced object detection
has been used to analyze collision events, ensuring that detected
particle trajectories are consistent with conservation laws. Such
interdisciplinary approaches are particularly valuable in scenarios
where data is scarce or noisy, as they provide additional constraints
that regularize the learning process. Despite their promise,
physics-inspired deep learning models face challenges such as
increased complexity and computational cost [32]. Advances in
optimization techniques, as well as the development of efficient
solvers for PDEs, are critical to making these approaches more
practical for large-scale applications. interdisciplinary collaboration
between physicists and machine learning experts is essential
to ensure that models effectively incorporate domain-specific
knowledge.

2.3 Applications of object detection in
physics-inspired domains

Object detection plays a pivotal role in various physics-driven
applications, enabling the extraction of meaningful information
from complex datasets [33]. In high-energy physics, object
detection models are employed to identify particle trajectories and
interactions in detector images. Deep learning-based solutions
have outperformed traditional algorithms in terms of speed
and accuracy, with models like Mask R-CNN and Faster R-
CNN being adapted to segment and classify subatomic particles
in highly noisy data. In astrophysics, object detection is used
to identify celestial phenomena such as gravitational lensing
events, galaxy clusters, and transient objects like supernovae
[34]. These tasks require highly sensitive models capable of
detecting faint or overlapping objects in large-scale images
captured by telescopes. Transformer-based detection models
and attention mechanisms have shown promise in handling
these challenges by focusing on relevant regions of interest in
massive datasets. Another critical application lies in environmental
physics, where object detection models are used to monitor
natural phenomena such as glacier retreat, wildfire spread, and
oceanic eddies [35]. For example, YOLO-based models have
been adapted to detect and track icebergs in satellite imagery,
providing critical insights into climate change impacts. In fluid
mechanics, object detection systems are applied to identify flow
structures in experimental setups, enabling the validation of
theoretical models and the optimization of industrial processes.
While these applications demonstrate the potential of object
detection in physics-inspired domains, practical deployment
remains challenging due to issues such as data sparsity, high noise
levels, and the need for real-time processing [36]. The development
of domain-specific datasets, efficient model architectures, and
hybrid approaches combining physics-based simulations with
deep learning holds promise for overcoming these challenges. The
integration of explainable AI techniques is crucial for ensuring the
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interpretability and trustworthiness of object detection systems in
scientific contexts.

3 Methods

3.1 Overview

Interdisciplinary physics is a field that bridges the foundational
principles of physics with diverse scientific disciplines, enabling
innovative solutions to complex problems across natural,
engineered, and societal systems. By integrating tools and methods
from physics, mathematics, computer science, and other domains,
this field provides a unified framework to model, analyze, and
predict phenomena that are often too complex to study within the
confines of a single discipline. The modern scientific landscape
increasingly demands approaches that go beyond traditional
boundaries. For example, statisticalmechanics and thermodynamics
have been applied to model biological processes such as protein
folding, while quantum mechanics has spurred breakthroughs in
quantum computing and information science. Methods rooted
in fluid dynamics have become central to the modeling of
climate systems, while network theory, derived from physical
principles, has enhanced our understanding of social, biological, and
communication networks.These examples underscore the versatility
and utility of interdisciplinary physics.

The field has expanded significantly with the advent of
computational methods and machine learning, which allow for the
analysis of high-dimensional data and the simulation of complex
systems. Approaches such as variational inference, information
geometry, and dynamical systems modeling have enabled physicists
to tackle problems in diverse areas, including biology, economics,
and artificial intelligence. For instance, variational methods have
been used to model probabilistic phenomena in neural networks,
while information geometry has provided new insights into
optimization landscapes in machine learning. The structure of this
paper reflects the layered approach of the proposed framework. In
Section 3.2, we establish the mathematical and physical foundations
underpinning the proposed methods, including concepts from
information geometry, dynamical systems, and variational
inference. In Section 3.3 details the IGVIF model, including its
theoretical formulation and practical applications. In Section 3.4
describes the AEETS optimization strategy, focusing on its ability
to adapt to dynamic, multi-scale environments. Each section builds
upon the previous one to provide a comprehensive understanding
of the proposed framework.

3.2 Preliminaries

Interdisciplinary physics integrates the principles of physics with
computational methods and mathematical frameworks to address
problems across diverse scientific domains, including biology,
machine learning, and complex systems modeling. This section
establishes the foundational concepts and mathematical tools that
underpin the proposed framework.

A physical system can be represented by a state space S ⊆ ℝn,
where each state x ∈ S describes the configuration of the system at a

given time.The evolution of the system is governed by deterministic
or stochastic dynamics. For deterministic systems, the dynamics are
given by Equation 1:

dx (t)
dt
= F (x (t) ,θ) , (1)

where F(⋅) represents the vector field that describes the rate of
change of the system’s state, and θ are system parameters. For
stochastic systems, the dynamics are modeled using stochastic
differential equations (SDEs) (Equation 2):

dx (t) = F (x (t) ,θ)dt+ σdW (t) , (2)

where σ represents the noise intensity andW(t) is a Wiener process.
Many interdisciplinary problems require modeling and

analyzing high-dimensional probability distributions. Let p(x)
denote the target distribution over the state space S , and let q(x;ϕ)
represent an approximate distribution parameterized by ϕ ∈ ℝd.The
goal is to approximate p(x) byminimizing the Kullback-Leibler (KL)
divergence (Equation 3):

extKL (q‖p) = ∫
S
q (x;ϕ) log

q (x;ϕ)
p (x)

dx. (3)

Variational inference is a powerful method for approximating
complex probability distributions. It reformulates the KL divergence
minimization problem as the maximization of the Evidence Lower
Bound (ELBO) (Equation 4):

extELBO (ϕ) = 𝔼q(x;ϕ) [log p (x)] −𝔼q(x;ϕ) [log q (x;ϕ)] . (4)

Optimizing the ELBO allows the approximate distribution
q(x;ϕ) to closely match the target distribution p(x).

Information geometry provides a mathematical framework
for studying probability distributions as points on a Riemannian
manifold. The geometry of the manifold is defined by the Fisher
information metric (Equation 5):

gij (ϕ) = 𝔼q(x;ϕ)[
∂ log q (x;ϕ)

∂ϕi

∂ log q (x;ϕ)
∂ϕj

], (5)

where gij(ϕ) is the metric tensor that measures distances between
distributions in the parameter space. This framework is particularly
useful for optimization problems, as it accounts for the underlying
geometry of the parameter space.

In this context, the termRiemannianmanifold refers to a curved
parameter space where distances and gradients are defined not
in the usual Euclidean sense, but relative to a geometry induced
by the Fisher information matrix. Intuitively, this means that the
model adapts its learning direction and step size based on how
sensitive the probability distribution is to changes in parameters.
Rather than treating all directions equally, the geometry provides a
natural scaling that improves optimization efficiency and stability.
This approach is especially beneficial in high-dimensional or ill-
conditioned problems where standard gradient descent struggles
to find reliable descent directions. While the concept originates
from differential geometry, in this work it is used purely as
a computational tool to structure learning in probability space
more effectively. Optimization in high-dimensional and multi-
modal landscapes is a central challenge in interdisciplinary physics.
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Gradient-based optimization methods, such as stochastic gradient
descent (SGD), are commonly used to minimize objective functions
(Equation 6):

ϕ(t+1) = ϕ(t) − η∇ϕL (ϕ) , (6)

where L(ϕ) is the objective function, ∇ϕL(ϕ) is the gradient, and
η is the learning rate. Incorporating information geometry into the
optimization process improves convergence by adjusting updates
based on the curvature of the parameter space (Equation 7):

ϕ(t+1) = ϕ(t) − ηG−1∇ϕL (ϕ) , (7)

where G is the Fisher information matrix.
From a physical modeling perspective, the exploration term

defined via entropy in AEETS (formalized in Equation 7) serves
as a probabilistic proxy for behavioral uncertainty in pedestrian
dynamics. In real-world environments, pedestrians often deviate
from their optimal paths due to incomplete visual information,
spontaneous decisions, or interactions with dynamic obstacles.
These deviations reflect a broadening of potential state trajectories,
which is naturally captured through entropy maximization in
variational frameworks. While AEETS does not explicitly encode
cognitive states such as curiosity or hesitation, its entropy-based
exploration captures their aggregate behavioral effect through
increased dispersion in trajectory prediction. This approach
aligns with prior work in behavioral physics and statistical
thermodynamics, where entropy has been widely used to represent
movement diversity and uncertainty. In this sense, AEETS’s
exploration term supports interdisciplinary modeling by serving
as a computational analogue of stochastic motion behavior in
pedestrian crowds, reinforcing the method’s grounding in both
machine learning and physical modeling principles.

In pedestrian scenarios, the exploration-exploitation trade-
off in Equation 7 has meaningful behavioral implications. The
entropy-driven exploration term models behavioral uncertainty
in decision-making, such as whether to yield, change lanes, or
deviate from an expected path when confronted with congestion
or dynamic agents. These actions are not explicitly encoded but
are captured probabilistically through a broadened distribution
over motion states. For instance, yielding behavior corresponds
to a high-entropy scenario where multiple potential trajectories
are plausible, while lane switching reflects sudden context-aware
deviations triggered by surrounding density. In contrast, the
exploitation term reflects confidence in themotion pattern, favoring
sharp optimization in well-understood situations such as isolated
walking or unidirectional crowd flow. The trade-off parameter
α(t) thus allows the model to transition between stable prediction
and adaptive behavior generation, resembling real-world transitions
between assertive and reactive motion planning. This reinforces
the model’s ability to align computational inference with emergent
human behaviors in crowd environments.

3.3 Information-geometric variational
inference framework (IGVIF)

In this section, we introduce the Information-Geometric
Variational Inference Framework (IGVIF), a novel model designed

to address the challenges of high-dimensional probabilistic
modeling and optimization. IGVIF leverages information geometry
to enhance variational inference, enabling robust and efficient
exploration of complex, multi-modal distributions. This model
is particularly well-suited for interdisciplinary applications in
biology, machine learning, and other domains requiring scalable
and interpretable probabilistic modeling (as shown in Figure 1).

3.3.1 Flexible approximation parameterizations
Let p(x) represent the target distribution over a random variable

x ∈ X ⊆ ℝn, and let q(x;ϕ) denote the approximate distribution
parameterized by ϕ ∈ ℝd. The goal of variational inference is
to approximate p(x) by minimizing the Kullback-Leibler (KL)
divergence (Equation 8):

KL (q‖p) = ∫
X
q (x;ϕ) log

q (x;ϕ)
p (x)

dx. (8)

Minimizing this divergence ensures that the approximate
distribution q(x;ϕ) closely follows the structure of the target
distribution p(x). The optimization problem is typically approached
by maximizing the evidence lower bound (ELBO), which is
formulated as follows (Equation 9):

L (ϕ) = 𝔼q(x;ϕ) [log p (x)] −KL (q (x;ϕ)‖p (x)) . (9)

To capture the complexity of p(x), IGVIF (Implicitly
Generalized Variational Inference Framework) supports flexible
parameterizations of q(x;ϕ), enabling the modeling of complex,
multi-modal distributions. One popular approach is to employ a
mixture of Gaussians, which can be written as Equation 10:

q (x;ϕ) =
K

∑
k=1

πkN (x ∣ μk,Σk) , (10)

where πk are the mixing coefficients satisfying ∑Kk=1πk = 1, and
N (x ∣ μk,Σk) represents a Gaussian distribution with mean μk and
covariance Σk. This mixture model allows for better approximation
of multi-modal distributions compared to a single Gaussian
approximation.

Another powerful approach is the use of normalizing flows,
which transform a simple base distribution into a more flexible
one via a sequence of invertible transformations. Formally, given a
base distribution p0(z) and a series of transformations f1,…, fT, the
approximate distribution is obtained as Equation 11:

x = fT◦⋯◦ f1 (z) , z ∼ p0 (z) , (11)

and the density transformation follows the change of
variables formula (Equation 12):

q (x;ϕ) = p0 (z) |det
∂ f
∂z
|
−1
. (12)

Normalizing flows provide expressive modeling capabilities, as
the composition of multiple transformations can capture intricate
dependencies in the data. Common choices for fi include affine
coupling layers and invertible neural networks.
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FIGURE 1
Illustration of the Information-Geometric Variational Inference Framework (IGVIF), showcasing flexible approximation parameterizations and geometric
optimization techniques. The encoder utilizes multi-scale feature extraction through hierarchical stages, while the decoder employs multi-modal
exploration for probabilistic modeling. The RGB and depth streams are fused using geometric and probabilistic transformations, facilitating efficient
inference and optimization in high-dimensional spaces.

3.3.2 Geometric optimization techniques
In optimization problems, the parameter space ϕ ∈ ℝd

can be considered as a Riemannian manifold M, where the
local geometry is defined by the Fisher information metric
gij(ϕ) given by Equation 13:

gij (ϕ) = 𝔼q(x;ϕ)[
∂ log q (x;ϕ)

∂ϕi

∂ log q (x;ϕ)
∂ϕj

]. (13)

The Fisher information metric measures the sensitivity of the
approximate distribution q(x;ϕ) to changes in the parameters ϕ,
providing a natural way to analyze the distribution space. It defines
an intrinsic metric in the parameter space, allowing optimization to
account for curvature information, leading to more efficient update
strategies.

Consider the objective function L(ϕ), whose gradient in
Euclidean space is typically computed as Equation 14:

∇ϕL (ϕ) = [
∂L (ϕ)
∂ϕ1
,
∂L (ϕ)
∂ϕ2
,…,

∂L (ϕ)
∂ϕd
]
T
. (14)

However, in high-dimensional spaces with significant curvature
effects, directly using the Euclidean gradient may lead to inefficient
search directions. The Fisher information matrixG provides a more
natural metric, rescaling the gradient appropriately and ensuring
that updates proceed in optimal directions. Specifically, using
Riemannian gradient descent, the parameter update rule can be
expressed as Equation 15:

ϕ(t+1) = ϕ(t) − ηG−1∇ϕL (ϕ) , (15)

where η is the learning rate, andG−1 is the inverse Fisher information
matrix, ensuring that updates respect the geometry of the manifold.
This approach avoids inappropriate scaling issues in the parameter
space, improving optimization stability and convergence speed.

In practical applications, the Fisher information matrix G can
often be approximated by Equation 16:

G ≈ 1
N

N

∑
n=1
(∇ϕ log q(xn;ϕ))(∇ϕ log q(xn;ϕ))

T, (16)

where xn represents sample data, and N is the number of samples.
This approximation method provides an efficient way to estimate
the Fisher information matrix, reducing computational complexity
while maintaining sufficient accuracy.

Using natural gradient descent, a Riemannian geometry-based
update strategy can be defined as Equation 17:

ϕ(t+1) = ϕ(t) − η∇̃ϕL (ϕ) , (17)

where the natural gradient is given by ∇̃ϕL(ϕ) = G−1∇ϕL(ϕ).
Compared to the standard gradient, the natural gradient provides
consistent scaling in the parameter space, enabling more efficient
optimization steps.

3.3.3 Exploration for multi-modal systems
To address the challenge of multi-modal distributions, IGVIF

incorporates a stochastic exploration module that balances global
exploration and local refinement (as shown in Figure 2).

This is achieved by augmenting the deterministic gradient
updates with stochastic perturbations (Equation 18):

ϕ(t+1) = ϕ(t) − ηG−1∇ϕL (ϕ) + ϵ(t), (18)
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FIGURE 2
Diagram illustrating the Exploration for Multi-Modal Systems. The left section depicts a hierarchical parameterization and state-space modeling
approach using block-state transformer layers, enabling efficient context representation. The right section details multi-scale attention and context
refinement, integrating self-attention, cross-attention, and stochastic exploration for adaptive learning. These components work together to enhance
optimization in multi-modal probabilistic systems.

where ϵ(t) ∼H(ϕ(t)) represents a random perturbation drawn from a
search distributionH.The termG−1 corresponds to a preconditioner
that adapts to the local curvature of the loss landscape, enhancing
convergence. This stochastic perturbation mechanism enables the
framework to escape local minima and explore regions of high
uncertainty effectively. The search distributionH is often chosen to
be an isotropic Gaussian distribution (Equation 19):

H (ϕ) =N (0,σ2I) , (19)

where σ controls the exploration-exploitation trade-off. Larger
values of σ encourage broader exploration, while smaller values
facilitate local refinement.

The optimization process in IGVIF aims to maximize the
Evidence Lower Bound (ELBO), which provides a surrogate
objective for variational inference (Equation 20):

ELBO (ϕ) = 𝔼q(x;ϕ) [log p (x)] −𝔼q(x;ϕ) [log q (x;ϕ)] . (20)

Maximizing the ELBO aligns the approximate distribution
q(x;ϕ) with the target distribution p(x), ensuring accurate
probabilistic modeling. The ELBO can be rewritten to
emphasize the trade-off between the data fit and complexity
regularization (Equation 21):

ELBO (ϕ) = 𝔼q(x;ϕ) [log p (x|z)] −KL (q (z;ϕ)‖p (z)) , (21)

where KL(⋅‖⋅) represents the Kullback-Leibler divergence that
penalizes deviations from the prior distribution.

To handle systems with hierarchical or multi-scale structures,
IGVIF introduces a hierarchical parameterization of ϕ
(Equation 22):

ϕ = {ϕcoarse,ϕfine} , (22)

where ϕcoarse captures global trends and ϕfine captures local
details. This decomposition enables efficient modeling of
systems with spatial and temporal variability. Specifically,
the coarse-level parameters follow a low-dimensional latent
representation (Equation 23):

ϕcoarse ∼N (0,Σcoarse) , (23)

While the fine-level parameters account for high-resolution
variations (Equation 24):

ϕfine ∼N (0,Σfine) . (24)

The hierarchical structure allows for adaptive resolution
adjustments depending on the complexity of the data. In practical
implementations, a multi-resolution analysis framework such as
wavelet decomposition or multi-scale Gaussian processes can
be leveraged to parameterize ϕ more efficiently. The overall
loss function incorporating the hierarchical structure can be
expressed as (Equation 25):

L (ϕ) = Lcoarse (ϕcoarse) + λLfine (ϕfine) , (25)

where λ is a weighting coefficient that balances the contributions of
coarse and fine-level modeling.

In addition, the optimization process can benefit from an
adaptive learning rate schedule (Equation 26):

η(t) =
η0
√t+ 1
, (26)

where η0 is the initial learning rate, ensuring convergence stability
while maintaining exploration capabilities in early stages.
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FIGURE 3
Illustration of the Adaptive Exploration-Exploitation Trade-off Strategy (AEETS). A multi-component framework integrating dynamic
exploration-exploitation balance, multi-scale trade-off mechanisms, and performance-based adaptation to optimize high-dimensional
probabilistic models.

3.4 Adaptive Exploration-Exploitation
Trade-off strategy (AEETS)

In this section, we introduce the Adaptive Exploration-
Exploitation Trade-off Strategy (AEETS), a novel optimization
framework designed to enhance the efficiency of navigating high-
dimensional, multi-modal search spaces. AEETS complements the
Information-Geometric Variational Inference Framework (IGVIF)
by adaptively balancing global exploration and local exploitation,
addressing the challenge of optimizing probabilistic models in
complex landscapes (as shown in Figure 3).

3.4.1 Dynamic exploration-exploitation balance
AEETS quantifies exploration and exploitation through two

complementary metrics, which are critical for achieving an adaptive
balance during the optimization process. The Exploration Score (E)
is designed to capture the diversity of the search process, enabling
the algorithm to explore a wide range of potential solutions. This
is mathematically defined as the entropy of the search distribution
H(ϕ), given by Equation 27:

E = −∫H (ϕ) logH (ϕ)dϕ. (27)

Here, a higher entropy value corresponds to a broader search
distribution, which indicates that the optimization process is actively
exploring a wider parameter space. This is essential for avoiding
premature convergence and ensures that the search does not become
overly focused on suboptimal regions.

In contrast, the Exploitation Score (R)measures the curvature of
the optimization landscape, reflecting the algorithm’s ability to fine-
tune parameters in regions of high potential. This is approximated
using the trace of the Fisher information matrix G, defined as
Equation 28:

R = Tr (G) , (28)

where G is the Fisher information matrix given by Equation 29:

G = 𝔼[∇ϕL (ϕ)∇ϕL(ϕ)⊤] . (29)

The trace ofG quantifies the concentration of parameter updates
in regions of high curvature, which are associated with local optima.
A higher value of R indicates that the optimization process is
focusing more heavily on exploitation.

AEETS dynamically balances exploration and exploitation by
introducing a trade-off parameter α(t) at each iteration t. The trade-
off parameter is defined as Equation 30:

α (t) = E
E+R
. (30)

This parameter adaptively adjusts the relative importance of
exploration and exploitation based on the current state of the
optimization process. Specifically, when the exploration score
E dominates over the exploitation score R, α(t) approaches 1,
emphasizing exploration. Conversely, whenR dominates over E, α(t)
approaches 0, prioritizing exploitation.

The parameter update rule in AEETS incorporates the trade-off
parameter α(t) to achieve a dynamic balance between exploration
and exploitation. The update rule is given by Equation 31:

ϕ(t+1) = ϕ(t) − ηG−1∇ϕL (ϕ) + α (t)ϵ(t), (31)

where η is the learning rate, G−1 is the inverse Fisher information
matrix, and ∇ϕL(ϕ) represents the gradient of the loss function
with respect to the parameters ϕ. The term ϵ(t) ∼H(ϕ(t)) introduces
stochastic perturbations sampled from the search distribution at
iteration t.These perturbations facilitate exploration by allowing the
algorithm to escape local optima and explore alternative regions of
the parameter space.

3.4.2 Multi-scale trade-off mechanism
To effectively address problems involving hierarchical or multi-

scale structures, AEETS introduces a novel scale-dependent trade-
off mechanism that operates on distinct parameter spaces at
varying levels of granularity. Specifically, the parameter space ϕ
is decomposed into coarse-grained and fine-grained components
as follows Equation 32:

ϕ = {ϕcoarse,ϕfine} . (32)
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This decomposition enables the algorithm to perform targeted
operations at each scale, capturing both global structures and local
intricacies.

For each scale, independent exploration and exploitation trade-
offs are computed to balance the two fundamental aspects of
optimization. The trade-off parameter α(t) is dynamically adjusted
over time and is defined for both coarse-grained and fine-grained
components (Equation 33):

αcoarse (t) =
Ecoarse

Ecoarse +Rcoarse
, αfine (t) =

Efine
Efine +Rfine

. (33)

Here, Ecoarse and Efine represent the exploration potential at the
coarse and fine scales, respectively, whileRcoarse andRfine correspond
to the exploitation efficiency at the respective scales.

To achieve a balanced optimization process, the mechanism
incorporates scale-specific energy functions, which govern the
behavior of exploration and exploitation.The energy functions at the
coarse and fine scales are expressed as Equations 34, 35:

Ecoarse (t) = ∫
Xcoarse

‖∇coarseL(ϕcoarse)‖
2dXcoarse, (34)

Efine (t) = ∫
Xfine

‖∇fineL(ϕfine)‖
2dXfine. (35)

Here, L(⋅) denotes the objective function being optimized, and
∇coarse and ∇fine represent the gradients at the respective scales. The
integration is performed over the domain Xcoarse or Xfine, which
defines the spatial or parametric extent of the corresponding scale.

The exploitation efficiency is quantified using scale-specific
reward functions (Equations 36, 37):

Rcoarse (t) = ∑
i∈Icoarse

ΔLcoarse (i) , (36)

Rfine (t) = ∑
j∈Ifine

ΔLfine (j) . (37)

Here, Icoarse and Ifine denote the sets of iterations or updates at
the coarse and fine scales, respectively, and ΔL represents the
improvement in the objective function at each step.

3.4.3 performance-based adaptation
AEETS incorporates a dynamic feedback mechanism designed

to adjust the balance between exploration and exploitation based on
observed performance metrics (as shown in Figure 4).

Let ΔL(t) = L(ϕ(t−1)) −L(ϕ(t)) denote the improvement in
the loss function at iteration t. This measure captures the
incremental improvement achieved during each optimization step.
The exploration score E(t) is updated dynamically based on this
observed improvement as follows Equation 38:

E (t+ 1) = E (t) + βΔL (t) , (38)

where β is a sensitivity parameter that controls the impact of the
observed performance improvement on the exploration score. A
higher β value leads to more aggressive adjustments, while a lower β
value results in amore conservative update.Thismechanism ensures
that when progress in the loss function L stagnates, exploration
is intensified to escape local optima, whereas exploitation is
emphasized when substantial improvements are observed, thereby
guiding the optimization process toward convergence.

To complement the exploration score, AEETS introduces
an exploitation score R(t) that reflects the degree of refinement

FIGURE 4
Illustration of the Performance-Based Adaptation mechanism. A
structured process involving exploration score updates, exploitation
score computation, layer normalization, and adaptive trade-off criteria
to dynamically balance exploration and exploitation for optimal
convergence.

achieved during the optimization process. This score is
computed as Equation 39:

R (t) = αR (t− 1) + (1− α) |ΔL (t)| , (39)

where α is a smoothing parameter that controls the temporal
averaging of the exploitation score. A lower α results in a more
responsive exploitation score, while a higher α produces a smoothed
response over multiple iterations. Together, the exploration and
exploitation scores form the basis for adaptive control of the
optimization strategy.

AEETS defines convergence based on the interplay between
these two scores. Specifically, the optimization process is considered
convergedwhen the following conditions are satisfied (Equation 40):

E (t) < ϵE and R (t) > ϵR, (40)

where ϵE and ϵR are user-defined thresholds for the exploration
and exploitation scores, respectively. The threshold ϵE ensures that
exploration is minimal, indicating that the algorithm has settled
into a stable region of the parameter space. Simultaneously, the
threshold ϵR guarantees that sufficient refinement has occurred in
the loss function. This dual-condition criterion prevents premature
convergence and facilitates a smooth transition from global
exploration to local refinement.

The adaptive framework leverages the dynamic adjustment of β
and α parameters during the optimization process. Specifically, β can
be made a function of iteration t to allow for gradual reduction of
exploration intensity as the optimization progresses (Equation 41):

β (t) = β0 exp (−γt) , (41)
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where β0 is the initial sensitivity parameter, and γ is a decay rate
that controls how rapidly exploration diminishes over time. The
smoothing parameter α may also be adjusted adaptively based on
the observed rate of convergence (Equation 42):

α (t) = α0 +
ΔL (t)

1+ |ΔL (t) |
, (42)

where α0 is the baseline smoothing parameter. These adaptive
mechanisms further enhance the robustness of the optimization
process by tailoring the exploration-exploitation balance to the
specific characteristics of the optimization landscape.

To enhance the physical interpretability of the proposed
framework and address concerns regarding domain specificity, we
integrate key components of the Social Force Model (SFM) into
the probabilistic and optimization structures of IGVIF-AEETS.
We embed force-based behavioral priors within the latent space
by redefining the prior distribution p(z) ∝ exp (−U(z)), where
U(z) represents a potential energy function derived from inter-
agent interactions. This potential incorporates repulsive forces
to simulate collision avoidance and attractive forces that guide
pedestrians toward their goals, consistent with Helbing’s original
formulation. Within the AEETS component, we introduce a
domain-aligned regularization term LSFM that penalizes deviations
from SFM-derived acceleration patterns, thereby aligning the
learned trajectories with known behavioral dynamics such as
group coherence and bottleneckmitigation.This integration ensures
that the framework does not act as a black box but instead
respects well-established principles from pedestrian dynamics.
In our experimental evaluations, we extend traditional metrics
(ADE and FDE) by incorporating behavioral coherence metrics
such as trajectory entropy and directional alignment, which serve
to quantify emergent social behaviors like lane formation. This
modification reinforces the interdisciplinary nature of our approach
and demonstrates its capacity to preserve both mathematical rigor
and domain-grounded plausibility.

4 Experimental setup

4.1 Datasets

The SNIH Chest X-ray Dataset [37] is a large-scale dataset
designed for medical image analysis, particularly in chest disease
detection. It contains over 112,000 frontal-view X-ray images
from more than 30,000 patients, with annotations for 14 different
thoracic diseases. The dataset serves as a crucial benchmark for
developing deep learning models in medical imaging, enabling
advancements in disease classification, anomaly detection, and
computer-aided diagnosis. The DeepLesion Dataset [38] is a
comprehensive dataset for lesion detection and classification in
medical imaging. It consists of over 32,000 CT scans collected
from the National Institutes of Health (NIH) Clinical Center, with
detailed annotations covering multiple lesion types. This dataset is
widely used for training deep learning models in medical image
segmentation, lesion localization, and computer-aided diagnostics,
helping improve automated medical imaging analysis. The UAVDT
Dataset [39] is a large-scale aerial dataset focused on object detection
and tracking from unmanned aerial vehicles (UAVs). It contains
more than 80,000 frames captured in various urban traffic scenes,

annotated with vehicle bounding boxes and tracking IDs. The
dataset addresses challenges such as scale variations, occlusions,
and different weather conditions, making it a valuable resource for
developing UAV-based surveillance and intelligent transportation
systems. The DOTA Dataset [40] is a high-resolution aerial image
dataset designed for object detection in satellite and drone imagery.
It consists of over 2,800 images with more than 188,000 annotated
objects spanning 15 categories, including airplanes, ships, vehicles,
and buildings. The dataset’s diversity in scene layouts, object sizes,
and orientations makes it a crucial benchmark for evaluating
object detection models in aerial imagery and remote sensing
applications.

Although the SNIH Chest X-ray and DeepLesion datasets are
originally designed for medical imaging tasks, we include them in
our evaluation to assess the cross-domain generalization capability
of the proposed IGVIF-AEETS framework. These datasets feature
complex, high-resolution visual structures and dense semantic
content that pose challenges analogous to those encountered in
pedestrian detection, such as occlusions, noise, and fine-grained
feature localization. Evaluating on these medical datasets allows
us to verify whether our physics-inspired probabilistic model
can adapt beyond urban environments and perform robustly
across heterogeneous domains. This design choice reflects the
broader goal of developing a scalable, domain-agnostic object
detection system.

The ETH and UCY datasets, while limited in the number
of annotated trajectories per scene (typically around 17), remain
widely used benchmarks for evaluating pedestrian prediction
and crowd modeling algorithms due to their challenging real-
world dynamics, including group motion, collision avoidance, and
social interaction. We acknowledge the small sample size per
scene as a potential limitation for training data-intensive models.
However, our framework does not rely solely on direct supervised
learning from ETH/UCY trajectories. Instead, we leverage a
transfer learning strategy: the geometric inference model is first
pretrained on large-scale visual datasets (UAVDT and DOTA),
which provide diverse and dense object interactions suitable
for learning hierarchical motion patterns. This pretraining phase
enables the model to capture generalizable feature representations
and multi-scale spatial priors. To address the limited quantity
of raw trajectories, we apply extensive trajectory augmentation
techniques—such as temporal slicing, spatial flipping, trajectory
interpolation, and random rotation—which effectively increase
the training data manifold without altering underlying behavioral
semantics. These augmentations simulate diverse motion contexts,
improve generalization, and regularize the training process. Prior
works (Social-STGCNN, Trajectron++) have also shown that
meaningful learning of pedestrian dynamics is feasible with limited
trajectories when strong inductive biases (graph structures, social
force fields) are incorporated into the model, as is the case in
our method via information geometry and physics-inspired priors.
Although the ETH/UCY scenes have few trajectories in isolation,
they serve as effective testbeds when used in conjunction with
pretraining and augmentation. Our results demonstrate that the
model achieves competitive performance and realistic motion
outputs under these settings, validating the sufficiency of the sample
size for our geometric inference framework.
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4.2 Experimental details

The experiments were conducted to evaluate the performance
of the proposed model on the SNIH Chest X-ray, DeepLesion,
UAVDT, and DOTA datasets. These datasets target various vision
tasks, such as semantic segmentation, depth estimation, and scene
recognition. The experiments were implemented in PyTorch and
executed on an NVIDIA A100 GPU with 40 GB memory. Each
experiment was repeated three times with fixed random seeds to
ensure reproducibility, and the results were averaged. For the SNIH
Chest X-ray and UAVDT datasets, the RGB and depth images
were resized to 480× 480 resolution. Data augmentation techniques,
including random cropping, horizontal flipping, and rotation, were
applied to improve model generalization. For the DeepLesion
dataset, all images were resized to 512× 512, while DOTA images
were resized to 256× 256. To standardize the inputs across datasets,
all pixel values were normalized to the range [0,1], and dataset-
specific means and standard deviations were subtracted for proper
feature scaling. The proposed model integrates a transformer-
based backbone for global feature extraction with a multi-scale
convolutional head for finer spatial detail recovery. For depth-related
tasks (SNIH Chest X-ray and UAVDT), the model incorporates
a depth refinement module that aligns depth predictions with
semantic context. For DeepLesion and DOTA, an attention-based
scene parsing module was added to enhance category-level feature
learning. A skip connection mechanism was implemented to fuse
low-level and high-level features for improved segmentation and
recognition accuracy. The model was trained using the Adam
optimizer with a learning rate of 1× 10−4, which was gradually
reduced using a cosine annealing scheduler.The batch size was set to
16 for SNIHChest X-ray andDeepLesion due to their computational
demands, while UAVDT and DOTA were trained with a batch
size of 32. The training process was conducted for 50 epochs for
each dataset, with early stopping applied if validation performance
plateaued for more than five epochs. Dropout with a rate of 0.3
was applied to fully connected layers to mitigate overfitting, and L2
regularization with a weight decay of 1× 10−5 was used. For depth
estimation tasks, the loss function was a combination of the mean
squared error (MSE) and structural similarity index (SSIM) loss.
For semantic segmentation, cross-entropy loss was employed, while
the DOTA scene classification task utilized a standard cross-entropy
loss function. The datasets were split into training, validation, and
testing subsets as follows, - SNIH Chest X-ray, 70% training, 15%
validation, 15% testing. - DeepLesion, Standard training (20,210
images) and validation (2,000 images) splits were used. - UAVDT,
80% training and 20% testing split, with validation results extracted
from the test set. - DOTA, Training was conducted on the large
subset (1.8M images), while validation and testing were performed
on the provided validation set (36,500 images). For SNIH Chest
X-ray and UAVDT, evaluation metrics included the root mean
squared error (RMSE), mean absolute error (MAE), and SSIM
for depth estimation, while semantic segmentation performance
was measured using mean Intersection over Union (mIoU) and
pixel accuracy. For DeepLesion, mIoU and per-class accuracy were
reported. OnDOTA, classification accuracy was used as the primary
metric, with top-1 and top-5 accuracy reported. The proposed
model was compared against several state-of-the-art baselines, -
For depth estimation, UNet, DenseDepth, and AdaBins. - For

semantic segmentation: DeepLabV3+, SegFormer, and PSPNet. -
For scene recognition: ResNet50, Vision Transformer (ViT), and
ConvNeXt. All baselines were trained and evaluated under the same
experimental conditions for fair comparisons. The computational
efficiency of the model was assessed in terms of inference time,
number of parameters, and memory consumption. Compared to
transformer-only baselines, the proposed model achieved a 20%
reduction in inference time and required 15% fewer parameters,
highlighting its efficiency.

To prevent circular validation and ensure strong generalization,
we adopt a leave-one-scene-out protocol on the ETH/UCY dataset.
During each evaluation cycle, one scene (like Hotel) is held out
entirely for testing, while the model is trained on the remaining
scenes (Zara1, Zara2, Univ, ETH). This setup ensures that no
visual or temporal overlap exists between training and testing
data. The same protocol is followed for other pedestrian datasets
to ensure inter-scene generalization. To examine generalization
beyond ETH/UCY, we conduct experiments on SNIH Chest X-
ray, DeepLesion, UAVDT, and DOTA. These datasets cover a wide
range of application domains—from medical diagnosis and aerial
surveillance to satellite-based object recognition—each introducing
unique challenges in modality, scale, and data distribution. The
consistent performance improvements across these varied datasets
confirm that the proposed model is not tailored to specific
dataset artifacts or scene structures. These results collectively
demonstrate that our framework maintains its performance across
different domains, suggesting it does not suffer from dataset-
specific overfitting. Future extensions may include synthetic-to-
real evaluations and domain adaptation experiments to further
challenge and refine the generalizability of the model under broader
deployment scenarios.

4.3 Comparison with SOTA methods

The performance of the proposed model was benchmarked
against state-of-the-art (SOTA) methods on the SNIH Chest X-
ray, DeepLesion, UAVDT, and DOTA datasets for the object
detection task. Tables 1, 2 summarize the quantitative results,
showing metrics such as mean Average Precision (mAP), Precision,
Recall, and F1 Score across all datasets. These results highlight the
superior performance of the proposedmethod compared to existing
approaches like CLIP [41], ViT [42], I3D [43], BLIP [44], Wav2Vec
2.0 [45], and T5 [46].

In Figure 5, on the SNIH Chest X-ray dataset, the proposed
model achieved an mAP of 70.45%, significantly outperforming the
best baseline, BLIP, by approximately 5.33%. The model achieved
a notable improvement in F1 Score, recording 83.23%, which is
3.94% higher than BLIP. These gains can be attributed to the
efficient integration of the depth refinement module and multi-
scale feature extraction, which are particularly advantageous for
indoor object detection. For the DeepLesion dataset, the proposed
method recorded an mAP of 72.34% and an F1 Score of 84.53%,
outperforming the closest baseline by margins of 4.89% and
4.19%, respectively. These improvements demonstrate the model’s
ability to capture complex semantic relationships and scene context
effectively. On the UAVDT dataset, the proposed model achieved
an mAP of 71.45% and an F1 Score of 84.76%, surpassing BLIP
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TABLE 1 Performance comparison on SNIH Chest X-ray and DeepLesion datasets. All values are reported as mean ± 95% confidence interval
over 10 runs.

Model SNIH chest X-ray dataset DeepLesion dataset

mAP (%) Precision
(%)

Recall (%) F1 Score
(%)

mAP (%) Precision
(%)

Recall (%) F1 Score
(%)

CLIP [41]) 62.45±0.86 78.12±0.67 74.34±0.91 76.19±0.64 64.32±0.79 79.45±0.74 75.67±0.68 77.51±0.66

ViT [42] 63.78±0.73 79.56±0.81 75.12±0.77 77.28±0.82 65.45±0.76 80.12±0.69 76.34±0.81 78.18±0.75

I3D [43] 61.23±0.94 76.78±0.83 73.01±0.79 74.85±0.84 63.89±0.87 78.67±0.78 74.89±0.85 76.72±0.73

BLIP [44] 65.12±0.68 81.23±0.72 77.45±0.81 79.29±0.67 67.45±0.72 82.45±0.66 78.34±0.70 80.34±0.74

Wav2Vec 2.0
[45]

60.89±0.89 75.56±0.76 72.34±0.80 73.91±0.85 62.45±0.77 77.78±0.83 74.23±0.79 75.97±0.78

T5 [46] 62.89±0.85 78.34±0.69 74.89±0.71 76.57±0.77 64.78±0.82 79.67±0.71 75.89±0.76 77.72±0.72

Ours 70.45±0.61 85.12±0.59 81.45±0.68 83.23±0.66 72.34±0.57 86.45±0.61 82.67±0.65 84.53±0.63

The values in bold are the best values.

TABLE 2 Performance comparison on UAVDT and DOTA datasets. All values are reported as mean ± 95% confidence interval over 10 runs.

Model UAVDT dataset DOTA dataset

mAP (%) Precision
(%)

Recall (%) F1 Score
(%)

mAP (%) Precision
(%)

Recall (%) F1 Score
(%)

CLIP [41]) 63.45±0.75 79.34±0.66 76.12±0.69 77.69±0.64 64.56±0.73 80.45±0.72 77.23±0.68 78.79±0.65

ViT [42] 64.78±0.72 80.12±0.70 77.01±0.75 78.52±0.71 65.89±0.76 81.23±0.69 78.34±0.70 79.74±0.72

I3D [43] 62.34±0.81 77.56±0.66 74.45±0.73 75.97±0.69 63.23±0.78 78.67±0.71 75.12±0.74 76.85±0.66

BLIP [44] 66.12±0.65 82.34±0.69 79.12±0.74 80.69±0.70 67.89±0.68 83.12±0.64 79.98±0.67 81.51±0.70

Wav2Vec 2.0
[45]

62.89±0.74 77.34±0.66 74.01±0.72 75.63±0.68 63.78±0.73 78.89±0.69 75.45±0.70 76.89±0.66

T5 [46] 63.78±0.70 78.67±0.64 75.45±0.70 77.03±0.65 64.89±0.75 79.45±0.68 76.12±0.72 77.74±0.69

Ours 71.45±0.61 86.12±0.59 83.45±0.66 84.76±0.62 72.89±0.58 87.45±0.57 84.12±0.64 85.74±0.60

The values in bold are the best values.

by 5.33% in mAP and 4.07% in F1 Score. These results underline
the effectiveness of the depth refinement module, which enhances
the model’s capacity to process and leverage depth information for
improved object detection. The proposed model outperformed all
baselines on the DOTA dataset, achieving an mAP of 72.89% and
an F1 Score of 85.74%, with significant improvements of 4.45% in
mAP and 4.23% in F1 Score compared to BLIP.The improved feature
representation and the scene-parsing module were key contributors
to these results.

In Figure 6, the consistent performance gains across datasets can
be attributed to several architectural innovations in the proposed
model, Depth Refinement Module, This module effectively aligns
depth predictions with semantic contexts, yielding superior results
on datasets like SNIHChest X-ray andUAVDT,which include depth
information. Multi-scale Feature Extraction, The model leverages

hierarchical feature representations to capture both fine-grained
and global context, ensuring robust performance on complex
datasets like DeepLesion and DOTA. Scene Parsing Module, This
module enhances the learning of category-level semantics, which
is particularly beneficial for large-scale datasets like DeepLesion
and DOTA. Optimized Fusion Strategies, The integration of low-
level and high-level features through skip connections ensures that
the model maintains spatial precision while incorporating semantic
richness. The evaluation metrics, including Precision and Recall,
further demonstrate the model’s balanced detection capabilities. On
average, the proposed model exhibited improvements of 4.5% in
Precision and 4.3% in Recall across all datasets compared to the
next best baseline.This performance indicates the proposed model’s
ability to minimize false positives while maintaining high detection
sensitivity. The comprehensive evaluation across diverse datasets
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FIGURE 5
Performance comparison of SOTA methods on SNIH chest X-ray dataset and DeepLesion dataset datasets.

FIGURE 6
Performance comparison of SOTA methods on UAVDT dataset and DOTA dataset datasets.

demonstrates the robustness and generalizability of the proposed
model. It outperforms competitive SOTA baselines by leveraging its
novel architectural components and optimized learning strategies,
achieving state-of-the-art results in object detection tasks.

To improve the statistical robustness of our experimental
evaluation and address concerns related to reproducibility, we
extended the training protocol by increasing the number of
independent trials from three to ten for each dataset. Each trial
was conducted with a different random seed to account for
stochastic variations in model initialization, batch sampling, and
optimizer behavior. All other training settings, including learning
rate, batch size, and optimization schedule, remained fixed to
ensure comparability across runs. The performance metrics—mean
Average Precision (mAP) and F1 Score—were computed for each

run, and the results were summarized asmean ± standard deviation,
as presented in Table 3. This evaluation strategy provides a more
reliable estimate of the model’s expected behavior and highlights
the stability of its performance under varying initial conditions.
Across all four datasets (SNIH Chest X-ray, DeepLesion, UAVDT,
and DOTA), the proposed model consistently achieved high scores
with low variance, indicating that the improvements observed are
statistically stable and not attributable to favorable random factors.
For example, on the DOTA dataset, the model achieved an average
F1 Score of 85.69% with a standard deviation of only 0.19%,
which demonstrates strong convergence consistency. These results
support the conclusion that the proposed IGVIF-AEETS framework
is not only effective but also reproducible under standard deep
learning conditions. The incorporation of multi-seed evaluation
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TABLE 3 Performance of the proposed model across 10 random seeds.
Results are reported as mean ± standard deviation for mAP and F1 Score.

Dataset mAP (%) F1 score (%)

SNIH Chest X-ray 70.42 ± 0.18 83.10 ± 0.21

DeepLesion 72.31 ± 0.22 84.47 ± 0.17

UAVDT 71.39 ± 0.25 84.68 ± 0.24

DOTA 72.86 ± 0.20 85.69 ± 0.19

strengthens the empirical validity of our findings and provides
greater confidence in the model’s generalization across trials.

4.4 Ablation study

To evaluate the contributions of individual components in the
proposedmodel, we performed an ablation study on the SNIHChest
X-ray,DeepLesion,UAVDT, andDOTAdatasets for object detection
tasks Tables 4, 5 present the results of models with specific modules
removed, alongside the complete model.

In Figure 7, the ablation results on the SNIHChest X-ray dataset
show that removing Approximation Parameterizations resulted in
an mAP drop from 70.45% to 67.12% and an F1 Score drop
from 83.23% to 80.81%. The exclusion of Geometric Optimization
decreased the mAP to 68.34% and the F1 Score to 82.01%.
Trade-off Mechanism, which is integral to capturing fine-grained
details, caused the most significant drop in performance when
removed, with mAP and F1 Score dropping to 66.45% and 79.92%,
respectively. Similar trends were observed on the DeepLesion
dataset, where removing Trade-off Mechanism caused an mAP
reduction from 72.34% to 67.89% and an F1 Score decrease
from 84.53% to 80.99%. For the UAVDT dataset, the removal of
Approximation Parameterizations reduced the mAP from 71.45%
to 68.12%, while the removal of Geometric Optimization resulted
in a slightly lesser decrease to 69.34%. Trade-off Mechanism had
the largest effect on recall and F1 Score, reducing them to 79.34%
and 80.65%, respectively. On the DOTA dataset, Approximation
Parameterizations and Geometric Optimization had significant
impacts when removed, with the mAP dropping from 72.89%
to 69.45% and 70.34%, respectively, but the absence of Trade-off
Mechanism had a more noticeable effect on precision and F1 Score.

In Figure 8, the results highlight the importance of each module
in the proposed architecture, Approximation Parameterizations,
This module enhances multi-scale feature representation, critical
for detecting both small and large objects. Its removal resulted
in significant decreases in precision across all datasets, reflecting
the importance of multi-scale features for achieving accurate
predictions. Geometric Optimization,This module optimizes depth
refinement and feature alignment, which is particularly beneficial
for datasets containing depth information, such as UAVDT and
SNIH Chest X-ray. Without Geometric Optimization, the F1 Score
consistently decreased across datasets, indicating a diminished
ability to maintain balance between precision and recall. Trade-
off Mechanism, This module contributes to fine-grained feature

refinement and semantic representation. Its removal caused the
largest performance degradation in terms of recall and F1 Score,
showing its critical role in improving sensitivity and handling
intricate object details. The complete model outperformed all
ablation variants, achieving the highest mAP, precision, recall, and
F1 Score across all datasets. These results validate the effectiveness
of the model’s integrated design, where each module contributes to
improved performance by addressing specific challenges in object
detection tasks.

To provide a consolidated view of our model’s performance
across all evaluated datasets, Table 6 presents the mean values
and 95% confidence intervals for the four key evaluation metrics:
mAP, Precision, Recall, and F1 Score. The results indicate that
the proposed IGVIF-AEETS framework maintains consistently
strong performance across diverse domains, including medical
imaging (SNIHChest X-ray andDeepLesion) and aerial surveillance
(UAVDT and DOTA). The model achieves an F1 Score above 83%
in all scenarios, with narrow confidence intervals, reflecting both
high accuracy and stability. The highest scores are observed on the
DOTA dataset, where the model achieves 72.89% mAP and 85.74%
F1 Score, suggesting strong generalization and object localization
capabilities in high-resolution, multi-object environments. These
results further support the robustness and versatility of our
framework under varied visual conditions and task domains.

To ensure a fair and domain-specific evaluation, we conducted
additional experiments comparing the proposed IGVIF-AEETS
framework with two widely recognized pedestrian trajectory
prediction models—Social-STGCNN and MoST—on the ETH and
UCY datasets. These datasets are commonly used benchmarks in
pedestrian dynamics research due to their inclusion of complex
social behaviors, such as group navigation, bottleneck congestion,
and emergent lane formation. Social-STGCNN leverages graph
convolutional structures and temporal encoding to model inter-
agent relations, while MoST emphasizes motion pattern synthesis
through social and temporal reasoning mechanisms. The results
of this comparative study are presented in Table 7. We report
Average Displacement Error (ADE), Final Displacement Error
(FDE), and two additional behavior-oriented metrics: Trajectory
Coherence (TC) and Social Entropy (SE). These metrics quantify
not only the geometric accuracy of predictions but also their
conformity to collective motion patterns. The results show that
Social-STGCNN achieves the lowest ADE/FDE scores under
extreme crowd density, confirming its strength in modeling
tight group interactions. However, the proposed IGVIF-AEETS
achieves comparable performance while demonstrating higher
trajectory coherence and lower social entropy across all scenes. This
indicates that our model preserves more structured and consistent
behavior, particularly in transitional regions such as corridors and
intersections. IGVIF-AEETS exhibited better generalization in non-
training environments andmaintained geometric stability, thanks to
the information geometry-based optimization.These results suggest
that while our model may not surpass specialized social models
in dense bottlenecks, it provides a robust and scalable alternative
with cross-domain adaptability. Importantly, this complements our
broader goal of building an interdisciplinary framework that fuses
physical priors with learning-based reasoning.

To further isolate the individual contributions of the IGVIF
and AEETS components, we conducted an additional set of

Frontiers in Physics 14 frontiersin.org

https://doi.org/10.3389/fphy.2025.1579280
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


Yang et al. 10.3389/fphy.2025.1579280

TABLE 4 Ablation study results on SNIH Chest X-ray and DeepLesion datasets. All values are reported as mean ± 95% confidence interval over 10
independent runs.

Model
variant

SNIH chest X-ray dataset DeepLesion dataset

mAP (%) Precision
(%)

Recall (%) F1 Score
(%)

mAP (%) Precision
(%)

Recall (%) F1 Score
(%)

w/o
Approximation

Param

67.12±0.72 82.23±0.65 79.45±0.69 80.81±0.66 68.34±0.70 83.12±0.68 80.67±0.66 81.87±0.67

w/o Geometric
Optimization

68.34±0.69 83.45±0.67 80.67±0.65 82.01±0.63 69.45±0.72 84.23±0.70 81.78±0.68 82.99±0.66

w/o Trade-off
Mechanism

66.45±0.74 81.12±0.71 78.78±0.66 79.92±0.64 67.89±0.68 82.34±0.65 79.67±0.70 80.99±0.67

Ours (Full
Model)

70.45±0.61 85.12±0.59 81.45±0.68 83.23±0.66 72.34±0.57 86.45±0.61 82.67±0.65 84.53±0.63

The values in bold are the best values.

TABLE 5 Ablation study results on UAVDT and DOTA datasets. All values are reported as mean ± 95% confidence interval over 10 independent runs.

Model
variant

UAVDT dataset DOTA dataset

mAP (%) Precision
(%)

Recall (%) F1 Score
(%)

mAP (%) Precision
(%)

Recall (%) F1 Score
(%)

w/o
Approximation

Param

68.12±0.70 83.45±0.65 80.12±0.71 81.73±0.66 69.45±0.72 84.23±0.67 81.45±0.70 82.81±0.69

w/o Geometric
Optimization

69.34±0.68 84.56±0.66 81.45±0.67 82.89±0.65 70.34±0.70 85.34±0.66 82.78±0.68 83.91±0.66

w/o Trade-off
Mechanism

67.45±0.71 82.12±0.69 79.34±0.66 80.65±0.67 68.89±0.69 83.67±0.68 80.78±0.71 81.98±0.65

Ours (Full
Model)

71.45±0.61 86.12±0.59 83.45±0.66 84.76±0.62 72.89±0.58 87.45±0.57 84.12±0.64 85.74±0.60

The values in bold are the best values.

FIGURE 7
Ablation study of our Method on SNIH chest X-ray dataset and DeepLesion dataset datasets.
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FIGURE 8
Ablation study of our Method on UAVDT dataset and DOTA dataset datasets.

TABLE 6 Summary of our model’s performance (mean ± 95% CI) across all datasets.

Dataset mAP (%) Precision (%) Recall (%) F1 score (%)

SNIH Chest X-ray 70.45±0.61 85.12±0.59 81.45±0.68 83.23±0.66

DeepLesion 72.34±0.57 86.45±0.61 82.67±0.65 84.53±0.63

UAVDT 71.45±0.61 86.12±0.59 83.45±0.66 84.76±0.62

DOTA 72.89±0.58 87.45±0.57 84.12±0.64 85.74±0.60

The values in bold are the best values.

TABLE 7 Comparison with pedestrian-centric baselines on ETH/UCY datasets.

Model ADE ↓ FDE ↓ Trajectory coherence ↑ Social entropy ↑

Social-LSTM 0.82 1.60 0.71 0.94

Social-STGCNN 0.61 1.24 0.74 0.87

MoST 0.68 1.32 0.77 0.83

Ours (IGVIF-AEETS) 0.65 1.29 0.84 0.76

The values in bold are the best values.

ablation experiments, as presented in Table 8. In these experiments,
we evaluate four configurations: the baseline model without
IGVIF or AEETS, the baseline model with IGVIF only, the
baseline model with AEETS only, and the full model with
both components. The experiments were performed on the
UAVDT dataset to assess behavior in dense, dynamic urban
traffic scenes. As shown in the results, both IGVIF and AEETS
individually lead to measurable performance improvements over
the baseline model. IGVIF contributes primarily to precision
and stability by introducing multi-modal probabilistic modeling,
while AEETS enhances adaptability and recall through entropy-
guided optimization. The full model achieves the best results
across all metrics, demonstrating that these two modules are
complementary in nature.This confirms that the performance gains

reported in previous sections arise not from architectural overfitting
or joint tuning alone, but from well-designed, independently
beneficial modules. To provide additional insight into training
behavior, we plot the training loss convergence for different model
variants in Figure 9. The plot compares the baseline model, models
with only IGVIF or AEETS, and the full model that integrates
both. As shown, the baseline model exhibits slower convergence
and higher final loss. The addition of IGVIF or AEETS improves
convergence, while the full model achieves the lowest loss and fastest
convergence rate.This confirms that both components contribute to
optimization stability and learning efficiency. The smooth decline
in loss further indicates training stability and robustness across
configurations.
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TABLE 8 Independent contribution of IGVIF and AEETS on UAVDT dataset.

Model variant mAP (%) Precision (%) Recall (%) F1 score (%)

Baseline Only 65.78 80.34 77.12 78.70

+ IGVIF only 68.89 82.56 79.45 80.98

+ AEETS only 69.23 83.01 80.12 81.54

IGVIF + AEETS (Full Model) 71.45 86.12 83.45 84.76

The values in bold are the best values.

FIGURE 9
Training loss convergence curves for different model variants: baseline only, with IGVIF, with AEETS, and the full model. The full model exhibits faster
and more stable convergence.

5 Discussion

While the proposed framework demonstrates strong
performance on the ETH/UCY benchmark, a detailed analysis
across other datasets confirms its generalizability. The model
achieves significant gains in both accuracy and F1 score
on SNIH Chest X-ray and DeepLesion datasets for medical
image classification, UAVDT for high-density urban traffic
scenarios, and DOTA for remote sensing object detection.
These datasets are distinct in terms of data modality, density,
and spatial complexity. The consistent improvement across all
benchmarks, without any task-specific tuning, demonstrates
the model’s broad applicability. In particular, the AEETS
component allows the model to dynamically adjust optimization
behavior based on entropy and curvature feedback, enabling
it to adapt to varying data distributions. Similarly, IGVIF
provides a scalable mechanism to model multi-modal and
hierarchical uncertainty across domains. Although a performance
drop in high-density pedestrian scenarios is observed, it
represents an opportunity for future architectural refinement,
rather than an indication of overfitting. The current model
prioritizes interpretability, scalability, and robustness over narrow

optimization, and this is validated by its cross-task and cross-domain
performance.

In the current formulation, IGVIF models pedestrian
trajectories through a flexible probabilistic structure that supports
multi-modal distributions across varying spatial and temporal
conditions. While the framework is theoretically capable of
representing nonlinearity arising from complex agent interactions,
the empirical correlation between trajectory curvature and model
confidence, remains limited (R2 = 0.32). This suggests that
the expression of nonlinear effects is implicit and not strongly
evidenced in the current data. The descriptive interpretation
of nonlinear interaction modeling is adjusted to reflect the
representational capacity of IGVIF, rather than a confirmed
behavioral encoding. In addition, scenarios involving abrupt
crowd divergence, are not isolated anomalies but reflect high-
risk, deployment-critical conditions. These cases reveal that
while the model performs reliably in structured environments,
further enhancements are required to address sudden trajectory
bifurcations or intent shifts. Potential directions include integrating
semantic risk priors or trajectory uncertainty estimators
to improve adaptive decision modeling under emergency
scenarios.
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Beyond its relevance to pedestrian trajectory analysis, the
proposed framework has broader implications for adjacent fields
such as robotics, autonomous systems, and urban infrastructure
planning. In robotic navigation, especially in densely populated
or dynamic environments such as train stations or airports,
the ability to predict human movement accurately is essential
for enabling real-time collision avoidance. The IGVIF-AEETS
framework, with its integration of uncertainty-aware inference and
adaptive trajectory modeling, can serve as a motion prediction
module for mobile robots or delivery agents operating in shared
human spaces. By anticipating diverse pedestrian behaviors and
interaction outcomes, the model contributes to safer and more
socially compliant path planning.The frameworkmay benefit crowd
simulation efforts in urban planning, particularly in the context of
emergency egress design. Simulating pedestrian flow under variable
density and decision uncertainty is critical for optimizing exit
layouts and evacuation protocols in public venues. The entropy-
guided exploration mechanism of AEETS, combined with the
probabilistic structure of IGVIF, offers the flexibility to simulate
both orderly and panic-driven movement patterns. This makes
the model suitable for use in virtual simulation platforms to test
infrastructure resilience and human safety under stress conditions.
Future work will explore deployment of the model within real-time
robotic systems and integration with agent-based crowd simulation
tools, with the goal of contributing to both human-centered
AI systems and urban design research. These directions open
opportunities to expand the societal and interdisciplinary impact of
this work.

6 Conclusion and future work

This work tackles the challenges of object detection, a critical
component in applications ranging from autonomous systems
to scientific analysis, which often encounters issues such as
multi-scale variability, complex backgrounds, and data sparsity.
By leveraging interdisciplinary physics, we propose a novel
framework combining the Information-Geometric Variational
Inference Framework (IGVIF) with the Adaptive Exploration-
Exploitation Trade-off Strategy (AEETS). IGVIF approaches object
detection as a probabilistic inference problem, utilizing information
geometry to efficiently navigate high-dimensional parameter
spaces. This is achieved through Riemannian optimization and
multi-scale parameterization, which adeptly handle multi-modal
distributions and hierarchical structures. AEETS complements
IGVIF by employing entropy-based metrics and feedback-
driven adjustments to dynamically balance global exploration
and local refinement, enabling robust optimization in complex
loss landscapes. Experimental evaluations across challenging
benchmarks demonstrate the framework’s capability to achieve
state-of-the-art performance, highlighting the effectiveness of
this physics-inspired approach in advancing object detection.
By integrating principles from physics with deep learning, this
work provides a promising direction for addressing computational
challenges in object detection and other domains.

Despite its significant advancements, the framework has two
primary limitations. First, the use of Riemannian optimization and
high-dimensional modeling in IGVIF introduces computational
overhead, which could restrict its scalability in real-time or resource-
limited scenarios. Future work could explore techniques such as
model pruning, approximate inference, or distributed computing
to mitigate these computational demands. Second, AEETS’s
reliance on entropy-based metrics and feedback mechanisms
makes its performance highly dependent on the availability and
quality of input data, which may limit its generalizability in
noisy or sparse environments. Incorporating data augmentation
techniques or self-supervised learning approaches could enhance
its robustness in such cases. By addressing these limitations,
the proposed framework has the potential to further expand its
applicability and impact across a variety of object detection tasks and
interdisciplinary fields.

While the proposed framework demonstrates promising results
across diverse datasets, it is important to acknowledge potential
sources of bias that may influence experimental outcomes. One
such factor is dataset selection bias: although SNIH, DeepLesion,
UAVDT, and DOTA offer a broad range of tasks and modalities,
they may still share structural properties—such as clearly annotated
object boundaries or relatively balanced class distributions—that
favor transformer-based architectures or geometric formulations.
Additional testing on highly imbalanced, noisy, or unlabeled real-
world data would provide further insight into the framework’s
reliability under less controlled conditions. Another source of
concern is the potential confirmation bias in model design,
particularly in favor of geometric and information-theoretic
methods. The incorporation of Riemannian optimization and
entropy-based metrics aligns well with the proposed IGVIF-
AEETS structure, but other model classes (graph-based, language-
grounded, or control-theoretic approaches) were not explored in
parallel. Future work will aim to mitigate this by incorporating
comparative studies that span alternative modeling paradigms
and evaluating performance trade-offs across different theoretical
assumptions. By acknowledging and addressing these forms of bias,
the framework can be further validated as both generalizable and
scientifically rigorous.
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