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The dynamic behavior of nonlinear oscillators can be researched more
accurately in the micro-scale. In this paper, a modified nonlinear oscillator with
coordinate-dependent mass by He’s fractal derivative is first given. Then, the
energy balance method and modified harmonic balance method are utilized
to constructed the first-order and second-order approximate solutions of the
fractal model. Next, two sets of parameters are choosen, the obtained numerical
solution are compared with the Runge-kuta (RK) solution, and the results
demonstrate that the second-order approximate solution is more accurate. In
addition, by comparing the solutions under the different fractal dimensions, one
can be found that the fractal dimension does not change global properties of the
oscillators, but the vibration behaviors gradually accelerates with the increase of
the fractal dimension, which means that we can study the oscillation behavior
more clearly in the micro-scale.
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nonlinear oscillators, He’s fractal derivative, two-scale theory, the energy malance
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1 Introduction

Nonlinear oscillations have significant applications in physics, mechanics, and other
engineering problems. Typically, differential equations involved in these engineering
and physical phenomena are nonlinear. However, methods for solving linear differential
equations are easy to construct and have been thoroughly studied. Conversely,
computational methods of nonlinear differential equations (NDEs) are relatively less
available, and it is difficult to obtain exact solutions, numerical approximations are
frequently achieved. Currently, many mathematicians and physicists have proposed a
variety of analytical methods for nonlinear problems, such as Homotopy Perturbation
Method [1, 2], Adomian decomposition method [3, 4], Variational iteration method
[5–7], Hamiltonian-based method [8, 9], Energy Balance Method [10, 11], Harmonic
Balance Method [12, 13], Amplitude Frequency Formulation [14, 15] and so on for
computing NDEs.

Recently, Lev et al investigate the properties of nonlinear oscillator withcoordinate-
dependent mass, and discussed the order parameter-space-space-time duality and phase
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trajectories [16], which has the folowing form

(1+ εx2)Dttx+ εx(Dtx)
2 − x(1− x2) = 0, (1.1)

with subject to the initial conditions

x (0) = A, Dtx (0) = 0, (1.2)

where Dtx and Dttx are denote the first and second derivative of x
with respect to time t, respectively.

Research has shown that such nonlinear oscillators can describe
phase transitions in physics and play an important role in quark
confinement, cosmos-logical model, and spinodal decomposition
[16]. Subsequently, many scholars have systematically studied
the numerical solution of the model. Wu et al. applied the
Homotopy perturbation method to solve the nonlinear oscillator
with nolinear or negative linear term, which the negative coefficient
is expanded by adopting the parameter expansion method, and
obtained the existence condition for the periodic solutions [17].The
frequency-amplitude formulation with ω4 is used to this nonlinear
oscillator, the results are identical with those obtained by Homotopy
perturbation method, which proves the validity of the frequency-
amplitude formulation with ω4 [18]. Wang et al combined He’s
frequency–amplitude formulation and average residuals to solve the
nonlinear oscillation model with negative term [19]. Very recently,
based on fractional complex transform and global residue harmonic
balance method, Lu et al researched the fractional order form of the
nonlinear oscillators with coordinate-dependent mass, numerical
results show that this method is robust and effective [20].

Theoretically, it is necessary to investigate the physical
phenomena of the nonlinear oscillators from different time scales,
because the exact nonlinear vibrational behavior can be captured at
the microscopic scale. Reviewing the two-scale theory proposed by
He [21, 22], it can describe the relation of nonlinear systems between
different scales. Moreover, He proposed a simple fractal derivative
by variational iteration method and clarified its application to the
interpretation of polar bear hair in [23]. Subsequently, inspired by
the two-scale and He’s fractal derivatives, researches of nonlinear
oscillators for the fractal corrections can be found inmany literatures
[24–27].

In this paper, we make fractal corrections to Equation 1.1 based
on two-scale theory and fractal derivatives to study the microscopic
scale behavior. The fractal version of Equation 1.1 can be written in
the following form

(1+ εx2)Dα
ttx+ εx(D

α
t x)

2 − x(1− x2) = 0, (1.3)

with subject to the initial conditions

x (0) = A, Dα
t x (0) = 0, (1.4)

in whihch Dα
t x and Dα

ttx are He’s fractal derivatives of x with respect
to time t that is given by

Dα
t x = Γ (1+ α) limt−t0=Δt

Δt≠0

u (t) − u(t0)
(t− t0)

α ,

and the second-order fractal derivative Dα
ttx satisfies the chain

rule Dα
ttx = D

α
tD

α
t x.

The fractal two-scale transform is an effective tool for studying
fractal models [27]. Typically, for a given fractal problem, fractal

two-scale transformation can transform the fractal model into a
continuous problem. Since it was proposed, it attracted the attention
of many scholars. Based on the transform T = tα, Equations 1.3–1.4
can be converted to

(1+ εx2)DTTx+ εx(DTx)2 − x(1− x2) = 0, (1.5)

and the initial conditions are

x (0) = A, DTx (0) = 0. (1.6)

The layout of this paper is given as follows: In Section 2, the
energy balance method is adopted to solve the fractal problem
(1.3). In Section 3, we succesfully construct first- and second-order
approximation solution of the fractal model by using the Modified
Harmonic Balance Method. In Section 4, we present numerical
experiments and analyze the dynamic behavior of this fractal
nonlinear oscillator. In addition, some conclusive remarks are placed
in the last section.

2 The energy balance method

The energy balance method is usually based on the variational
principle and is an effective way for solving nonlinear oscillation
problems. In order to employ the energy balance method, the
variational principle of Equation 1.5 should be established at the
first time. By using the semi-inverse method, Equation 1.5 has the
following variational principle

J (u) = ∫
T
4

0
{1
2
(DTx)2 (1+ εx2) − (

1
4
x4 − 1

2
x2)}dT

= ∫
T
4

0
(D− S)dT,

(2.1)

in which D and S indicate the kinetic energy and potential
energy, respectively. Their specific forms are as follows

D = 1
2
(DTx)2 (1+ εx2) ,

S = 1
4
x4 − 1

2
x2.

(2.2)

Thus, the Hamiltonian invariant can be written as

ℏ = D+ S = 1
2
(DTx)2 (1+ εx2) −

1
2
x2 + 1

4
x4. (2.3)

In view of the energy conservation theory, the Hamiltonian
invariant remains constant throughout the vibration process,
which obtains

ℏ = D+ S = 1
2
(DTx)2 (1+ εx2) −

1
2
x2 + 1

4
x4 = ℏ0. (2.4)

Supposing that the solution of Equation 1.1 has the
following form

x1 = Acos(ω0T) . (2.5)

According to the initial condition Equation 1.2,
substituting it into Equation 2.4, we have

ℏ0 = −
1
2
A2 + 1

4
A4. (2.6)

Frontiers in Physics 02 frontiersin.org

https://doi.org/10.3389/fphy.2025.1579671
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


Ling et al. 10.3389/fphy.2025.1579671

TABLE 1 First- and second-order approximate solutions of Equation 1.3
compared with numerical solution (α = 1, A = 2 and ε = 0.0001).

t x1
a x2

b x∗c | x∗−x1
x∗
|d | x∗−x2

x∗
|e

0.01 1.99,980,004 1.99,972,105 1.99,970,015 0.00500% 0.00105%

0.02 1.99,920,021 1.99,888,440 1.99,880,092 0.02000% 0.00418%

0.03 1.99,820,063 1.99,749,069 1.99,730,330 0.04493% 0.00938%

0.04 1.99,680,149 1.99,554,096 1.99,520,894 0.07982% 0.01664%

0.05 1.99,500,308 1.99,303,667 1.99,252,012 0.12461% 0.02592%

0.06 1.99,280,576 1.98,997,969 1.98,923,978 0.17926% 0.03720%

0.07 1.99,020,996 1.98,637,230 1.98,537,150 0.24371% 0.05041%

0.08 1.98,721,620 1.98,221,720 1.98,091,945 0.31787% 0.06551%

0.09 1.98,382,509 1.97,751,748 1.97,588,844 0.40167% 0.08245%

0.10 1.98,003,730 1.97,227,665 1.97,028,388 0.49502% 0.10114%

ax1 denotes the first-order approximate solution solved by EBM or MHBM.
bx2 represents the second-order approximate solution obtained by MHBM.
cx∗ indecates the forth order Runge–Kutta numerical solution.
d|

x∗−x1
x∗
| is the relative error between x1 and x∗.

e|
x∗−x2
x∗
| is the relative error between x2 and x∗.

Then Equation 2.4 can be rewritten as

ℏ− ℏ0 =
1
2
(DTx)2 (1+ εx2) −

1
2
x2 + 1

4
x4 −(1

4
A4 − 1

2
A2) = 0. (2.7)

Substituting Equation 2.5 into Equation 2.7 and setting ω0T =
π
4
, one has

1
4
A2ϖ2(1+ ε

2
A2)− 1

4
A2 + 1

16
A4 −(1

4
A4 − 1

2
A2) = 0. (2.8)

By simplifying the above equation yields

ϖ2(1+ ε
2
A2) = −1+ 3

4
A2, (2.9)

and the frequency can be easily obtained from Equation 2.9

ϖ = √
3
4
A2 − 1

1+ ε
2
A2 = √

3A2 − 4
2A2ε+ 4

> 0. (2.10)

Therefore, the solution of Equation 1.1 is

x (T) = A cos(√ 3A2 − 4
2A2ε+ 4

T), (2.11)

which is in complete agreement with the references
[17–19]. On account of Equation 1.1, we can acquire the
solution of Equation 1.3 as

x (T) = A cos(√ 3A2 − 4
2A2ε+ 4

tα). (2.12)

3 The modified harmonic balance
method

Here, we assume that the first order approximate solution has
the following form

x1 = Acos (ω1T) . (3.1)

Substituting Equation 3.1 into Equation 1.1 and taking the
coefficient of term cos(ω1T) as zero, the algebraic equation is given by

−1
2
A3ω2

1ε−Aω
2
1 +

3
4
A3 −A = 0. (3.2)

From Equation 3.2, we acquire the first-order
approximate frequency

ω1 = √
3A2 − 4
2A2ε+ 4

. (3.3)

Thus the first-order approximation analytical solution of
Equation 1.1 is

x1 = Acos(√
3A2 − 4
2A2ε+ 4

T), (3.4)

and this result is fully consistent with Equation 2.12.
Then we investigate the second-order approximation solution

and the corresponding form can be written as

x2 = A cos (ω2T) +Aλ (cos (3ω2T) − cos (ω2T)) . (3.5)

Substituting Equation 3.5 into Equation 1.1 and collectiong the
coefficients of cos(ω2T) and cos(3ω2T), one has.

(4A2ω2
2ε−

3
2
A2)λ3 +(−7

2
A2ω2

2ε+
9
4
A2)λ2 +(ω2

2 + 1−
3A2

2
)λ

(3.6)

−
A2ω2

2ε
2
−ω2

2 − 1+
3A2

4
= 0,

× (−9A2ω2
2ε+ 2A

2)λ3 +(17
2
A2ω2

2ε−
9
4
A2)λ2

+(−7
2
A2ω2

2ε+
3
4
A2 − 9ω2

2 − 1)λ (3.7)

−
A2ω2

2ε
2
+ A

2

4
= 0.

By simplification Equation 3.6, we have

ω2 = √
6A2λ3 − 9A2λ2 + 6A2λ− 3A2 − 4λ+ 4
16A2ελ3 − 14A2ελ2 − 2A2ε+ 4λ− 4

. (3.8)

Replacing Equation 3.8 with ω2
2 in Equation 3.7, the followig

nonlinear algebraic equation in terms of λ can be derived

− 88A4ελ6 + 272A4ελ5 + (−432A4ε+ 80A2ε− 184A2)λ4

+ (384A4ε− 224A2ε+ 256A2)λ3 + (−164A4ε+ 192A2ε− 168A2 + 128)λ2λ

+ (24A4ε− 40A2ε+ 100A2 − 128) + 4A4ε− 8A2ε− 4A2 = 0.
(3.9)

The higher order terms of λ more than second order has
almost no effect on λ. Thus, more than second order of λ can be
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FIGURE 1
The dynamic behaviours of Equation 1.3 for α = 1, A = 2 and ε = 0.0001. (A) Solution plots of the three methods. (B) Phase plane trajectories of the three
methods. (C) Solution plots for different fractal dimensions.

ignored, one has

v(8A2ε+ 4A2 − 4A4ε− (−164A4ε+ 192A2ε− 168A2 + 128)λ2) = λ,
(3.10)

in which

v = 1
24A4ε− 40A2ε+ 100A2 − 128

. (3.11)

The power series solution of Equation 3.10 with respect to v is

λ = a1v+ a2v3 +⋯, (3.12)

where

a1 = −4A4ε+ 8A2ε+ 4A2,

a2 = 64(41A4ε− 48A2ε+ 42A2 − 32)A4(A2ε− 2ε− 1)2.

Next, inserting Equation 3.12 into the λ of Equation 3.8, a
second-order approximate frequency can be easily ontained.

Thus, the second-order approximation solution of Equation 1.5
is x2 = A cos (ω2T) +Aλ(cos (3ω2T) − cos (ω2T)) where λ and ω2 are
provided by the equations above.

4 Numerical simulation

In this section, we take the following parameters to verify the
effectiveness of these twomethods for the nonlinear oscillationswith
fractal correction.

For the parameters A = 2 and ε = 0.0001, we calculate the
numerical solutions for the first-order, second-order, and Runge-
Kutta methods at different t with α = 1, and provided their relative
errors compared to the Runge-Kutta (RK) solution. From the last
two columns of Table.1, it can be seen that although the first-order
approximate solution seems to be sufficiently accurate, the relative
error of the second-order approximate solution compared to the
RK solution is almost one-fifth of the relative error of the first-
order approximate solution to the RK solution. This indicates that
the second-order solution constructed by the modified harmonic
balance method has higher accuracy.

Figure 1 further validates this viewpoint. Figure 1A presents
the solution curves for three methods, showing that the second-
order approximate solution almost coincides with the RK curve,
whereas the first-order approximate solution, represented by the
blue curve, has noticeable differences compared to the red and
green curves. Figure 1B displays the corresponding phase plane
trajectories for the three methods within one period, revealing
that the phase plane trajectories of the second-order approximate
solution and the RK solution nearly identical.

Furthermore, Figure 1C shows the image curves of the second-
order approximate solutions for Equation 1.3 when α takes the
values of 0.25, 0.5, 0.75, and 1, respectively. It is easy to find
that the fractal dimension α has a significant influence on the
nonlinear vibration behavior. The vibration is singular periodic
when α = 0.25. As α gradually increases, the frequency of the
vibration behavior accelerates. Until α = 1, the vibration exhibits a
clear periodicity. It also can be seen that although the frequency
of the graphic changes significantly with the change of α, the
amplitude remains unchanged, indicating that the fractal dimension
does not alter the macroscopic behavior of the nonlinear oscillator.
Therefore, in low dimensional situations, that is, micro scale, it
is more beneficial to research the vibration behavior of nonlinear
oscillator.

5 Conclusion

In this article, based on the fractalmodified nonlinear oscillators
with coordinate-dependent mass, the accurate approximate
solutions are successfully constructed by the impactful techniques,
which are the energy balance method and the modified harmonic
balance method under fractal case. The numerical results indicate
that the second-order approximate solution can achieve good
accuracy. In addition, in the case of low fractal dimension, the
change of vibration behavior is slower, and gradually accelerates as
the dimension increases, which is more helpful for us to investigate
nonlinear oscillations from the perspective of microscale.Therefore,
the method presented of our paper can be considered as an effective
alternative to existing methods.
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