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Nuclear radii from first principles

Takayuki Miyagi*

Center for Computational Sciences, University of Tsukuba, Tsukuba, Ibraki, Japan

With the combination of nuclear interactions from chiral effective field theory
and various many-body techniques, one can perform systematically improvable
ab initio calculations. As the improvable framework enables us to quantify the
uncertainty, it is particularly useful to make a prediction for which performing
experiments is difficult or even impossible. Neutron skin thickness, the difference
between neutron and proton distribution radii, is a key quantity related to
the properties of infinite nuclear matter. Since neutrons do not have a
net electric charge, the neutron-distribution radius is difficult to measure,
preventing precise measurement of neutron skin thickness. On the other
hand, recent developments in laser spectroscopy techniques can provide
detailed information on the charge distribution and opportunities for detailed
comparisons to theoretical results. Testing the theoretical frameworks with the
measurable charge radii should be a step toward predicting other quantities,
such as neutron skin thickness. This contribution reviews recent advances in
nuclear radii and neutron skin from ab initio calculations.

KEYWORDS

nuclear radius, neutron skin thickness, nuclear structure, nuclear force, nuclear ab initio
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1 Introduction

The size of a nucleus is the fundamental observable of the nucleus, similar to the
energies. The size can be quantified by mean-square (ms) radius ⟨R2⟩ or root-mean-square
(rms) radius √⟨R2⟩. Nuclear radii provide additional insights into nuclear structure. For
example, a large radius signifies halo nuclei, whose nucleon density distributions are widely
spread out compared to those of stable nuclei [1, 2]. Also, the behavior of charge radii
over the isotopic chain can tell us about the nuclear structure, such as magic numbers and
deformation [3–6].

The radii provide stringent tests of our theoretical understanding of nuclear
systems. As the current nuclear theory is not directly connected with quantum
chromodynamics (QCD), the fundamental theory of strong force governing a nucleus,
disagreements between measured and theoretical radii indicate insufficiencies in our
understanding of not only quantum many-body problems but nuclear interactions.
Addressing these disagreements sheds light on how the theoretical models could be
improved [7–10].

Moreover, a precise understanding of nuclear radii can impact astrophysics. The
neutron skin thickness Rskin, defined as Rskin = √⟨R2

n⟩ −√⟨R2
p⟩, with the ms neutron

radius ⟨R2
n⟩ and proton radius ⟨R2

p⟩, strongly correlates with infinite nuclear matter
properties [11, 12]. Although infinite nuclear matter does not exist on Earth, it is
realized as a neutron star in the universe. The mass and radius of a neutron star are
typical observables. Theoretically, neutron star mass and radius can be calculated by
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solving the Tolman–Oppenheimer–Volkoff equation with the
nuclear equation of state (EoS). The EoS is characterized by energy
per particle e as a function of density ρ and proton-neutron
asymmetry β =

ρn−ρp
ρ

. Note that ρp, ρn, and ρ = ρp + ρn are proton,
neutron, and nucleon densities, respectively. Then, one expands
e(ρ,β) around β = 0:

e (ρ,β) = e (ρ,0) + S (ρ)β2 +⋯.

Here, e(ρ,0) is the energy of symmetric nuclearmatter, and S(ρ) is the
symmetry energy. Around the symmetric nuclear matter saturation
density ρ0, e(ρ,0) and S(ρ) can be expanded as

e (ρ,0) = e0 +
1
2
K(

ρ− ρ0

3ρ0
)

2
+⋯, S (ρ) = S0 + L(

ρ− ρ0

3ρ0
)+⋯,

with saturation energy e0, incompressibility K, symmetry energy S0
at ρ = ρ0, and slope of the symmetry energy L. As seen in many
studies, L is strongly correlated with the radius and maximum
mass of neutron stars (see Ref. [13] for example). From available
mean-field theory calculations, unfortunately, L is not sufficiently
constrained. At the same time, one can find a strong correlation
between Rskin of 208Pb and L. The correlation indicates that a precise
knowledge of Rskin illuminates physics in neutron stars.

Furthermore, Rskin is relevant for the coherent elastic neutrino-
nucleus scattering (CEνNS). Neutrinos interact with a nucleus
via the neutral current, and thus, the nuclear weak form factor
is essential in CEνNS cross section calculations. Since the weak
charges of neutron and proton are almost −1 and 0, respectively,
CEνNS cross sections are sensitive to neutron density distribution.
Precise measurements of CEνNS cross sections will allow us to
extract Rskin [14]. Conversely, precise Rskin calculations may impact
investigations of neutrino properties.

In the above two examples, precise knowledge of Rskin is crucial.
However, the experimental determination is unfortunately limited
as the neutron density distribution is difficult to measure. Therefore,
reliable theoretical calculations are strongly needed. A nuclear ab
initio calculation framework is a possible approach to predict Rskin
quantified uncertainty. In this contribution, we discuss the current
status of ab initio calculations for nuclear charge radii and neutron
skin thickness. This article is organized as follows. In Section 2, the
framework of nuclear ab initio calculations is briefly introduced. In
Section 3, recent results of charge radii are presented to demonstrate
the quality of the ab initio calculations. Recent progress in neutron
skin from ab initio calculations is summarized in Section 4. The
conclusions is presented in Section 5.

2 Ab initio nuclear theory

Here, we briefly discuss an ab initio nuclear theory. All the
properties of nuclei are expected to be explained if one begins with
QCD. The ab initio nuclear theory should be defined in terms of
quarks and gluons degrees of freedom. Of course, it is currently
impossible to compute the properties of nuclei starting from QCD,
except for very light nuclei, though the recent progress in QCD
simulation on a lattice is remarkable [15, 16]. A possible way is
to rely on the nucleon degrees of freedom. However, it makes the
definition of ab initio calculations ambiguous. Actually, it seems

the definitions of nuclear ab initio calculations have been evolving.
Up to the 2000s, nuclear ab initio calculation was regarded as
a framework to solve exactly nuclear many-body problems. In
the calculation, one begins with a nuclear Hamiltonian, which
precisely reproduces, for example, the nucleon-nucleon scattering
phase shifts. Nowadays, one of the interpretations of nuclear ab
initio calculation is a systematically improvable framework both
for obtaining operators expressed in terms of nucleon degrees of
freedom and for solving nuclear many-body problems [17, 18].
The systematically improvable framework, in principle, enables
us to quantify the propagated theoretical uncertainty, and thus,
a probabilistically meaningful prediction can be made. There are
two key points to build the framework, i.e., constructing nuclear
operators and solving the nuclear many-body problem. In the
following, these aspects will be discussed.

2.1 Nuclear Hamiltonian and radius
operator

Interactions between nucleons are the essential ingredient
for understanding the nuclear structure. The history of nuclear
interactions began with the pion-exchange theory proposed by
Yukawa in 1935 [19], and many efforts have been made since
then. Although our understanding of nuclear interactions remains
incomplete, chiral effective field theory (ChEFT) provides a
systematically improvable way to derive them.

The chiral effective Lagrangian is described using the pion
and nucleon (and delta isobar as an option) degrees of freedom.
The terms entering the Lagrangian are constrained by the chiral
symmetry. While the symmetry restricts the number of allowed
terms, one still has an infinite number of terms. To organize a
controllable framework, Weinberg introduced a power counting
scheme defined by the ratio of two energy scales [20–22]. The first
energy scale p corresponds to the pion mass or Fermi momentum
of the system of interest. The second scale Λ is the breakdown scale
and roughly corresponds to the ρmesonmass, ∼700MeV, which has
already been integrated out from the theory. Then, the Lagrangian is
expanded according to the power of the small parameter Q = p/Λ.
In the same manner, an expansion for nuclear interactions can be
defined [23–25], and the diagrams are shown in Figure 1.

There are several points worth emphasizing. In the expansion,
not only nucleon-nucleon (NN) interaction terms VNN, but also
many-nucleon interactions, such as three-nucleon interaction V3N
and four-nucleon interactionV4N can be derived systematically. The
expansion in Figure 1 naturally explains the hierarchy of the many-
body interactions, e.g.,VNN > V3N > V4N.The unknownparameters,
referred to as low-energy constants (LECs), appear in the expansion
and are illustrated by solid dots, filled circles, filled squares, filled
diamonds, and open squares in the figure. The LECs are constrained
by the existing experimental data, for example, nucleon-nucleon
scattering data. The power counting scheme suggests the possibility
of performing an uncertainty quantification. Some uncertainty
quantification methods can be found in Refs. [26–29]. Finally,
ChEFT can provide us with systematic expansions for couplings to
the electroweak sector [30–36]. Owing to the systematic expansion,
one can derive higher-order two-body current operators, which
solve the long-standing quenching problem in the Gamow-Teller
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FIGURE 1
Expansion of nuclear forces. The diagrams are organized according to the power of Q. Solid dots, filled circles, filled squares, filled diamonds, and open
squares represent the contributions from different orders in the effective chiral Lagrangian. The figure is reprinted from Ref. [23] under the CC BY
4.0 license.

transition [37]. The importance of the two-body current operators
for the magnetic observables was also reported [31, 32, 38–40].

From ChEFT, up to the 3N term, one can find nuclear
Hamiltonian

H = T+VNN +V3N, (1)

with the kinetic energy term T, NN interaction VNN, and 3N
interaction V3N. The second quantization form of the operator
is given as

T =∑
pp′

tpp′a
†
pap′ ,

VNN = 1
4
∑

pqp′q′
VNN
pqp′q′a

†
pa
†
qaq′ap′ ,

V3N = 1
36
∑

pqrp′q′r′
V3N
pqrp′q′r′a

†
pa
†
qa
†
rar′aq′ap′ ,

with the creation (annihilation) operator a†p (ap) of a single-particle
state p. Assuming a widely used harmonics oscillator single-particle
state, p represents a set of quantum numbers p = (np, lp, jp,mp, tz,p),
where np is the radial quantum number, lp is the orbital angular
momentum, jp is the total angular momentum, mp is the z-
component of jp, and tz,p is the z-component of the isospin. The
tpp′ , VNN

pqp′q′ , V3N
pqrp′q′r are the matrix elements of the one-body

kinetic term, NN and 3N interactions, respectively. Note thatVNN
pqp′q′

includes a correction due to the translational invariance of the
system as well as the Coulomb interaction between protons.

2.1.1 Radius operators
In addition to Hamiltonian, we briefly discuss the radius

operators. Classically, an ms radius R2 can be computed with the
corresponding density ρ(r) as

R2 = 1
N
∫drr2ρ (r) ,

with the normalization factor N = ∫drρ(r). However, the
coordinate-space density might not always be useful. Actually, for
charge density distribution, it is not straightforward to include the
contributions of the nucleon charge density. In the momentum
space, such contribution is already built in by definition, and we
begin with the momentum-space density ̃ρ(q) = ∫dreiq⋅rρ(r). With
̃ρ(q), one can define the angle-averaged form factor F(q)

F (q) = 1
4π
∫dq̂ ̃ρ (q) . (2)

Now, we can use the well-known partial wave decomposition
formula for the plane wave function: eiq⋅r = 4π∑λμi

λjλ(qr)Y
∗
λμ(q̂)

Yλμ( ̂r). Here, jλ(x) is the order λ spherical Bessel function of the
first kind, and Yλμ(x̂) is the spherical harmonics with the usual
notation. Note that x̂ indicates the unit vector, i.e., x̂ = x/|x|. Owing
to the orthonormality of the spherical harmonics, one finds F(q) =
∫drj0(qr)ρ(r). Since the small x limit of the j0(x) is known as

j0 (x) ≈ 1−
x2

6
+ x4

120
(x≪ 1) , (3)

the ms radius is obtained as

R2 = − 6
F (0)

lim
q→0

d
dq2 F (q) . (4)

We can apply Equation 4 to find, for example, the ms point-
proton radius using the intrinsic point-proton density:

̃ρp (q) =
A

∑
i=1
(
1+ τi

2
)eiq⋅(ri−Rcm).

Here, τi = 1 (−1) indicates that i-th nucleon is proton (neutron), ri
is the coordinate vector of the i-th nucleon, and Rcm is the center-
of-mass vector, Rcm =

1
A
∑Ai=1ri. Plugging this into (Equation 2) and

performing the angular integral, one finds the point-proton form

Frontiers in Physics 03 frontiersin.org

https://doi.org/10.3389/fphy.2025.1581854
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


Miyagi 10.3389/fphy.2025.1581854

factor Fp(q) as Fp(q) = ∑Ai=1 (
1+τi
2
) j0(xi) with xi = q|ri −Rcm|. Thus

the point-proton ms radius R2
p is given as

R2
p =

1
Z

A

∑
i=1
(
1+ τi

2
)|ri −Rcm|

2, (5)

with the proton number Z, the normalization of the form factor:
Fp(0) = ∫drρp(r) = Z. In the same manner, with the neutron
number N, the ms point-neutron radius R2

n can be found as

R2
n =

1
N

A

∑
i=1
(
1− τi

2
)|ri −Rcm|2. (6)

So far, the radii are classically defined. However, one can obtain the
ms point-proton and point-neutron radius operators by applying the
usual quantization procedure to Equations 5, 6, respectively.Writing
the expectation value of R2

p and R2
n operators as ⟨R2

p⟩ and ⟨R2
n⟩,

respectively, the neutron skin thickness Rskin is defined as

Rskin = √〈R2
n〉 −√〈R2

p〉.

In nuclear physics, the most frequently measured is the charge
radius, as it can be preciselymeasured by electromagnetic probes. To
this end, one can begin with the intrinsic charge density ̃ρch(q):

ρch (q) ≈
A

∑
i=1
{eGE

i (q
2)[1−

q2

8m2 ]

+ ie
4m2 [2G

M
i (q

2) −GE
i (q

2)]q ⋅ [(pi −
Pcm
A
)× σ i]}e

iq⋅(ri−Rcm),

(7)

with nucleon mass m, momentum of i-th nucleon pi, center-of-
mass momentum Pcm = ∑Ai=1pi, and Sachs form factors GE

i (q
2) and

GM
i (q

2). Here, GE
i (q

2) and GM
i (q

2) are given as.

GE
i (q

2) = (
1+ τi

2
)GE

p (q
2) + (

1− τi
2
)GE

n (q
2) ,

GM
i (q

2) = (
1+ τi

2
)GM

p (q2) + (
1− τi

2
)GM

n (q2) ,

with proton/neutron Sachs form factorsGE
p/n(q

2) andGM
p/n(q

2). Note
that the higher order terms in 1/m are omitted. Again, owing to the
orthogonality of the spherical harmonics, the charge form factor is
obtained as

Fch  (q) = e
A

∑
i=1
{GE

i  (q
2) [1−

q2

8m2 ] j0  (xi) −
q2

2m2

 [GM
i  (q

2) − 1
2
GE
i  (q

2)]  (ℓi ⋅ σ i) 
j1 (xi)
xi
},

with the i-th nucleon’s orbital angular momentum ℓi = (ri −Rcm) ×
(pi −Pcm/A), which is often approximated as ℓi ≈ ri × pi. From
Equation 4, the ms charge radius is obtained as

R2
ch (q) = R

2
p + r2p +

N
Z
r2n +R2

DF +R
2
SO, (8)

with

r2p/n = −6 lim
q→0

dGE
p/n (q

2)

dq2 , μp/n = G
M
p/n (0) ,

R2
DF =

3
4m2 , R2

SO =
1

m2Z

A

∑
i=1
[(

1+ τi
2
)(μp −

1
2
)+(

1− τi
2
)μn](ℓi ⋅ σ i) .

Here, r2p/n is the proton/neutron charge radius, and μp/n is the
proton/neutron magnetic moment. Note thatGE

p(0) = 1 andGE
n(0) =

0 are used. From Equation 8, the ms charge radius is interpreted as
the sum of thems point-proton radius and corrections.The r2p and r2n
are the nucleon finite-size corrections. The R2

DF and R2
SO are known

as Darwin-Foldy and spin-orbit terms, respectively. Note that R2
SO

depends on the nuclear wave function, while the other corrections
are not.The charge density given in Equation 7 is a standard starting
point. At higher orders in ChEFT, however, additional contributions
to the charge density can be found [33, 34, 36, 41, 42]. So far,
investigating the effects of the two-body charge density is limited to
the light nuclei [43]. Therefore, further studies are needed to clarify
the effects of such terms on the charge radii.

Finally, we note the 4th moment of charge density R4
ch. Very

recently, it was shown that a sequence of isotope shifts of R4
ch are

measurable [44]. In Ref. [44], R4
ch was approximately computed as

the 4th moment of the point-proton density R4
p. For future work, we

note the operator expression. With the expansion in Equation 3, R4
ch

can be obtained from the second derivative of the charge form factor:

R4
ch =

60
Fch (0)

lim
q→0

d
dq2

d
dq2 Fch (q) .

Similar to the derivation of R2
ch, one can find the expression of R4

ch as

R4
ch = R

4
p +

10
3
(r2pR

2
p +

N
Z
r2nR

2
n)+

5
2m2 (R

2
p + r

2
p +

N
Z
r2n)+ r4p +

N
Z
r4n +R4

SO,

with the 4thmoment of proton/neutron charge density r4p/n, defined

as r4p/n = 60
d2GE

p/n(q
2)

d2q2 |q2=0. Also, the 4th moment of the point-proton
density R4

p and spin-orbit correction R4
SO are

R4
p =

1
Z

A

∑
i=1
(

1+ τi
2
)|ri −Rcm|4,

R4
SO =

2
m2Z

A

∑
i=1
[(

1+ τi
2
)(μp −

1
2
)+(

1− τi
2
)μn](ℓi ⋅ σ i) |ri −Rcm|

2

+ 10
3m2Z

A

∑
i=1
[(

1+ τi
2
)(r2M,p −

r2p
2
)+(

1− τi
2
)(r2M,n −

r2n
2
)](ℓi ⋅ σ i) ,

with the ms proton/neutron magnetic radius r2M,p/n, defined

as r2M,p/n = − 6
dGM

p/n(q
2)

dq2 |q2=0. We note that R4
ch depends on R2

n, as
discussed in Ref. [45].

2.2 Many-body problem

The problem now is to solve the non-relativistic many-body
Schrödinger equation

H|Ψ〉 = E|Ψ〉,

where |Ψ〉 and E are the eigenstate and corresponding energy,
respectively. The range of the applicability of ab initio many-
body methods has been expanding rapidly over the past decades
[17]. In the 2000s, researchers in the nuclear physics community
started to use numerical methods, whose computational cost scales
polynomially as a function ofA.This development has been essential
for enabling numerous ab initio nuclear structure studies, and the
achievements in the quarter century are highlighted in Figure 2.
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FIGURE 2
Progress of nuclear ab initio calculations over the last quarter century.
The bars highlight years of the first realistic computations of doubly
magic nuclei. The height of each bar corresponds to the mass number
A divided by the logarithm of the total compute power RTOP500 (in
flop/second) of the pertinent TOP500 list. The figure is adapted
from Ref. [46] under the CC BY 4.0 license.

A straightforward way to solve the equation would be to
insert the completeness relation ∑∞i=1|Φi〉〈Φi| = 1 with the known
orthonormal basis set {|Φ1〉, |Φ2〉,…}. Then, the problem is
equivalent to diagonalize the Hamiltonian matrix:

(

〈Φ1|H|Φ1〉 〈Φ1|H|Φ2〉 ⋯

〈Φ2|H|Φ1〉 〈Φ2|H|Φ2〉 ⋯

⋮ ⋮ ⋱

)(

c1
c2
⋮

)= E(

c1
c2
⋮

).

The component of the vector ci is given by ⟨Φi|Ψ⟩. To solve
the eigenvalue problem numerically, one needs to introduce the
truncation to a finite number of bases NSD, and NSD needs to
be increased until the results converge. On a supercomputer, a
typical limit of NSD is ∼1011. Due to this limitation, applications of
the exact diagonalization method are usually limited up to A ∼ 20
systems [17, 47, 48, 49, 50]. Another option is the quantum Monte
Carlo (QMC) method (see Ref. [51–53] for applications in nuclear
physics). Similarly to the exact diagonalization method, a typical
QMC application limit is also A ∼ 20. An alternative method is
solving the problem on the lattice, known as nuclear lattice EFT
[54, 55]. Remarkably, recent efforts have made the calculations up
to A ∼ 40 possible [56]. Despite the limitations, the results from the
above mentioned exact methods are valuable to benchmark those
from the approximate many-body methods discussed below.

2.2.1 Normal ordering
To compute the medium and heavy-mass nuclei, one can use

expansion methods based on a reference state |Φ〉. The first step is
to take normal order for all the creation and annihilation operator
strings with respect to |Φ〉. Then, Hamiltonian (Equation 1) can be
rewritten as

H = E[0] + F[1] + Γ[2] +W[3].

Here, E[0], F[1], Γ[2], and W[3] are the zero-, one-, two-, and three-
body parts of the Hamiltonian after the rearrangement, and the
superscript [n] indicates that the term is n-body. Each term is given as

F[1] =∑
pp′

fpp′ {a
†
pap′}

Γ[2] = 1
4
∑

pqp′q′
Γpqp′q′ {a

†
pa
†
qaq′ap′}

W[3] = 1
36
∑

pqrp′q′r′
Wpqrp′q′r′ {a

†
pa
†
qa
†
rar′aq′ap′} .

The brace indicates that the creation and annihilation operators are
normal ordered with respect to |Φ〉, i.e., ⟨Φ|{a†pa

†
q…aq′ap′}|Φ⟩ = 0.

If |Φ〉 is uncorrelated, for example, the Hartree–Fock solution, E0,
fpp′ , Γpqp′q′ , and Wpqrp′q′r′ can be written as

E0 =∑
pp′

tpp′ρpp′ +
1
2
∑

pqp′q′
VNN
pqp′q′ρpp′ρqq′

+1
6
∑

pqrp′q′r′
V3N
pqrp′q′r′ρpp′ρqq′ρrr′ ,

fpp′ = tpp′ +∑
qq′

VNN
pqp′q′ρqq′ +

1
2
∑

qrq′r′
V3N
qrpq′r′p′ρqq′ρrr′ ,

Γpqp′q′ = V
NN
pqp′q′ +∑

rr′
V3N
pqrp′q′r′ρrr′ ,

Wpqrp′q′r′ = V
3N
pqrp′q′r′ ,

with the one-body density ρpp′ = ⟨Φ|a
†
pap′|Φ⟩. Since the effect of

W[3] term is usually small [57–60], we omit the term, known as the
normal-ordered two-body (NO2B) approximation:

H ≈HNO2B = E[
0] + F[1] + Γ[2]. (9)

2.2.2 Similarity transformation method
BeginningwithHamiltonian (Equation 9), one needs to evaluate

the effects of the many-body correlations on top of the reference
state. To incorporate the many-body correlations, the diagrammatic
expansion or similarity transformation methods can be applied.
As diagrammatic expansion methods, one can find many-body
perturbation theory [61] and self-consistent Green’s function
method [62, 63]. In this review, we quickly introduce the similarity
transformation methods. The many-body Schrödinger equation is
equivalent to

H̃|Φ〉 = E|Φ〉,

with

H̃ = eΩHNO2Be
−Ω, |Φ〉 = eΩ|Ψ〉. (10)

In general, Ω operator includes up to A-body terms:

Ω =Ω[1] +Ω[2] +⋯+Ω[A].

The transformation eΩ makes the reference state the eigenstate of H̃,
without changing the energy eigenvalue of the original Hamiltonian.
In other words, the transformation suppresses the off-diagonal
matrix elements between |Φ〉 and the other states, which is known
as the decoupling.

In the coupled-cluster method [64] (CCM), Ω is known as the
cluster operator, which includes only the particle-hole excitation
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operators. As a consequence, the transformed Hamiltonian H̃
becomes non-Hermitian. While, in the in-medium similarity
renormalization group [65, 66] (IMSRG), Ω is chosen as the
anti-Hermitian and includes not only the particle-hole excitation
operators but also the de-excitation counterparts, and H̃ becomes
Hermitian.

During the transformation (Equation 10), the many-body terms
are induced. This can be seen by rewriting the transformation with
the Baker–Campbell–Hausdorff (BCH) formula:

H̃ =HNO2B + [Ω,HNO2B] +
1
2!
[Ω, [Ω,HNO2B]]

+ 1
3!
[Ω, [Ω, [Ω,HNO2B]]] +⋯.

Assuming that the Ω operator has one- and two-body parts, the
commutator is classified as

[Ω,HNO2B] = [Ω[1],F[1]]
[0] + [Ω[2],Γ[2]][0] + [Ω[1],F[1]][1]

+ [Ω[1],Γ[2]][1] + [Ω[2],F[1]][1] + [Ω[2],Γ[2]][1]

+ [Ω[1],Γ[2]][2] + [Ω[2],F[1]][2] + [Ω[2],Γ[2]][2]

+ [Ω[2],Γ[2]][3].

The commutator of Ω[2] and Γ[2] operators induces the three-body
term. In the end, nested commutatorswill induce up toA-body term.
To make numerical calculations feasible, making an approximation
is unavoidable. A typical approximation is to keep up to the two-
body part for Ω, H̃, and all the commutators:

Ω ≈Ω[1] +Ω[2],

H̃ ≈ ̃E[0] + ̃F[1] + Γ̃[2].

This approximation is very efficient and usually accurate enough.
Discussions on extensions beyond the two-body approximation in
CCM and IMSRG can be found in Refs. [57, 59, 67–75].

In the IMSRG, Ω is obtained by solving the following ordinary
differential equation [76]:

dΩ
ds
=
∞

∑
n=0

Bn

n!
[Ω (s) ,η (s)](n)

with

[Ω (s) ,η (s)](0) = η (s) , [Ω (s) ,η (s)](n) = [Ω (s) , [Ω (s) ,η (s)](n−1)] ,

and the n-th Bernoulli number Bn. The s and η(s) are the
flow parameter and anti-Hermitian generator of the differential
equation, respectively. The equation is solved from s = 0 to
∞ with the initial condition Ω(0) = 0. Note that η(s) is also
truncated at the two-body level. In usual applications, the white
generator (and its variants) is used, where the matrix element is
expressed as

〈i|η (s) |j〉 =
〈i|H̃ (s) |j〉

〈i|H̃ (s) |i〉 − 〈j|H̃ (s) |j〉

with the s-dependent transformed Hamiltonian H̃(s) =
eΩ(s)HNO2Be

−Ω(s), the off-diagonal matrix element to be suppressed
⟨i|H̃(s)|j⟩, and the energy difference ⟨i|H̃(s)|i⟩ − ⟨j|H̃(s)|j⟩. Once
Ω(s) is obtained, the radius operators can also be transformed
with the BCH transformation. One of the advantages of the

IMSRG is that one can choose |i〉 and |j〉 as desired, and it
enables us to decouple a small valence space with the other
space, known as valence-space IMSRG (VS-IMSRG) [77]. With
well-established shell-model calculation codes such as ANTOINE
[78], NuShell [79], BIGSTICK [80], KSHELL [81], etc., one
can access open-shell systems and excited states starting from
the underlying Hamiltonian and without any phenomenological
adjustments.

2.3 Parameter optimization strategy

As discussed in Section 2.1, unknown LECs appear in ChEFT.
Here, we summarize how the LECs of the frequently used
interactions in this review were determined.

• λNN/Λ3N [82]: Combinations of next-to-next-to-next-to-
leading order (N3LO) NN and next-to-next-to-leading order
(N2LO) 3N interactions.TheLECs of theNNpart are optimized
with the NN scattering phase-shift and deuteron data by Entem
and Machleidt [83]. Further, the NN part was softened by
free-space SRG [84] with the momentum scale λNN. The LECs
of the 3N part non-locally regulated with the momentum
scale Λ3N were determined with the triton binding energy
and 4He radius. Depending on the pion-nucleon couplings
cis from Entem and Machleidt (EM) [83], NN partial wave
analysis (PWA) [85], and Epelbaum, Glöckle, and Meißner
(EGM) [86], some choices are available. A widely used
combination is λNN = 1.8 fm−1 and Λ3N = 2.0 fm−1 with cis
from Ref. [83], i.e., 1.8/2.0 (EM) interaction. The 1.8/2.0
(EM) interaction reproduces the ground-state energies up to
heavy systems [87–89], while it significantly underestimates
the radii [87].

• N2LOsat [7]: N2LO NN and 3N interactions, which are non-
locally regulated with the momentum scale 450 MeV. All the
LECs were optimized simultaneously with the few-body data
and some selected properties up to A = 25 systems with the
POUNDerS algorithm [90]. It reproduces the ground-state
energies and charge radii simultaneously roughly up to A ∼
100 systems.

• ΔN2LOGO(394) [9]: N2LO NN and 3N interactions from
ChEFT with delta isobar excitation effects [91] (Δ-full ChEFT).
The NN and 3N interactions are non-locally regulated with
the momentum scale 394 MeV, which is approximately 2 fm−1.
NN and 3N LECs are simultaneously optimized with the few-
body data and nuclear matter properties with the POUNDerS
algorithm [90]. It reproduces the ground-state energies and
radii of the A = 16 to 132 systems [9].

• ΔN2LO non-implausible interactions [46, 92, 93]: A
set of N2LO NN and 3N interactions obtained with
Δ-full ChEFT. The NN and 3N interactions are non-
locally regulated. With an implausibility measure, one can
iteratively exclude a region of the initial parameter space.
The procedure is known as history matching [94, 95].
Typical observables defining the implausibility measure are
few-body data, including the NN scattering phase-shift
data. In Ref. [46], the 34 non-implausible parameter sets
were found.
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TABLE 1 Radii of three-body systems and 4He, computed with the Jacobi-coordinate no-sore shell model [102,103] using the 1.8/2.0 (EM) [82, 83]
interaction.

Nuclide Radius operator Form factor Exp

R2
p (fm

2) R2
SO (fm2) Rch (fm) R2

p (fm
2) R2

SO (fm2) Rch (fm) Rch (fm)

3H 2.606 0.001 1.77 2.606 0.001 1.77 1.76(4)

3He 3.206 −0.002 1.97 3.206 −0.002 1.97 1.966(3)

4He 2.096 −0.001 1.65 2.096 −0.001 1.65 1.676(3)

To compute Rch, R2
DF = 0.033 fm2, rp = 0.8409 fm, r2n = − 0.1155 fm2, μp = 2.793, and μn = − 1.913 are used [104]. The entries in radius operators are computed from Equation 8, and those in

form factor are computed from Equation 4.

FIGURE 3
Charge radii for nickel isotopes. The experimental data [108] are illustrated with the points connected by the line. The absolute radii (a) and isotope
shifts relative to 60Ni (b) are shown. All the theory results are computed with the N2LOsat interaction [7]. The figure is adapted from Ref. [108] under the
CC BY 4.0 license.

3 Charge radius

The nuclear charge radius is the most precisely measurable
nuclear radius via electron scattering, laser spectroscopy, and
muonic atom spectroscopy techniques. Here, we briefly discuss
the recent progress in the charge radius studies from ab initio
calculations. For simplicity, we omit angle brackets when writing
expectation values. For example, ⟨R2

ch⟩ is simply written as R2
ch.

Similarly, rms radii are denoted by Rp, Rn, Rch, etc.

3.1 Light nuclei

Radius data are valuable for optimizing nuclear interactions.
For example, the deuteron radius was used to check the quality
of high-precision nucleon-nucleon (NN) potentials such as
AV18 [96] and CD-Bonn [97]. Furthermore, the data of few-
body systems are important to constrain the three-nucleon (3N)
interaction. The inclusion of few-body data to optimize nuclear
Hamiltonians has become feasible due to the developments in exact
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FIGURE 4
The OES of binding energies and charge radii in copper isotopes as a function of neutron number N. For the VS-IMSRG calculations, 2.0/2.0 (PWA) and
1.8/2.0 (EM) interaction [82] results are given by red squares and orange diamonds, respectively. For the DFT calculations, green squares are used for
the Fy(std) [109] functional and blue diamonds for the Fy(Δr) [110, 111] functional. Error bars on the DFT calculations represent the statistical
contribution. The calculations in the left panels were performed with DFT, while the right panels show the VS-IMSRG results. The figure is reprinted
from Ref. [112] under the CC BY 4.0 license.

many-body techniques such as Faddeev [98], Faddeev-Yakubovsky
[99], hyperspherical harmonics [100], no-core shell-model [101],
and QMC [52, 53]. In ChEFT, two additional parameters cD and
cE appear in the 3N one-pion and contact diagrams at the leading
order. Since it is known that the binding energies of 3N systems
are strongly correlated, additional data are needed to constrain cD
and cE. Thus, the radii of the few-body systems are the potential
candidates to further constrain the 3N LECs. For example, cD and
cE in the widely used 1.8/2.0 (EM) interaction are determined to
reproduce the triton binding energy and 4He matter radius. Also,
the radii data were used to define the implausibility measure and to
exclude the parameter space domains [46, 92, 93].

Moreover, the radii of few-body systems will be used to test
the effect of the higher-order terms in the charge density operator.
Deriving the analytical form of the charge radius operators is
expected to be non-trivial for higher-order terms, especially the two-
body contributions. In that case, computing the charge form factor

and resorting to Equation 4 would be the most straightforward way.
Indeed, in Table 1, within the numerical precision, one can see the
equivalence between the two approaches, i.e., computing charge
radii from the radius operator and the derivative of the form factor.
All the radii are computed with the 1.8/2.0 (EM) interaction. The
significant disagreement with the experimental 4He radius seems to
be due to the updated proton radius [104].

3.2 Medium-mass and heavy nuclei

In the late 2000s to early 2010s, applications of the many-body
methods whose computational costs scale polynomially with the
system size began, such as the coupled-cluster method (CCM) [64],
self-consistent Green’s function approach [62, 63], and in-medium
similarity renormalization group (IMSRG) [65, 66, 77] enabling
us to access medium-mass nuclei [17]. Initially, the numerical
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FIGURE 5
Probability distributions of selected observables for light to heavy nuclei. The green and blue distributions are for the observables used in the
history-matching and likelihood calibration procedures, respectively. The posterior predictive distributions are indicated by the pink distributions. The
nuclear observables shown are 2H quadrupole moment Q(2H), 2H point-proton radius Rp(

2H), 2H ground-state energy E(2H), 3H ground-state energy
E(3H), 4He point-proton radius Rp(

4He), 4He ground-state energy E(4He), 16O point-proton radius Rp(
16O), 16O ground-state energy E(16O), 48Ca

point-proton radius Rp(
48Ca), 48Ca 2+1 excitation energy E2(

48Ca), 48Ca ground-state energy per particle E/A(48Ca), 48Ca electric dipole polarizability
αD(

48Ca), 208Pb electric dipole polarizability αD(
208Pb), 208Pb point-proton radius Rp(

208Pb), 208Pb ground-state energy per particle E/A(208Pb), and 208Pb
neutron skin Rskin(

208Pb). In the Rskin(
208Pb) panel, the results are compared to the experimental (or observational) ones with electroweak [125] (purple),

hadronic [126, 127] (red), electromagnetic [128] (green), and gravitational-wave [129] (blue) probes. The figure is reprinted from Ref. [46] under the CC
BY 4.0 license.
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TABLE 2 Median, 68% and 90% credible regions of neutron skins and
nuclear matter properties.

Neutron skins

Observable Median 68% CR 90% CR

Rskin(48Ca) 0.164 [0.141,0.187] [0.123,0.199]

Rskin(208Pb) 0.171 [0.139,0.200] [0.120,0.221]

Nuclear matter properties

Parameter Median 68% CR 90% CR

E0/A −16.9 [−17.9,−15.4] [−19.1,−14.9]

ρ0 0.167 [0.150,0.181] [0.142,0.194]

S 31.1 [29.1,33.2] [27.6,34.6]

L 52.7 [38.3,68.5] [23.9,76.2]

K 287 [242,331] [216,362]

The neutron skin Rskin is given in the unit of fm, and the saturation density is given in the
unit of fm−3. The other nuclear matter properties are shown in the unit of MeV. The results
are taken from Refs. [46, 130].

calculations were mostly done for the ground-state energies; soon
after, the calculations of radii began. Owing to the advancement,
it became possible to optimize the nuclear interactions using both
few-body data and, for example, 16O radius [7–9]. The inclusion of
beyond-few-body data enables us to extrapolate our knowledge from
well-known to less-known systems.

Numerical calculations for heavy nuclei A ≳ 100 have been a
challenge. As found in Refs. [105, 106], the calculations did not
fully converge with respect to the 3N interaction space. Although
the authors of Ref. [106] claimed that the extraction of radii is
possible due to the convergence pattern of the computed radii, the
fully converged results still need to be pursued. By leveraging the
NO2B approximation (Equation 9), commonly used in standard
calculations, one can overcome the limitation. In Ref. [89], a new
technique to store the 3N matrix elements entering the NO2B
Hamiltonianwas introduced, which allows the reduction ofmemory
size by two orders of magnitude. Due to this technical development,
it is currently possible to obtain numerically converged results for
A ∼ 200 systems.

The study of charge radii provides insights into both nuclear
interactions and the employed many-body approximations. Since
the global behavior of charge radii appears to be well approximated
byHartree-Fock calculations, the deviations from experimental data
indicate the insufficiency of the employed nuclear interaction. For
example, the frequently used 1.8/2.0 (EM) interaction tends to
predict too small radii [87]. Intuitively, smaller radii correspond to a
higher density near the center of nuclei, which, in turn, is expected
to lead to a higher saturation density in infinite nuclear matter
calculations. Indeed, it was shown that the 1.8/2.0 (EM) interaction
shows saturation at a higher density than empirical estimates [107].
Recently, based on a similar idea of the 1.8/2.0 (EM) interaction and
optimizing with respect to the 16O data in addition to the few-body

data, some nuclear interactions were developed. These interactions
can accurately reproduce the ground-state energies and radii across
the nuclear chart, including the neutron-rich region [10].

Recent advancements in experimental techniques, in particular
laser spectroscopy, have significantly improved the precision
of charge radii measurements, especially for exotic nuclei [4],
providing stringent tests of employed nuclear Hamiltonian and
many-body methods. Figure 3 shows the charge radii of nickel
isotopes [108]. Panels (a) and (b) in the figure compare the results
with the CC, SCGF, and IMSRG methods using the N2LOsat
interaction in absolute and relative scales, respectively, as well as
those from the experiments. Here, the CC and SCGF uncertainties
were estimated including the many-body uncertainty, while the
IMSRG error bars were obtained from only the model-space
variations (see [108] for more details). The theory results are
consistent with each other, with only a few exceptions in the
neutron deficient side, where the SCGF and IMSRG results do not
overlap. From the figure, it is expected that the many-body method
uncertainty for the absolute radii near spherical nuclei is about a
few percent. Also, ab initio results reproduce the isotope shifts in the
nickel isotopes.

In Figure 4, the odd-even staggering (OES) of binding energy
and charge radius of the copper isotopes are shown. The OES
is defined as

Δ[3]X =
1
2
[X (N+ 1) − 2X (N) +X (N− 1)] .

Here, X is either binding energy or charge radius. In the figure,
it is observed that the OES of the binding energy is reasonably
reproduced both in density functional theory (DFT) andVS-IMSRG
calculations. On the other hand, in the OES of the charge radius,
the difference between DFT and VS-IMSRG results can be seen.
In the DFT, it looks neither Fy(std) [109] nor Fy(Δr) [110, 111]
can reproduce the reduction towardsN = 50.TheVS-IMSRG results
by 2.0/2.0 (PWA) and 1.8/2.0 (EM) interactions [82] reproduce the
trend, while the size of the OES is imperfect around N = 40, which
is likely due to the missing proton excitations from π f7/2 orbital.
We note that the two interactions shown here do not reproduce
the absolute charge radii as expected from the failure to reproduce
the nuclear saturation density. The figure demonstrates that the
radii OES is sensitive to the nuclear structure and that ab initio
calculations sometimes could reproduce the detailed behavior of the
radii as well as (or even better than) the DFT. A similar reproduction
of the detailed behavior in the VS-ISMRG was also observed in a
heavier region [113].

Despite the success discussed above, we should not forget that
many challenges remain in ab initio radius calculations [114–119].
A typical example would be the behavior in the calcium charge
radii in 40–48Ca [109, 120]. The earlier shell-model calculation [120]
demonstrated that the excitation across Z = 20 is essential to explain
the behavior from 40Ca to 48Ca. However, even if one explicitly
includes such excitations in the VS-IMSRG [121], the parabolic
isotope shift behavior could not be reproduced, although it was
found that activating the 40Ca core is needed to reproduce the
magnetic dipole moment [39]. Note that the recent work with
IMSRG showed that the inclusion of triple correlation effects does
not resolve this issue [75]. These issues must be addressed in
future studies.
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FIGURE 6
Neutron skin thickness of 48Ca and 208Pb. The CREX [124] and PREX [125] experimental results are shown by the ellipses. The green diamonds (blue
triangles) represent the relativistic [131–136] (non-relativistic [137–142], [90], [143], [13]) mean-field theory results. The ab initio results [46] and
dispersive optical model (DOM) results [144] are also shown. For the ab initio result, the correlated uncertainty is obtained based on the correlation
observed in the 19 non-implausible interaction results, which are consistent with the estimated 68% credible ranges [46]. The figure is adapted
from Ref. [124].

4 Neutron skin thickness

The neutron skin thickness is a key quantity to connect
our understanding of finite nuclei and infinite nuclear matter. A
pioneering work with the ab initio framework was done by Hagen
et al. [122], where they computed point-proton and neutron radii
of 48Ca based on λNN/Λ3N [82] and N2LOsat [7] interactions.
They found a strong correlation between them, and a smaller
neutron skin range compared to the DFT results. Their findings are
strengthened by the measurement of electric dipole polarizability
of 48Ca [123]. Also, the recent CREX [124] experiment result,
Rskin(48Ca) = 0.121± 0.026(exp.) ± 0.024(model) fm, is consistent
with the result in Ref. [122], which is 0.12 ≲ Rskin(48Ca) ≲ 0.15 fm.

208Pb is the most appealing nucleus in terms of neutron skin
calculations as it shows a strong correlation with the nuclear
matter properties. In Ref. [46], a first prediction for the neutron
skin of 208Pb was made after incorporating the uncertainties due
to both nuclear Hamiltonians and many-body approaches. The
results are illustrated in Figure 5. In the work, starting from the 34
non-implausible interactions after the history-matching technique
(green distribution), the interactions are weighted according to
the reproduction of the selected data of 48Ca, to approximately
obtain the posterior predictive distribution under the 48Ca data
(blue distribution). The procedure was validated with the existing
data, and the predicted 68% credible range of the 208Pb neutron
skin is 0.14 ≤ Rskin(208Pb)≤ 0.20 fm (pink distributions). Also,
nuclear matter properties are summarized in Table 2 with a minor
correction [130]. Remarkably, the predicted range excludes a thicker
neutron skin predicted in mean-field type studies. It was found that
the reproduction of the phase shift data in an intermediate energy
prevents to have a thicker neutron skin.

An experimentally clean extraction of neutron distribution is
challenging as the neutron’s net electric charge vanishes. Parity-
violating electron scattering (PVES) offers a model-independent
way to access the neutron distribution because the process detects
the contribution from the weak Z boson. Since the exchanged
Z boson couples with the weak charge, which is almost −1
for the neutron and 0 for the proton, the neutron distribution
can be deduced. In CREX and PREX experiments, the neutron
skin thicknesses of 48Ca [124] and 208Pb [125] were measured
through the PVES process, respectively. In Figure 6, the situation
is summarized. In the figure, the correlated uncertainty of the ab
initio result is estimated by assuming that the distribution can be
expressed by a multivariate normal distribution. For the covariance
matrix, we use the 68% credible ranges found in Ref. [46] and
the correlation coefficient. The correlation coefficient is obtained
with the 19 non-implausible interaction results that are consistent
with both credible ranges of 48Ca and 208Pb. This procedure would
approximately account for the correlation due to the LEC variations.
A way to quantify the correlated uncertainty, including other
sources such as the EFT and many-body methods, is being pursued
and will be addressed in future work. As shown in the figure,
none of the currently available theoretical models fall within (or
overlap with) the 1σ region of the combined CREX and PREX
results. We should, however, note that the comparison in terms of
neutron skins might not be ideal, as the experimentally measured
quantities were PVES asymmetry. For the ab initio calculations, to
access the PVES asymmetries in a consistent way, similar to the
recent work for the μ→ e conversion process [145], one would
need to consistently compute nuclear densities and electron wave
function. Additionally, the currently neglected contributions, such
as the electromagnetic and weak two-body currents, may play a
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role. Therefore, further investigation would be needed to draw a
conclusion.

Finally, it is worth noting that there could be another observable
that correlates with Rskin and the properties of nuclear matter.
Recently, a strong correlation between the charge radii difference
in mirror nuclei ΔRmirr

ch and the relevant quantities has been
suggested, mainly in the mean-field studies [146–150]. Since ΔRmirr

ch
is probed purely by the electromagnetic processes, experimental
measurements of ΔRmirr

ch are expected to be easier than those of Rskin,
where weak or strong interaction would be involved. Testing the
suggested correlations is currently in progress within the ab initio
framework [151, 152].

5 Conclusion

This review focuses on the recent progress in ab initio studies
for nuclear radii. The current nuclear ab initio framework consists
of deriving the nuclear Hamiltonian and relevant operators from
ChEFT and solving the quantum many-body problem with a
controllable approximation. The advantage of the framework is that
one can quantify the uncertainties at each step and propagate them
to the final results. It is particularly useful to make a prediction for
which performing experiments is difficult or even impossible.

The range of applicability of the ab initio calculations is rapidly
expanding, which is primarily driven by developments in the many-
body methods whose computational costs scale polynomially with
the system size. Currently, 208Pb is accessible starting from ChEFT.
However, it does not mean that one can accurately compute the
properties of all the nuclei up to 208Pb. The emergence of collective
phenomena, such as deformation and clustering, based on the
underlying interactions is still an open question. The related recent
efforts focusing on the deformation can be found in Refs. [153–163].

Recent developments in experimental techniques have
significantly improved the precision of charge radii measurements,
providing stringent tests of the theoretical models. We observed
that the results from different ab initiomany-body methods starting
with the same nuclear Hamiltonian basically agree with each other.
Through the comparison, we find a few percent uncertainty due
to the many-body approximation for the near spherical systems.
Although the reproduction of the absolute charge radii strongly
depends on the employed interaction, the local trends seem to
be well reproduced by the ab initio calculations. For example, the
performance of the ab initio results looks better than that of DFT for
the odd-even staggering of the charge radii in the copper isotopes.

As suggested in many earlier mean-field theory studies, precise
knowledge of Rskin can be a key to shedding light on neutron
star physics. Since the experimental determination is difficult as
Rskin involves the neutron density distribution, a reliable theoretical

prediction is strongly required. After quantifying the uncertainties
from the nuclearHamiltonian andmany-bodymethods, in Ref. [46],
the predicted 68% credible ranges are given as 0.141 ≤ Rskin(48Ca)
≤ 0.187 fm and 0.139 ≤ Rskin(208Pb) ≤ 0.20 fm. While the predicted
range of 48Ca is consistent with the CREX experimental result, there
is a mild tension between theory and PREX experimental results in
208Pb (see Figure 6). The reason for the tension is still unclear, and
further efforts are needed.
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