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GLI-Net: A global and local
interaction network for accurate
classification of gastrointestinal
diseases in endoscopic images

Yuansen Zhang*, Mengxiao Zhuang, Wenjun Chen, Xiaoqiu Wu
and Qingqing Song

Department of gastroenterology, The Third Affiliated Hospital of Wenzhou Medical University,
Wenzhou, Zhejiang, China

The accurate classification of gastrointestinal diseases from endoscopic images
is essential for early detection and treatment. However, current methods face
challenges in effectively integrating both global and local features, which
limits their ability to capture both broad semantic information and subtle
lesion details, ultimately affecting classification performance. To address this
issue, this study introduces a novel deep learning framework, the Global
and Local Interaction Network (GLI-Net). The GLI-Net consists of four main
components: a Global Branch Module (GB) designed to extract global image
features, a Local Branch Module (LB) focused on capturing detailed lesion
features, an Information Exchange Module (LEM) that facilitates bidirectional
information exchange and fusion between the global and local features,
and an Adaptive Feature Fusion and Enhancement Module (AFE) aimed at
optimizing the fused features. By integrating these modules, GLI-Net effectively
captures and combines multi-level feature information, which improves both
the accuracy and robustness of endoscopic image classification. Experiments
conducted using the Kvasir and Hyper-Kvasir public datasets demonstrate that
GLI-Net outperforms existing state-of-the-art models across several metrics,
including accuracy, F1 score, precision, and recall. Additionally, ablation studies
confirm the contribution of each module to the overall system performance.
In summary, GLI-Net’s advanced feature extraction and fusion techniques
significantly enhance medical endoscopic image classification, highlighting its
potential for use in complex medical image analysis tasks.

KEYWORDS

endoscopic image classification, deep learning, global and local feature fusion, global
branch module, local branch module

1 Introduction

Gastrointestinal cancers are among the most common cancer types globally, affecting
not only the United States but also many other countries. In 2023, it is estimated that there
will be approximately 153,020 new cases of gastrointestinal cancer and 52,550 related deaths
worldwide. Of these, colorectal cancer accounts for about 34.97%of gastrointestinal cancers.
It is well-established that certain intestinal conditions, such as polyps and ulcers, play a
significant role in the development of colorectal cancer. Early detection of cancer indicators
is crucial for managing colorectal cancer, as it can notably improve patient outcomes and
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survival rates. Therefore, early diagnosis is a critical component in
the fight against this cancer, offering hope for better prognoses and
higher survival chances.

Endoscopy remains a key method for the initial identification
and evaluation of colorectal cancer, demonstrating its effectiveness
in reducing mortality rates. This diagnostic tool captures numerous
visual frames during gastrointestinal examinations, which are
typically reviewed manually. This manual process is not only
labor-intensive and repetitive but also subject to human error, as
the accuracy of diagnosis depends on the endoscopist’s expertise,
experience, andmental acuity. Such variability can result in incorrect
diagnoses or missed abnormalities. To address these challenges,
there is an urgent need for a precise, advanced computer-assisted
diagnostic system. This system would autonomously identify and
flag suspicious images, reducing the significantmanual workload for
endoscopists and improving diagnostic accuracy.This technological
innovation is poised to advance the early detection of colorectal
cancer, potentially leading to better patient outcomes and increased
survival rates.

For instance, Karargyris and Bourbakis [1] proposed a method
using image processing techniques to detect polyps and ulcers in
wireless capsule endoscopy videos, achieving improved detection
rates. Mesejo et al. [2] developed a computer-aided system
based on computer vision and machine learning for classifying
gastrointestinal lesions in regular colonoscopy images, enhancing
diagnostic accuracy. Charfi et al. [3] combined the local binary
pattern variance and discrete wavelet transform to make texture
extraction for wireless capsule endoscopy images. However, despite
the fact that computer-aided diagnosis systems is beneficial for
endoscopic image classification compared with human beings, it
still encounters significant obstacles. Primarily, due to the high
variability within the same class of samples, such as differences in
size and shape of lesions, the extraction of consistent features from
the same category is quite difficult. By contrast, the subtle differences
between different classes also present a challenge in accurate
classification, where the different samples from different classes
may have the similar attributes. Furthermore, interference factors
like bubbles, turbidity, and artifacts caused by the movement of the
capsule camera during endoscopic procedures can also significantly
reduce the detection rate of abnormal images. Obviously, these
factors contribute to the overall difficulty in achieving high accuracy
in endoscopic image classification, emphasizing the need for more
advanced algorithms and techniques to address these challenges.

In recent years, deep learning, particularly convolutional neural
networks (CNNs) [4–6], has made significant strides in the field
of endoscopic image classification [7–9]. These technologies have
automated medical image analysis, reducing the workload for
physicians and enabling more efficient disease diagnosis through
feature extraction and pattern recognition. Compared to traditional
methods, deep learning models have demonstrated higher precision
and recall. Deep learning’s ability to learn from data has made it
superior in tasks such as polyp detection, lesion classification, and
region recognition, outperforming traditional algorithms in terms
of speed and accuracy [10]. However, despite these advancements,
deep learning models in endoscopic image classification have yet to
reach a level suitable for widespread clinical application. There are
still many challenges such as the requirement for large annotated
datasets and the difficulty in achieving higher diagnostic precision

for rare or subtle pathologies. There is a need for more effective
methods to enhance the classification accuracy of endoscopic images
and address these limitations before deep learning can be fully
integrated into clinical practice.

In this paper, we introduce a novel deep learning approach
for classifying endoscopic images called GLI-Net (Global and
Local Interaction Network). GLI-Net addresses the shortcomings
of traditional methods in capturing both detailed features and
global semantic information by effectively combining global and
local features, leading to significant improvements in classification
accuracy and robustness. The network is composed of four primary
modules: the Global Branch Module (GB), which extracts global
features and guides the Local BranchModule (LB); the Local Branch
Module (LB), which focuses on extracting detailed features from
lesion regions; the Information Interaction Module (LEM), which
facilitates mutual information exchange and optimization between
the global and local branches; and the Adaptive Feature Fusion and
Enhancement Module (AFE), which adaptively fuses the global and
local features, enhancing their representational power and boosting
the model’s discriminative performance. The synergistic interaction
of these modules enables GLI-Net to achieve superior results in
medical image classification.

2 Related work

In this section, we will briefly describe the related works
about classification on the endoscopic images. Due to different
approaches used in this field, we divide the related works into two
branches: human-crafted feature based methods and deep learning
based methods.

2.1 Human-crafted feature based methods

For the human-crafted feature based methods, many machine
learning methods with different images features designed by
human beings were studied. For instance, Charfi and El Ansari
demonstrated that their computer-aided diagnosis system can
effectively detect colon abnormalities in wireless capsule endoscopy
images [3]. The system employed image preprocessing to enhance
quality, extracted key features such as color and texture, and used a
support vector machine (SVM) classifier for abnormality detection.
Their results verified that integrating color and texture features with
SVM significantly can improve detection accuracy compared to
manual analysis. This approach highlights the potential of feature-
based machine learning methods for automating gastrointestinal
disorder diagnosis in clinical practice. Furthermore, MeseJo et al.
[2] made a study on how to apply the computer technology
to diagnose gastrointestinal lesions from regular colonoscopic
videos. Specifically, it exploited both computer vision and machine
learning methods, conducting a virtual biopsy to differentiate
hyperplastic lesions, serrated adenomas, and adenomas. Karargyris
and Bourbakis [1] conducted a study on the detection of small
bowel polyps and ulcers using wireless capsule endoscopy videos.
Specifically, they developed an algorithm that leveraged image
processing techniques to identify and analyze these gastrointestinal
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abnormalities, contributing to the advancement of non-invasive
diagnostic methods.

Additionally, Li and Meng [11] developed an enhancement
method based on adaptive contrast diffusion. This technique
was designed to adjust the contrast in different regions of the
image dynamically, which helped in highlighting the features of
interest, particularly in the context of the gastrointestinal tract. By
increasing the contrast, the method aimed to make it easier for
medical professionals to identify and diagnose any abnormalities or
pathologies within the small bowel.The enhancements are intended
to facilitate a more accurate and reliable analysis of the endoscopic
images, which is vital for effective clinical decision-making. The
work by Souaidi and Ansari [12] delved into the detection of
ulcer diseases from wireless capsule endoscopy images, employing
a multi-scale analysis technique. Specifically, this approach involved
examining images across various scales to identify ulcers of
different sizes and shapes within the gastrointestinal tract, which
enhanced the detection accuracy by capturing the nuances of ulcer
appearances at multiple levels of detail.

2.2 Deep learning based methods

Different from human-crafted features based methods, deep
learning based methods can automatically extract more semantic
features for classification. For instance, Zhang et al. [13] focused
on the automatic detection and classification of colorectal polyps
by leveraging low-level CNN features from nonmedical domains.
Specifically, the authors explored the transfer learning approach
where pre-trained CNN models originally trained on nonmedical
images were adapted for the task of polyp detection in endoscopic
videos. The study aimed to demonstrate that features learned
from large datasets in nonmedical domains could be effectively
transferred to enhance the performance of medical image analysis
tasks, particularly in the context of colorectal polyp identification.
Shin and Balasingham [14] conducted a comparative study
between a hand-crafted feature-based SVM and a CNN based
deep learning framework for the automatic classification of
polyps. They evaluated the performance of both methods in
distinguishing polyps in endoscopic images, providing insights
into the efficacy of deep learning versus traditional machine
learning approaches formedical image classification. Zhao et al. [15]
presented Adasan, an Adaptive Cosine Similarity Self-Attention
Network for gastrointestinal endoscopy image classification, which
integrated self-attentionmechanismswith adaptive cosine similarity
measures to enhance feature representation, improving classification
accuracy of endoscopic images.

Furthermore, Zhu et al. [16] presented a method for lesion
detection in endoscopy images leveraging features from CNNs.
Also, a novel method for WCE video summarization was studied
by using a Siamese neural network coupled with SVM, which
condensed long WCE video sequences into shorter, representative
summaries to facilitate faster and more efficient review by medical
professionals. The Siamese network was employed to learn and
compare image features, identifying similar frames within the video,
while the SVM was utilized to classify these frames based on
their medical relevance. Similarly [17], designed a network to
identify and highlight potential lesions within the gastrointestinal

tract by analyzing WCE video frames. By extending the Siamese
network, Guo et al. [18] introduced the Triple ANet, an Adaptive
Abnormal-Aware Attention Network designed for the classification
of WCE images. It included three main components: an abnormal
region detection module, an attention mechanism to highlight
these regions, and a classification module, in which the attention
mechanisms was introduced to focus on abnormal regions within
the gastrointestinal tract, being crucial for accurate diagnosis. And
The paper probably detailed the architecture of the network, how
it was trained on WCE images, and its effectiveness in classifying
normal versus abnormal images. This approach aimed to improve
the accuracy and efficiency of WCE image analysis, providing a
valuable tool for medical professionals to detect gastrointestinal
abnormalities. Similarly, an Effectively Fused Attention Guided
Convolutional Neural Networkwas proposed to integrated attention
mechanisms to enhance feature extraction from endoscopic images,
focusing on discriminative regions indicative of gastrointestinal
conditions [19,20].

In recent years, many deep learning-based approaches have
been applied to classify colorectal cancer andWCE images, yielding
promising outcomes. However, due to the inherent characteristics
of these images, such as considerable intra-class variations and
subtle inter-class differences, there is still a need for more robust
models to improve the accuracy and reliability of these algorithms.
To overcome these challenges, future research should focus on
developingmodels that are better equipped to handle the complexity
and variability of endoscopic images. This could involve exploring
advanced network architectures, integrating multi-modal data, or
utilizing sophisticated feature extraction methods to capture subtle
pathological changes more effectively.

3 Methods

This section provides a detailed description of the overall
architecture of GLI-Net (Global and Local Interaction Network).
First, the main structure of the network and its global branch
module (GB) and local branch module (LB) are introduced. Then,
the structure and functionality of the Information ExchangeModule
(LEM) and the Adaptive Feature Fusion and Enhancement Module
(AFE) are discussed in detail. The overall network architecture of
GLI-Net is shown in Figure 1.

3.1 Overall network architecture

GLI-Net adopts a dual-branch global and local interaction
network structure, as illustrated in Figure 1. The backbone of the
network uses the Swin Transformer as a feature extractor, designed
to extract both shallow and deep feature maps from the input
endoscopic images and generate multi-scale feature representations.
The feature sizes correspond to 1/4, 1/8, 1/16, and 1/32 of the input
image size, as specified in Equation 1:

F i = fSwin (I) , i = 1,2,3,4 (1)

where fSwin represents the Swin Transformer, I ∈ ℝH×W×3 is the
input image, and F i represents the output multi-scale feature maps.
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FIGURE 1
Overall architecture of GLI-Net.

These multi-scale features are then fed into the global and local
branches, where global and local lesion features are extracted,
as shown in Equation 2:

Plesion = fGB (F i) ,Rlesion = fLB (F i) (2)

where fGB and fLB denote the global and local branch modules,
respectively, while Plesion andRlesion correspond to the outputs of the
global and local branches.While the GB and LBmodules extract the
lesion features, the Information Exchange Module (LEM) facilitates
the bidirectional information flow between the global and local
features, ensuring their collaborative interaction. This enhances
the comprehensiveness and accuracy of the features. The specific
formulation is as follows:

(FG′ ,FL′) = fLEM (Plesion,Rlesion) (3)

where FG′ and FL′ represent the enhanced global and local features,
respectively. After obtaining the global feature Plesion and the local
featureRlesion, the Adaptive Feature Fusion and Enhancement (AFE)
module is responsible for fusing the enhanced global and local
features, further enhancing their representational capability. Finally,
the classifier outputs the corresponding class of the image. The
specific formula is as follows:

ŷ = So ftmax( fAFE (Plesion,Rlesion)) (4)

3.2 Global branch module (GB)

To effectively capture the overall lesion information in
endoscopic images and guide the local branch module to focus
on key regions, the Global Branch module (GB) is introduced. The
goal of the GB module is to extract global lesion features from
the deepest feature maps and generate lesion category prompts to
guide the local branch, thereby enhancing the comprehensiveness of
feature representations and improving classification accuracy. The
GBmodule consists of convolutional layers, global adaptive pooling
layers, and the Lesion Category Prompt Extractor (LCPE), with the
specific structure shown in Figure 2.

FIGURE 2
Structure of the GB module.

The input global featuremapF i is first processed through a series
of convolutional layers to extract high-level semantic features.These
convolutional layers effectively capture the global information in
the image and enhance the expressive power of the features. Then,
global adaptive pooling (GAP) is applied to aggregate the convolved
feature map Fconv, generating a fixed-size global feature vector
Fglobal. Global adaptive pooling automatically adjusts the pooling
kernel size based on the input feature map’s dimensions and shape,
enabling more effective capture and aggregation of global feature
information. This process is described by the following Equation 5:

Fglobal = fGAP ( fconv (F i)) + F′G (5)

The module fconv contains multiple convolution operations,
fGAP represents the global adaptive pooling operation, and F′G is
the output of the LEMmodule. The GBmodule generates the lesion
category prompt Plesion from the global feature vector Fglobal using
the LCPE module, which is used to guide the local branch to focus
on the lesion regions. The LCPE module primarily consists of two
fully connected layers and their corresponding activation functions.
The global feature vector Fglobal is first mapped to the prompt space
through the first fully connected layer fFC1, and then the second
fully connected layer fFC2 generates the final lesion category prompt
Plesion. The Sigmoid activation function is applied to ensure that the
prompt values lie within the range of [0, 1]. The specific process is
described by Equation 6:

Plesion = Sigmoid( fFC2 (ReLU( fFC1 (Fglobal))) (6)
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FIGURE 3
Structure of the LB module.

3.3 Local branch module (LB)

In order to further capture detailed lesion information in
endoscopic images, and integrate guidance from the global features,
the Local Branch Module (LB) is proposed. The main objective
of the LB module is to receive enhanced lesion category prompts
from the Information Exchange Module (LEM) through the
Lesion Category Prompt Receiver (LCPR). These prompts are then
used by the Lesion Region Detector (LRD) to identify detailed
lesion features. The output detailed features are fed back into the
Information ExchangeModule and the subsequent Adaptive Feature
Fusion and Enhancement (AFE) module, enabling the collaborative
enhancement of both global and local features. The structure of the
LB module is shown in Figure 3.

The Lesion Category Prompt Receiver (LCPR) module is
responsible for receiving the enhanced lesion category prompt F′L
from the Information Exchange Module (LEM) and applying it to
the feature map of the local branch to guide the local branch in
focusing on potential lesion regions. First, a fully connected layer
along with an activation function modulates the prompt features,
and these are element-wise multiplied with the initial feature map
F i of the local branch to generate the modulated local feature map
Prec. The specific calculation is as follows:

Prec = F i ⊗ReLU( fFCF
′
L) (7)

where ⊗ denotes the element-wise multiplication operation. After
obtaining the modulated local feature map Prec, the Lesion
Region Detector (LRD) module is responsible for identifying and
extracting the detailed lesion information. First, the modulated
local feature map Prec undergoes further convolution processing
to extract higher-level detailed features. Then, through a series of
convolutional layers and pooling layers, an attention map Alesion for
the lesion region is generated. Based on this attention map, the local
feature map is weighted to extract the detailed feature vector Rlesion.
The specific calculation is as follows:

{{{
{{{
{

Alesion = Sigmoid( fconv (ReLU( fconv?Prec??))

Rlesion =
H

∑
i=1

W

∑
j=1

Alesion (i, j) ⋅Prec (i, j)
(8)

3.4 Information exchange module (LEM)

In order to enable efficient collaboration between the global
and local networks and enhance the overall feature representation

capability, an Information Exchange Module (LEM) has been
proposed. The primary goal of the LEM module is to facilitate
bidirectional information transfer and mutual supervision between
the global branch (GB) and the local branch (LB), thereby
improving the comprehensiveness of the features and the accuracy
of classification. The detailed structure of the LEM module
is shown in Figure 4.

The LEM module includes information transmission from
global to local, feedback from local to global, and bidirectional
information flow.The information transmission from global to local
is responsible for passing the lesion category cue Plesion generated
by the GB module to the local branch module (LB) through the
Information Exchange Module, guiding the local branch to focus
on potential lesion areas. The feedback from local to global is
responsible for sending the detailed lesion features Rlesion extracted
by the local branch module (LB) back to the global branch module
(GB), thereby enhancing the representation ability of the global
features. The specific calculation details are provided in Equation 9.

{
{
{

F′G = Plesion +ReLU( fFC (Plesion) + fFC (Rlesion))

F′L = Rlesion +ReLU( fconv (Rlesion) + fconv (Rlesion))
(9)

where F′L refers to the transformed lesion category cue, and F′G
represents the enhanced global features.

3.5 Adaptive feature fusion and
enhancement (AFE) module

To fully integrate global and local features and further enhance
the feature representation capability, an Adaptive Feature Fusion
and Enhancement (AFE) module has been proposed. The primary
objective of the AFE module is to effectively fuse the enhanced
global features F′G with the local features F′L, and to improve the
expressiveness of the fused features through a feature enhancement
mechanism, thereby achieving more accurate class predictions. The
AFE module employs a learnable weighting mechanism, which
dynamically adjusts the fusion ratio between the global and local
features based on their relative importance.Thismechanism ensures
that features fromboth branches contribute appropriately to the final
fused representation. Unlike traditional fusion methods that use
fixed weights or simple averaging, this approach allows the model
to prioritize more discriminative features from the global and local
branches based on the task at hand, leading to enhanced feature
representation and classification accuracy.TheAFEmodule consists
of feature fusion, feature enhancement, and the final classifier, with
its detailed structure shown in Figure 5.

First, the feature fusion component is responsible for adaptively
fusing the enhanced global features F′G from the global branch
module (GB) with the enhanced local features F′L from the local
branch module (LB). To achieve this, the AFE module employs a
learnable weighting mechanism, as shown in Equation 10:

Ffused = α ⋅ F′G + β ⋅ F′L (10)

where α and β are learnable weight parameters obtained through
the network, with the constraint α+ β = 1. This allows the model
to dynamically adjust the fusion ratio based on the importance of
different features, enabling effective integration of global and local

Frontiers in Physics 05 frontiersin.org

https://doi.org/10.3389/fphy.2025.1582245
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


Zhang et al. 10.3389/fphy.2025.1582245

FIGURE 4
Structure of the LEM module.

FIGURE 5
Structure of the AFE module.

features. After feature fusion, the AFE module further enhances the
expressiveness of the fused features through a feature enhancement
layer. The feature enhancement layer typically consists of a series of
convolutional layers and activation functions to capture higher-level
semantic information, producing the enhanced features Fenh.This is
detailed in Equation 11:

Fenh = ReLU( fconv (Ffused)) (11)

Finally, the enhanced features Fenh are input into the classifier
component for the final class prediction, as shown in Equation 12:

ŷ = So ftmax(Wcls ⋅ Fenh + bcls) (12)

where Wcls and bcls are the weight and bias parameters of
the classifier, and ŷ represents the predicted class probability
distribution.

3.6 Loss function

To effectively train GLI-Net, a comprehensive loss function has
been designed, consisting of two main components: lesion region
detection loss Ldet and classification loss Lcls. The combination
of these two loss functions is aimed at simultaneously optimizing
the model’s ability to identify lesion regions and its overall
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classification performance, thereby improving the model’s accuracy
and robustness in endoscopic image classification tasks. The Ldet is
designed to optimize the model’s ability to detect lesion regions in
the image.This loss function uses binary cross-entropy loss, and the
main calculation formula is as follows:

Ldet = − 1
N

N

∑
i=1

[yi log(ŷi) + (1− yi) log(1− ŷi)] (13)

where N is the total number of pixels or regions, yi is the ground
truth label for the i-th pixel or region (0 for non-lesion, one for
lesion), and ŷi is the predicted lesion probability for the i-th pixel
or region. The classification loss Lcls is used to optimize the model’s
ability to predict the class of the entire image. This loss function
employs categorical cross-entropy loss to measure the difference
between the predicted class distribution and the true class labels.The
specific calculation details are as follows:

Lcls = − 1
M

M

∑
j=1

C

∑
k=1

yjk log(ŷjk) (14)

where M is the number of samples, C is the total number of classes,
yjk is the ground truth label of the j-th sample for the k-th class, and
ŷjk is the predicted probability of the j-th sample for the k-th class.
The overall loss L combines the lesion region detection loss and the
classification loss to achieve simultaneous optimization of themodel
on both local and global features. The specific formula is as follows:

L = Ldet + λLcls (15)

4 Experiments

4.1 Experimental details

4.1.1 Dataset
In our experiments, the Kvasir dataset and the Hyper-Kvasir

datasetwereused.TheKvasirdatasetcontains4,000endoscopic images
of gastrointestinal diseases, covering eight categories, with 500 images
per category. The dataset includes both anatomical landmarks (such
as the Z-line, pylorus, cecum, etc.) and pathological findings (such
as esophagitis, polyps, ulcerative colitis, etc.). The image resolutions
range from720× 576 to 1920× 1072 pixels. In the training and testing
split of the dataset, considering the imbalance in the annotation
of medical images, the labeled images are divided into a training
set (70%), a validation set (15%), and a test set (15%). The Hyper-
Kvasir dataset is a large multi-class public gastrointestinal dataset
sourced from gastroscopy and colonoscopy exams conducted at the
Baerum Hospital in Norway. All image annotations were provided
by experienced radiologists. The dataset contains 110,079 images,
covering both normal (healthy) and abnormal (unhealthy) patients,
with 10,662 labeled images. Due to the scarcity of annotated samples
and the large variation in thenumber of lesion samples across different
categories, the dataset split follows the common strategy used in the
medical field. Specifically, the 10,662 labeled images are divided into a
training set (70%), a validation set (15%), and a test set (15%). These
images cover a wide range of gastrointestinal abnormalities, including
normal and abnormal conditions, with a particular focus on diseases
such as polyps, ulcers, and colorectal cancer. The dataset is diverse,

featuring a variety of lesion shapes, sizes, and textures, which presents
significant challenges for model training. The annotated images,
provided by experienced radiologists, allow for a comprehensive
evaluation of model performance across different disease categories
and anatomical regions.

4.1.2 Evaluation metrics
We use accuracy (ACC), F1 score, precision, and recall as

classification evaluation metrics. These metrics are all derived from
the confusionmatrix, where the symbols are defined as True Positive
(TP), True Negative (TN), False Positive (FP), and False Negative
(FN). The specific calculation formulas are as follows:

Acc = TP+TN
TP+TN+ FP+ FN

(16)

P = TP
TP+ FP

(17)

R = TP
TP+ FN

(18)

F1 = 2× P×R
P+R

= 2TP
2TP+ FP+ FN

(19)

4.1.3 Implementation details
The experiments in this study were conducted on a computer

equipped with an NVIDIA RTX 4090 GPU with 24 GB of memory.
During training, the Adam optimizer was used, with specific
parameters set as β1 = 0.9, β2 = 0.999, and ϵ = 10−6. The learning
rate followed a cosine annealing strategy, with an initial value of 10−4

and a minimum value of 10−5. The batch size was set to 32, and the
maximum number of training epochs, Tmax, was set to 100 to ensure
training stability and eventual convergence.

4.2 Experimental comparison

4.2.1 Kvasir public dataset
To validate the outstanding performance of our proposed GLI-

Net on the Kvasir public dataset, we compared it with current state-
of-the-art models. Specifically, as shown in Table 1, compared to
ConvNeXt-B, ViT-B/16, ViT-B/32, and Swin-B models, our method
achieved improvements of 13.31%, 10.25%, 14.81%, and 9.03% in
Acc, respectively; 13.55%, 10.82%, 15.36%, and 9.39% in F1 score;
13.76%, 10.94%, 15.43%, and 9.51% in P; and 14.31%, 11.57%,
16.07%, and 10.10% in R.Moreover, compared to the HiFusemodel,
GLI-Net improved accuracy, F1 score, precision, and recall by 3.29%,
3.54%, 3.70%, and 4.28%, respectively. These results demonstrate
that GLI-Net is more effective in capturing and integrating both
global and local features, significantly enhancing the accuracy
and robustness of medical endoscopic image classification, and
showcasing its superior performance in complex medical image
analysis tasks.

To further demonstrate the superior performance of GLI-
Net on the Kvasir dataset, we applied the Grad-CAM method to
visualize the model’s final layer, generating heatmaps that reflect
the regions of the lesion the model focuses on. The specific details
are shown in Figure 6. Compared to models such as ConvNeXt-
B, ViT-B/16, ViT-B/32, Swin-B, and HiFuse, GLI-Net’s heatmaps
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TABLE 1 Comparative results of different methods on the Kvasir public dataset.

Method Accuracy ↑ F1 score ↑ Precision ↑ Recall ↑

ConvNeXt-B 74.6 74.61 74.78 74.64

VIT-B/16 76.1 75.94 76.49 76.23

VIT-B/32 73.8 73.5 74.24 73.72

Swin-B 77.3 77.29 77.74 77.44

HiFuse 84.35 84.41 84.5 84.48

GLI-Net (Ours) 87.43 87.68 88.26 89.12

FIGURE 6
Heatmap visualization results on the Kvasir public dataset.

show higher focus and coverage of the lesion regions, allowing
for more accurate localization of lesions in endoscopic images.
While other models can recognize some lesion areas, they exhibit
discrepancies in precise localization and coverage. For example,
ConvNeXt-B and ViT-B/32 show relatively blurred recognition,
while Swin-B and HiFuse incorrectly label many non-lesion areas.
GLI-Net, by effectively covering lesion regions and minimizing
background interference, demonstrates significant advantages in
feature extraction and region localization. These visualization
results prove GLI-Net’s efficiency and reliability in medical image
classification tasks.

4.2.2 Hyper-Kvasir public dataset
To validate the outstanding performance of our proposed GLI-

Net on theHyper-Kvasir public dataset, we compared it with current

state-of-the-art models. The specific results are shown in Table 2.
Compared to ConvNeXt-B, ViT-B/16, ViT-B/32, Swin-B, and
HiFusemodels, GLI-Net achieved improvements of 13.31%, 10.25%,
14.81%, 9.03%, and 3.29% in Acc, respectively; 13.55%, 10.82%,
15.36%, 9.39%, and 3.54% in F1 score; 13.76%, 10.94%, 15.43%,
9.51%, and 3.70% in P; and 14.31%, 11.57%, 16.07%, 10.10%, and
4.28% in R. These significant performance improvements indicate
that GLI-Net is more effective in capturing and integrating both
global and local features, significantly enhancing the accuracy
and robustness of medical endoscopic image classification, and
showcasing its superior performance in complex medical image
analysis tasks.

To demonstrate the superior performance of GLI-Net on the
Hyper-Kvasir dataset, we used the Grad-CAM method to generate
heatmaps that visualize the lesion regions the model focuses on.
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TABLE 2 Comparative results of different methods on the Hyper-Kvasir public dataset.

Method Accuracy ↑ F1 score ↑ Precision ↑ Recall ↑

ConvNeXt-B 72.53 72.61 72.8 72.71

VIT-B/16 75.59 75.34 75.62 75.45

VIT-B/32 71.03 70.8 71.13 70.95

Swin-B 76.81 76.77 77.05 76.92

HiFuse 82.55 82.62 82.86 82.74

GLI-Net (Ours) 85.84 86.16 86.56 87.02

FIGURE 7
Heatmap visualization results on the Hyper-Kvasir public dataset.

TABLE 3 Ablation study results of GLI-Net on the Kvasir public dataset.

Method GB LB LEM AFE Acc \ % F1 \ % Prec \ % Recall \ %

Case.S1 X 81.12 81.23 81.52 81.04

Case.S2 X 82.53 82.73 82.97 82.62

Case.S3 X 83.86 83.9 84.16 83.83

Case.S4 X 84.57 84.77 84.93 84.66

GLI-Net 87.43 87.68 88.26 89.12
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The specific details are shown in Figure 7. Compared to models
such asConvNeXt-B,ViT-B/16,ViT-B/32, Swin-B, andHiFuse,GLI-
Net’s heatmaps exhibit higher focus and coverage of the lesion areas,
allowing for more accurate localization of lesions in endoscopic
images. While other models can identify some lesion regions,
they show discrepancies in localization and coverage. For example,
ConvNeXt-B and ViT-B/32 exhibit relatively blurred recognition,
while Swin-B and HiFuse incorrectly label non-lesion regions. GLI-
Net, through more precise lesion region coverage and reduced
background interference, demonstrates its advantages in feature
extraction and region localization. These results show that GLI-Net
can more effectively integrate global and local features, significantly
improving the accuracy and robustness ofmedical endoscopic image
classification, and proving its efficiency and reliability in real-world
applications.

4.3 Ablation study

4.3.1 Ablation study of GLI-Net
To evaluate the performance of GLI-Net on the Kvasir dataset,

we conducted ablation experiments by sequentially removing the
GB, LB, LEM, and AFE modules from the model. The results

are shown in Table 3. The inclusion of each module significantly
improved the model’s performance.The baseline model with the GB
module removed achieved an accuracy of 81.12%. After removing
the LB module, the accuracy increased to 82.53%, and further
removal of the LEM module raised the accuracy to 83.86%. When
theAFEmodule was removed, the accuracy reached 84.57%. Finally,
the complete GLI-Netmodel achieved an accuracy of 87.43%, which
is a 2.86% improvement over the model without the AFE module.
In addition, GLI-Net also performed better in other evaluation
metrics such as F1 score, precision, and recall, with improvements of
6.45%, 4.45%, 3.78%, 8.08%, 6.50%, and 5.29%, respectively. These
experimental results demonstrate that the individual modules of
GLI-Net play a critical role in enhancing feature extraction, feature
fusion, and optimizing representation, significantly improving the
accuracy and robustness of medical endoscopic image classification,
and proving its superior performance in complex medical image
analysis tasks.

To verify the role of each module in GLI-Net, we conducted
ablation experiments on the Kvasir dataset by sequentially removing
the modules and used the Grad-CAM method to visualize the
lesion regions the model focuses on under different configurations.
The specific details are shown in Figure 8. The experimental results

FIGURE 8
Heatmap visualization results of the GLI-Net ablation study.
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TABLE 4 Ablation study results of different losses on the Kvasir public dataset.

Method Ldet Lcls λ Accuracy ↑ F1 score ↑ Precision ↑ Recall ↑

Case.S1 ✓ 72.32 71.51 72.35 72.13

Case.S2 ✓ 75.24 74.86 75.21 74.94

Case.S3 ✓ ✓ 80.17 79.52 80.17 79.88

GLI-Net ✓ ✓ ✓ 87.43 87.68 88.26 89.12

indicate that, after removing the Global Branch module (GB)
(Case.S1), the model’s focus on lesion areas significantly decreased,
revealing a deficiency in capturing global features. Removing the
Local Branch module (LB) (Case.S2) weakened the ability to extract
detailed features, resulting in blurred lesion regions. After removing
the Information Exchange Module (LEM) (Case.S3), although the
model could still detect lesion regions, the insufficient fusion of
global and local features affected comprehensive coverage of the
lesion areas. When the Adaptive Feature Fusion and Enhancement
Module (AFE) (Case.S4) was removed, although the focus on the
lesion areas increased, feature expression and region optimization
were insufficient, leading to residual background interference. In
contrast, the complete GLI-Net model, through the synergistic
action of all modules, accurately localized the lesion regions,
significantly improving the model’s accuracy and robustness in
medical endoscopic image classification. The superior performance
of GLI-Net can be attributed to the effective integration of global
and local features, alongwith the bidirectional information exchange
facilitated by the LEM module. The Global Branch (GB) extracts
high-level semantic features that provide a broad context for the
lesions, while the Local Branch (LB) captures fine-grained details
of the lesions. The Information Exchange Module (LEM) allows for
mutual enhancement of these features, ensuring that both global and
local features are used in a complementary manner.This interaction
mitigates the issues caused by intra-class variation and subtle inter-
class differences, which are common in endoscopic images, and thus
leads tomore accurate and robust classification results.These results
demonstrate the crucial roles of each module in feature extraction,
region localization, and feature fusion.

4.3.2 Ablation study of loss function
To evaluate the contribution of each component of the loss

function in GLI-Net, we conducted ablation experiments on
the Kvasir dataset by sequentially removing the lesion region
detection loss, classification loss, and weight coefficient. The results
are shown in Table 4. When only the lesion region detection loss
was used (Case.S1), the accuracy was 72.32%. After adding the
classification loss (Case.S2), the accuracy increased to 75.24%.When
both the lesion region detection loss and classification loss were used
together (Case.S3), the accuracy further improved to 80.17%. Finally,
the complete GLI-Netmodel achieved an accuracy of 87.43%, 7.26%
improvement over Case.S3, highlighting the important role of the
weight coefficient λ in balancing the loss function. Additionally,
GLI-Net showed significant improvements in F1 score, precision,
and recall, with increases of 6.78%, 4.81%, and 4.14%, respectively,
compared to Case.S3. These results indicate that the effective

combination of the lesion region detection loss and classification
loss, along with the proper setting of the weight coefficient,
significantly enhances the model’s performance, confirming the key
role of the loss function design in GLI-Net.

5 Conclusion

This paper presents GLI-Net, a novel network for medical
endoscopic image classification, designed to enhance classification
performance by effectively integrating both global and local features.
GLI-Net utilizes a hierarchical multi-module architecture that
includes a global branch module (GB), a local branch module (LB),
an information exchange module (LEM), and an adaptive feature
fusion and enhancement module (AFE) to facilitate comprehensive
feature extraction and optimization. Evaluation on the Kvasir and
Hyper-Kvasir public datasets showed that GLI-Net outperforms
state-of-the-art models, including ConvNeXt-B, ViT-B/16, ViT-
B/32, Swin-B, and HiFuse, across key metrics such as accuracy,
F1 score, precision, and recall. Specifically, GLI-Net achieved
accuracies of 87.43% and 85.84% on the Kvasir and Hyper-Kvasir
datasets, respectively, surpassing the second-best models by 2.86%
and 2.29%. Ablation studies confirmed the significant contribution
of each module to the overall performance, as the removal of
any module caused a notable performance decline, underscoring
their synergistic interaction. Additionally, Grad-CAM visualization
highlighted GLI-Net’s improved ability to accurately localize lesion
areas, with better focus and coverage compared to other models,
effectively reducing interference from background and non-lesion
regions.These results demonstrate GLI-Net’s substantial advantages
in feature extraction and region localization, leading to enhanced
accuracy and robustness inmedical endoscopic image classification.
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